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Abstract: Epilepsy patients who do not have their seizures controlled with medication or surgery
live in constant fear. The psychological burden of uncertainty surrounding the occurrence of
random seizures is one of the most stressful and debilitating aspects of the disease. Despite the
research progress in this field, there is a need for a non-invasive prediction system that helps disrupt
the seizure epileptiform. Electroencephalogram (EEG) signals are non-stationary, nonlinear and
vary with each patient and every recording. Full use of the non-invasive electrode channels is
impractical for real-time use. We propose two frontal-temporal electrode channels based on ensemble
empirical mode decomposition (EEMD) and Relief methods to address these challenges. The EEMD
decomposes the segmented data frame in the ictal state into its intrinsic mode functions, and then
we apply Relief to select the most relevant oscillatory components. A deep neural network (DNN)
model learns these features to perform seizure prediction and early detection of patient-specific
EEG recordings. The model yields an average sensitivity and specificity of 86.7% and 89.5%,
respectively. The two-channel model shows the ability to capture patterns from brain locations for
non-fontal-temporal seizures.

Keywords: ReliefF; EEMD; frontal-temporal; feature selection

1. Introduction

Epilepsy is a severe neurologic condition with a high incidence and prevalence worldwide,
affecting more than 50 million people. The disability, and the adjusted life imposed on patients, ranks
the disease as the second-most burdensome neurologic disorder [1–4]. An epileptic seizure is a sudden
rush of abnormal neural activity in the cortex of the brain. The economic cost and unpredictable
recurrent nature make the condition difficult to bear for patients and hinders the design of treatments
by physicians. Seizure symptoms challenge the patient to face independent life, stigma and social
misunderstandings [5,6].

The electroencephalogram (EEG) is widely recognized for assessing brain activities and remains
effective for epilepsy research due to its excellent temporal resolution [7,8]. For epilepsy seizure
detection, scalp EEGs (sEEGs) and intracranial EEGs (iEEGs) are used to measure the ictal changes
that lead to a biomarker for the presence of a seizure. The iEEG reading has a higher specificity, but a
limited sampling coverage of the cerebral cortex compared with sEEG readings [9]. More than 40 years
have been devoted to predicting epileptic seizures, with the challenge of forecasting seizures before
they happen [10]. Most methods look for patterns in the pre-ictal transition and contrast them with the
interictal signal for high sensibility [11,12]. For a real-time application, the detection and prediction
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model must run in an embedded device with limited computation resources and then be able to run
state-of-the-art algorithms [13].

Noninvasive methods have emerged as a demanding alternative in medicine to monitor health
and treatment [14–18]. The majority of the advancements in noninvasive seizure prediction and
detection use the full scalp EEG electrode channels in their research [3,12,15–17,19]. It is impractical
for epilepsy patients to wear the complete electrode channels EEG cap in a real-time application.
The International League Against Epilepsy (ILAE) in 2017 classified seizures based on the seizure onset
area, consciousness level during a convulsion and other characteristics of seizures. Temporal lobe
seizures and frontal lobe seizures are the most common types of focal impaired awareness seizure,
occurring in up to 80% of patients [20].

The main objective of this paper is to implement a two frontal-temporal channel seizure prediction
method based on ensemble empirical mode decomposition (EEMD)-Relief and deep neural networks
(DNNs). Figure 1 shows the proposed model. The EEMD-Relief combination extracts features from a
segmented data frame in the ictal and preictal times and retains the most informative components.
The model runs on 23 patient-specific epileptic data. A deep neural network is trained to predict the
seizure 23 min before it happens, with early detection of 3.9 s in the ictal period.
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2. Literature Review

Researchers have developed all kinds of methods that attempt to detect a biological signal
pattern using an EEG. From signal processing to classification, state-of-the-art algorithms have been
implemented with different levels of success [21]. Several theoretical investigations examine the
pre-ictal state to find a signature that helps anticipate and predict an epileptiform seizure [22–26].
The authors in [27] presented a pseudo-prospective seizure prediction. A deep learning classifier
was trained to distinguish between pre-ictal and interictal signals. The model was deployed in a
neuromorphic chip. However, the study only implemented a real-time testing model on a device for
one subject. The mean sensitivity of the system was 69%. They also benchmarked the system against
three recent studies. Senger et al. [26] addressed the seizure prediction problem by using an algorithm
based on cellular neural networks (CNNs). They used principal components analysis (PCA) to feed a
nonlinear CNN for the first method in the preprocessing stage, followed by level-crossing behavioral
analysis. For future work, they propose to limit the number of channels for a seizure-warning device.

Daoud et al. [28] proposed four deep learning prediction models with limited preprocessing.
The raw data were direct inputs to the multilayer perception (MLP) to classify between pre-ictal
and interictal states. The model integrated four layers and backpropagation for optimization.
Data from eight subjects were used to evaluate the patient-specific model. In the second model,
the authors implemented deep convolutional neural network (DCNN) architecture. This model was
designed for front-end feature extraction, reporting a drastic reduction in the number of trainable
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parameters. The authors implemented a channel selection algorithm to decrease the number of channels,
the dimensionality of variables and the demand for memory. Thus, the model is a candidate for
real-time application. In addition, the algorithm selects the channels with the highest variance entropy.

The authors in [29] developed a hybrid neural network prediction model by combining ensemble
empirical mode decomposition (EEMD) and a stochastic recurrent wavelet neural network, applied to
a nonlinear time series energy indexes price. The EEMD extracted feature frequencies from four energy
indexes. The proposed wavelet neural network model was implemented by adding stochastic functions
to add different timely weight to the historical data, and then recurrent layers were used to improve
the learning process. The proposed method exhibits good performance forecasting of the time-series
energy price. Zhou et al. [30] proposed a methodological approach to study hippocampal rhythmicity
using different spectral decomposition methods. The study compared the spectral features of the
wavelet, Fourier transform and EEMD to characterize hippocampal oscillations. The results showed
that the wavelet and the EEMD failed to represent the local field potential oscillations accurately in the
hippocampal under similar parameters. Additional research with more decomposition methods in a
broader brain lobes region is needed for the authors to accomplish their primary objectives.

Kanagaraj et al. [31] extracted features from images of patients with lung cancer using gray level
co-occurrence (GLMC). Four image texture features were extracted and calculated from GLMC: energy,
contrast, homogeneity and correlation. The contrast feature was reported to be the best suited for
differentiating between textures in the lung tissue’s spatial distribution. In the preprocessing, they first
conducted image denoising of the original computer tomography images, and secondly, a segmentation
process of the lung’s tumor area was implemented. An artificial neural network is used for classifying
normal and tumor tissues with an accuracy of 85.5%. The authors in [32] implemented an artificial
neural network, multilayer perception (MLP), to explain the economic and financial variables that
explain construction industry productivity. The study used nine economic variables. Value-added
variables and gross revenues were related to productivity. These features were the inputs to the
MPL model for training and testing. The classification score was 94.8%, and the receiving operating
curve (ROC) score was 98.1%. The study showed that management variables are closely related to
productivity, and using the MLP only addresses the management variables and leaves out other criteria,
such as human capital and innovation. A study in [33] presented a comparative method of feature
selection and extraction using the original empirical mode decomposition (EMD) and the ensemble
empirical mode decomposition (EEMD). The authors extracted intrinsic mode functions (IMFs) from
correlation, energy, power spectral density and statistical significance measurements. The extracted
features were classified using four algorithms: K-nearest Neighbors (KNN), Support Vector Machine
(SVM), Logistic Regressions and Naive Bayes. They demonstrated that the selection of IMFs affects
classifications, where EEMD features increase all four classifiers’ performance results.

3. Materials and Methods

3.1. Scalp Time Series Data

The EEG dataset from the Children’s Hospital Boston and the Massachusetts Institute of Technology
(CHB-MIT) [34] was used to validate the proposed method. The dataset consists of EEG recordings
from pediatric subjects with intractable seizures. Table 1 shows the 23 cases, collected from 22 subjects
(5 males, ages 3–22 and 17 females, ages 1.5–19). The sampling rate of the recording was 256 Hz.
The international 10–20 electrode positions system was used in the recordings. These were the
23 channels: C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8, P8-O2, FZ-CZ, CZ-PZ,
P7-T7, T7-FT9, FT9-FT10, FT10-T8, and T8-P8. The lobe seizure location for each patient is shown in
Table 2. The frontal-temporal channels F7-T7 and F8-T8 shown in Figure 2 are used in this study.
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Table 1. CHB-MIT dataset for 23 subjects.

Case Gender Age (Years) Number of Seizures

S01 F 11 7
S02 M 11 3
S03 F 14 7
S04 M 22 3
S05 F 7 2
S06 F 1.5 7
S07 F 14.5 3
S08 M 3.5 5
S09 F 10 3
S10 M 3 7
S11 F 12 3
S12 F 2 13
S13 F 3 8
S14 F 9 7
S15 M 16 14
S16 F 7 5
S17 F 12 3
S18 F 18 6
S19 F 19 3
S20 F 6 6
S21 F 13 4
S22 F 9 3
S23 F 6 3

Table 2. Seizure location by subjects [16].

Electrode Subjects

Frontal S01, S03, S05, S08, S18, S19
Temporal S02, S04, S07, S10, S12, S15, S16, S17, S22, S23

Frontal-Temporal S14
Temporal Occipital S06, S09, S13

Parietal S11
Temporal-Parietal S20, S21
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3.2. Preprocessing

The original signal had a physiological artifact (eyes blinking, muscle movement, involuntary
movement) and noise from the power line and EEG equipment. A sixth-order Butterworth band-pass
filter (2 Hz to 40 Hz) was applied to the time-series EEG signal to eliminate noise, power harmonics
and muscle artifacts.
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3.3. Ensemble Empirical Mode Decomposition

The EEMD overcomes the noise mixing effect of the empirical mode decomposition (EMD) by
allowing better scale separation. The algorithm adds a different series of white noise into the signal
in several iterations [35]. There was no correlation in IMFs among trials, since the added noise was
different in each trial. Averaging the IMFs of different trials eliminated the added noise and preserved
the signal. The EEMD has been successfully applied to biomedical signals and other noisy nonlinear
and nonstationary processes [36–38]. The formulation of the EEMD algorithms can be explained with
the following two equations [39]:

Yn(t) =
M−1∑
m=1

IMF(n)
m (t) + r(n)M (t)

where M-1 is the total number of IMFs, IMF(n)
m is the mth IMF and r(n)M is the residual in the nth trial.

The final step of the EEMD involves averaging the total m IMFs related to N trials:

IMFave
m (t) =

1
N

N∑
n=1

IMF(n)
m (t)

3.4. ReliefF

Relief is a filter-based feature selection method. Contrary to a wrapper, filters use a measurement
calculated from the general characteristics of the training data to score features and elicit new feature
subsets prior to modeling. Filters are much faster algorithms than wrappers and function independently
of the model algorithm [40]. The basic idea of Relief in Algorithm 1 is to weigh attributes between the
two nearest instances in a binary classification [5,6].

Algorithm 1: Original Relief Algorithm

set all weights W[A] := 0.0;
for i := 1 to m do

begin
randomly select an instance Ri;
find nearest hit H and nearest miss M;
for A := 1 to all_atrribuites do

W[A] := W[A] − diff(A,Ri,H)/m + diff(A,Ri,M)/m;
end;

where the function diff calculates the difference of values of attributes between the two nearest instances:

diff(A, I1, I2) =
|value(A,I1)−value(A,I2)|

max(A)−min(A)

Multiple versions of Relief, from A to F, have been proposed to overcome the original algorithm
problem of dealing with incomplete data sets and multiclass labels. ReliefF is the best known and most
adopted Relief filter-based version. Many other improvements have been proposed in succeeding
versions [40]. The ReliefF variant deals with noisy and incomplete data sets and can efficiently deal
with multiclass problems. The algorithm finds one near-miss class M(C) for each instance in the data
set and averages their contribution for updating attribute weights W[A]. ReliefF estimates the ability
of attributes to separate each pair of classes, regardless of if they are closest to each other. Here is a
ReliefF version algorithm proposed by Kononenko [41]:

W[A] := W[A] − di f f (A, R, H)/m +
∑

C,class(R)

[P(C) x di f f (A, R, M(C))]/m
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3.5. Prediction and Early Detection

We implemented a seizure-specific methodology in which a model was elicited for each patient.
The duration of a seizure varies from 10 s to 63 s. For early detection, shown in Figure 3a, the goal
is to find a signature of information in the first 3.9 s of the seizure’s ictal stage. The vectors of the
EEMD-Relief features extracted in this period were used for training the DNN. The seizure prediction
scheme is shown in Figure 3b. The seizure prediction horizon (SPH) is the time between the alarm and
the seizure onset, as defined in [11]. We used two SPHs of 23 min and 5 min, respectively. In each
prediction horizon, we are using two windows of 3.9 s with an overlapping one of 2.9 s. IMFs were
extracted in each window for the corresponding ictal and interictal states. The best IMF futures of
ReliefF were given as input to the DNN for training.
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3.6. Statistical Analysis and Validation

Statistical procedures were applied to analyze the sample size of the patient-specific data and
the performance score of the prediction model. The sample per subject had a high variability because
it depended on the patient’s number of seizures per trial. The minimum number of seizures in
this study was three to split the training and testing time segments. The sensitivity of the area
for different brain lobes was evaluated using a coefficient of variation and standard deviation as a
measure of spread. The DNN model performance was estimated using a one-way analysis of variance
(ANOVA) and ten-fold cross-validation. The training features were time-series signals with sequential
meanings. The procedure differed from non-sequential data points. Folds for training in our time-series
cross-validation were created by chaining the state segments of patient seizures. Therefore, we selected
a new train and test set of features for fitting and evaluating the model.

3.7. Deep Neural Network

A DNN of eight hidden layers was designed for classification. The sigmoid and ReLU activation
functions for output and input layers were defined in the model. The network ran with a 10% batch size
and 100 epochs. Keras, a python deep learning Application Programming Interface (API), was used
for running the model.
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4. Results

4.1. Early Detection

Within the patient-specific EEG signal, we identified an early indicator in the first 3.9 s of seizure
initiation. The empirical mode functions extracted in this seizure state showed a significant contrast to
the IMFs of the interictal state in the same time window. A deep neural network prediction algorithm
using this feature as input was evaluated on each patient’s EEG recording, in which 143 seizures
in 23 patients were analyzed. The proposed method showed an average sensitivity of 86.77% and
specificity of 89.52%. Tables 3 and 4 show the statistics for early detection and prediction.

Table 3. Early detection statistics in a 3.9 second horizon for each subject.

Subject Gender No Seizure Accuracy Sensitivity Specificity ROC-AUC F1

S01 F 7 0.916 0.925 0.906 0.916 0.916
S02 M 3 0.941 0.923 0.922 0.966 0.981
S03 F 7 0.997 0.994 1.00 0.997 0.997
S04 M 4 0.858 0.864 0.852 0.858 0.859
S05 F 5 0.928 0.930 0.926 0.928 0.928
S06 F 10 0.906 0.886 0.917 0.901 0.900
S07 F 3 0.895 0.847 0.944 0.895 0.890
S08 M 5 0.801 0.731 0.870 0.801 0.787
S09 F 4 0.887 0.834 0.941 0.887 0.881
S10 M 7 0.853 0.812 0.892 0.852 0.846
S11 F 3 0.914 0.940 0.886 0.913 0.917
S12 F 40 0.754 0.718 0.790 0.754 0.744
S13 F 12 0.876 0.897 0.856 0.876 0.878
S14 F 8 0.831 0.800 0.863 0.831 0.826
S15 M 20 0.795 0.744 0.847 0.795 0.785
S16 F 10 0.815 0.836 0.794 0.815 0.818
S17 F 3 0.961 0.955 0.966 0.961 0.961
S18 F 6 0.936 0.924 0.949 0.936 0.935
S19 F 3 0.961 0.978 0.943 0.960 0.962
S20 F 8 0.852 0.908 0.795 0.852 0.859
S21 F 4 0.936 0.930 0.942 0.936 0.935
S22 F 3 0.942 0.917 0.967 0.942 0.940
S23 F 7 0.872 0.858 0.885 0.872 0.870

Table 4. Patient-specific performance for 5 min and 23 min horizon times.

5 Min Horizon 23 Min Horizon

Subject Sen Spec AUC F1-Score Sen Spec AUC F1-Score

S01 0.765 0.884 0.824 0.813 0.851 0.804 0.828 0.831
S02 0.670 0.900 0.785 0.757 0.913 0.706 0.810 0.827
S03 0.868 0.885 0.876 0.875 0.753 0.780 0.767 0.763
S04 0.864 0.801 0.833 0.837 0.753 0.780 0.767 0.763
S05 0.696 0.833 0.764 0.746 0.849 0.808 0.829 0.831
S06 0.785 0.734 0.759 0.765 0.929 0.546 0.738 0.779
S07 0.670 0.749 0.709 0.697 0.811 0.686 0.748 0.763
S08 0.670 0.749 0.709 0.697 0.811 0.686 0.748 0.763
S09 0.565 0.859 0.712 0.662 0.774 0.781 0.778 0.776
S10 0.878 0.813 0.811 0.807 0.778 0.798 0.791 0.744
S11 0.698 0.699 0.698 0.697 0.669 0.834 0.751 0.726
S12 0.669 0.762 0.715 0.729 0.692 0.780 0.736 0.725
S13 0.768 0.774 0.771 0.770 0.804 0.710 0.757 0.767
S14 0.768 0.774 0.771 0.770 0.804 0.710 0.757 0.767
S15 0.721 0.662 0.691 0.700 0.757 0.689 0.723 0.731
S16 0.516 0.969 0.742 0.667 0.805 0.679 0.742 0.755
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Table 4. Cont.

5 Min Horizon 23 Min Horizon

Subject Sen Spec AUC F1-Score Sen Spec AUC F1-Score

S17 0.781 0.902 0.842 0.832 0.853 0.748 0.800 0.810
S18 0.800 0.766 0.783 0.786 0.900 0.766 0.833 0.842
S19 0.873 0.890 0.882 0.881 0.731 0.844 0.788 0.775
S20 0.681 0.831 0.756 0.735 0.835 0.558 0.696 0.730
S21 0.792 0.647 0.720 0.737 0.814 0.682 0.748 0.763
S22 0.843 0.698 0.771 0.785 0.810 0.716 0.763 0.773
S23 0.883 0.700 0.792 0.808 0.773 0.773 0.773 0.772

4.2. Prediction

From the patient EEG signal, we used two prediction horizons of 23 min and 5 min, respectively.
Each prediction horizon had a window of 3.9 s with an overlapping one of 2.9 s. IMFs were extracted
in each window for the corresponding ictal and interictal states. The best IMF features for ReliefF were
given as input to the DNN for training. The DNN model showed a sensitivity of 80.00% and a specificity
of 72.85%. Figures 4 and 5 show the intrinsic mode function for the ictal and interictal transitions.

Computers 2020, 9, x FOR PEER REVIEW 8 of 14 

S14 0.768 0.774 0.771 0.770 0.804 0.710 0.757 0.767 
S15 0.721 0.662 0.691 0.700 0.757 0.689 0.723 0.731 
S16 0.516 0.969 0.742 0.667 0.805 0.679 0.742 0.755 
S17 0.781 0.902 0.842 0.832 0.853 0.748 0.800 0.810 
S18 0.800 0.766 0.783 0.786 0.900 0.766 0.833 0.842 
S19 0.873 0.890 0.882 0.881 0.731 0.844 0.788 0.775 
S20 0.681 0.831 0.756 0.735 0.835 0.558 0.696 0.730 
S21 0.792 0.647 0.720 0.737 0.814 0.682 0.748 0.763 
S22 0.843 0.698 0.771 0.785 0.810 0.716 0.763 0.773 
S23 0.883 0.700 0.792 0.808 0.773 0.773 0.773 0.772 

4.2. Prediction 

From the patient EEG signal, we used two prediction horizons of 23 min and 5 min, respectively. 
Each prediction horizon had a window of 3.9 s with an overlapping one of 2.9 s. IMFs were extracted 
in each window for the corresponding ictal and interictal states. The best IMF features for ReliefF 
were given as input to the DNN for training. The DNN model showed a sensitivity of 80.00% and a 
specificity of 72.85%.. Figures 4 and 5 show the intrinsic mode function for the ictal and interictal 
transitions. 

 
 

Figure 4. Intrinsic mode functions of IMF1, IMF2, IMF3 and IMF4 and their instant frequencies in the 
preictal period of patient S01. 

 
 

Figure 5. Intrinsic mode functions of IMF1, IMF2, IMF3 and IMF4 and their instant frequencies in the 
interictal period of patient S01.  

Figure 4. Intrinsic mode functions of IMF1, IMF2, IMF3 and IMF4 and their instant frequencies in the
preictal period of patient S01.

Computers 2020, 9, x FOR PEER REVIEW 8 of 14 

S14 0.768 0.774 0.771 0.770 0.804 0.710 0.757 0.767 
S15 0.721 0.662 0.691 0.700 0.757 0.689 0.723 0.731 
S16 0.516 0.969 0.742 0.667 0.805 0.679 0.742 0.755 
S17 0.781 0.902 0.842 0.832 0.853 0.748 0.800 0.810 
S18 0.800 0.766 0.783 0.786 0.900 0.766 0.833 0.842 
S19 0.873 0.890 0.882 0.881 0.731 0.844 0.788 0.775 
S20 0.681 0.831 0.756 0.735 0.835 0.558 0.696 0.730 
S21 0.792 0.647 0.720 0.737 0.814 0.682 0.748 0.763 
S22 0.843 0.698 0.771 0.785 0.810 0.716 0.763 0.773 
S23 0.883 0.700 0.792 0.808 0.773 0.773 0.773 0.772 

4.2. Prediction 

From the patient EEG signal, we used two prediction horizons of 23 min and 5 min, respectively. 
Each prediction horizon had a window of 3.9 s with an overlapping one of 2.9 s. IMFs were extracted 
in each window for the corresponding ictal and interictal states. The best IMF features for ReliefF 
were given as input to the DNN for training. The DNN model showed a sensitivity of 80.00% and a 
specificity of 72.85%.. Figures 4 and 5 show the intrinsic mode function for the ictal and interictal 
transitions. 

 
 

Figure 4. Intrinsic mode functions of IMF1, IMF2, IMF3 and IMF4 and their instant frequencies in the 
preictal period of patient S01. 

 
 

Figure 5. Intrinsic mode functions of IMF1, IMF2, IMF3 and IMF4 and their instant frequencies in the 
interictal period of patient S01.  

Figure 5. Intrinsic mode functions of IMF1, IMF2, IMF3 and IMF4 and their instant frequencies in the
interictal period of patient S01.



Computers 2020, 9, 78 9 of 14

4.3. ReliefF

The contribution of twelve IMFs from the two scalp EEG channels is shown in Figure 6. The score
for the left and right hemisphere is presented.
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4.4. Early Detection in Different Brain Locations

The sensitivity and specificity of the frontal-temporal model in diffrerent brain locations are shown
in Table 5. Frontal and temporal lobes seizure are present in 14 of the 23 subjects.

Table 5. Performance of the frontal-temporal method in different brain locations.

Brain Location Sensitivity Specificity ROC-AUC Subjects

Frontal 9.200 0.950 0.945 S01, S03, S05, S08, S18, S19

Temporal 0.847 0.886 0.847 S02, S04, S07, S10, S12, S15,
S16, S17, S22, S23

Fontal-Temporal 0.800 0.863 0.831 S14
Temporal-Occipital 0.9333 0.872 0.905 S06, S09, S13

Parietal 0.941 0.886 0.913 S11
Temporal-Parietal 0.919 0.8685 0.894 S20, S21

4.5. Statistical Significance

The high variance of sample size per subject is shown in Figure 7, which depends directly on
seizure duration and frequency. Table 6 shows the statitics for subject sensitivity score on brain lobes
in the 5 min. and 23 min. horizon time. Table 7 shows the one-way ANOVA analysis of the prediction
performance in the 23 min. horizon for all subjects.

Table 6. Statistics for brain lobes prediction sensitivity in two horizon times (HTs).

Frontal Temporal FT-Parietal Temporal-Occipital Temporal-Parietal

HT Std.
Dev.

Coeff.
Var.

Std.
Dev.

Coeff.
Var.

Std.
Dev.

Coeff.
Var.

Std.
Dev.

Coeff.
Var.

Std.
Dev.

Coeff.
Var.

5 m 7.76 9.97 11.47 15.31 3.50 4.77 9.99 14.16 5.55 7.54
23 m 5.86 7.18 5.30 7.17 6.75 9.16 6.71 8.03 1.05 1.27
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Table 7. One-way analysis of variance (ANOVA) of prediction score performance in the 23 min horizon.

Summary

Groups Count Sum Mean Variance

Sen 23 18.469 0.803 0.004117
Spec 23 16.864 0.733217 0.005854
AUC 23 17.671 0.768304 0.001225

F1-Score 23 17.776 0.77287 0.001168
ANOVA

Source of Variation SS df MS F p-value F crit
Between Groups 0.056381 3 0.018794 6.080056 0.000827 2.708186
Within Groups 0.272013 88 0.003091

Total 0.328395 91
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Figure 7. Sample size per subjects (number of seizures) used in this study. Total seizures = 66,
Mean = 265.60, STD = 213.65 and Variance = 47,559.52.

4.6. Validation and Performance Comparison

Table 8 shows a performance comparison of the most recent work in seizure prediction. Ten-fold
cross-validation average for each 23 subject for early detection is shown in Table 9.

Table 8. Performance comparison of recent works in seizure prediction.

Authors Dataset No of
Channels

No of
Subjects Features Sen

(%)
FPR
(/h)

Horizon
Time (min)

[17] CHB-MIT 3 21 Phase Locking Value (PLV) 82.44 - 5
[16] CHB-MIT 18 23 CSP 92.2 0.12 30
[42] CHB-MIT 22 13 STFT Spectral 81.2 0.16 5
[15] CHB-MIT 23 24 CSP 81 0.47 60
[43] FH 21 - Phase Match 95.4 0.36 30
[44] FH 10 - Bivariate Features 86.7 0.126 30
[45] FH 21 Ngram Algorithm 75.16 0.21 30
[19] CHB-MIT - 13 Attractor-Based Analysis 86.77 0.367 55.3
[46] CHB-MIT 3 23 Random Forest 80.87 2.5 -
[47] Private Unit 8 21 Absolute Amplitude 88.0 8.5 24 h

Proposed work CHB-MIT 2 23 EEMD-ReliefF 86.7 0.27 23
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Table 9. Ten-fold cross-validation average score for each subject model for early detection (D).

S S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12
D 0.831 0.832 0.829 0.496 0.844 0.743 0.822 0.772 0..805 0.812 0.719 0.626
S S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 -
D 0.726 0.760 0.654 0.377 0.739 0.837 0.857 0.735 0.881 0.845 0.837 -

5. Discussion and Conclusions

This study focused on the analysis of two frontal-temporal channel prediction systems. We used
23 subjects from the CHB-MIT dataset and scalp EEG recordings to validate this work. A patient-specific
DNN classification model for each subject was trained for early detection and prediction. We extracted all
the intrinsic mode functions in the segmented preictal and interictal states from the two temporal-frontal
channels of each patient. Sixteen intrinsic mode functions were elicited per channel. Then, a ReliefF
filter selected the most informative features. This new subset of oscillatory components helped the
DNN learn a segment of 1000 data points, representing 3.9 s EEG windows in the ictal and interictal
periods. The proposed model achieved excellent results for the two electrodes in each brain hemisphere,
F7T7 and F8T8. The performance scores in early detection and prediction are shown in Tables 3 and 4.
Early detection showed an average sensitivity and specificity of 86.77% and 89.52%, respectively,
while in the prediction method, the average sensitivity and specificity were 81% and 97% in the 5 min
and 23 min horizon times. The area under the curve (AUC) of the receiving operating curve (ROC),
ROC-AUC, shows how well the patient-specific DNN model distinguishes between classes, with an
overall score of 85.39%.

The ensemble IMFs, and their instantaneous frequencies in the ictal and interictal states,
were extracted for early detection. The use of EEMD allowed for discriminating between the
segmented ictal and interictal periods. For the prediction analysis, the preictal to interictal signals are
shown in Figures 4 and 5, where the preictal state shows higher IMFs of instantaneous frequencies than
the corresponding interictal state. These signature patterns in the ictal and preictal enabled the DNN
to perform as a successful classifier model. The ReliefF analysis shows an almost similar score feature
selection for the F7T7 and F8T8 electrode channels in both early detection and prediction, as shown in
Figure 6. This feature pattern is present in each of the 23 subjects, suggesting an equal contribution by
each hemisphere in seizure prediction.

The intracranial EEG had a better spatial resolution and signal-to-noise ratio than the scalp EEG.
However, not all patients were candidates for surgery. In addition, there are some time complications
during craniotomy and risks of potential post-operative deficits [48]. Scalp EEGs promote a more
realistic acceptance of real-life scenarios for a patient, but have the limitations of wearing all the
electrode arrays in an outpatient setting [9]. A performance comparison of recent research in this
field is presented in Table 8. The authors in [46] used a reduced montage of eight electrodes in
seizure detection. The algorithm implemented detected seizures from EEG, surface, Electromyogram
(EMG) and Electrocardiogram (ECG). Results encouraged the use of reduced electrode sets based on
frontal-temporal electrodes. In our study, the two electrode channels of F7-T7 and F8-T8 covered a
partial frontal-temporal area on the subject’s scalp. Table 7 shows a one-way analysis of variance
(ANOVA) of prediction score performance in the 23 min horizon with a p-value < 0.05. The parietal,
temporal-occipital and temporal-parietal seizure locations exhibited an average sensitivity of 94%,
93.3% and 91.9%. The overall performance in Table 5 demonstrates the ability of the proposed model
to capture patterns from non-fontal-temporal seizure brain locations. Table 7 shows the validation
score for each subject, yielding an average of 80.5%.

Further work can assess the feasibility of running the model on restricted resource devices
with frontal and temporal epilepsy subjects. Also, a more extended prediction horizon time can be
explored with adjustable windows in the ictal period. The subrogation of the two frontal-temporal
channels can also be studied to produce a single, condensed channel (e.g., common spatial pattern).
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For visual inspection and seizure validation for a physician, we recommend the full use of the
10–20 electrode montage.

We have demonstrated that the proposed method represents a compelling alternative for reducing
the number of channels in a patient’s scalp. We proposed an EEMD-ReliefF approach to extract
and select the most relevant oscillatory components in two frontal-temporal channels. Investigating
and computing the frontal-temporal two-channel signals promises to be a suitable candidate for
developing a miniaturized warning and intervention device for therapy in epilepsy patients. Although
the detection and prediction results are promising, further studies are needed to validate their utility
for broad clinical applications in epilepsy patients.
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