
computers

Article

Structured (De)composable Representations Trained
with Neural Networks †

Graham Spinks * and Marie-Francine Moens

Departement Computerwetenschappen, Celestijnenlaan 200a—bus 2402, 3001 Leuven, Belgium;
sien.moens@cs.kuleuven.be
* Correspondence: graham.spinks@cs.kuleuven.be
† This paper is an extended version of our paper published in the 9th IAPR Workshop on Artificial Neural

Networks in Pattern Recognition, ANNPR 2020, Winterthur, Switzerland, 2–4 September 2020.

Received: 14 September 2020; Accepted: 29 September 2020; Published: 2 October 2020
����������
�������

Abstract: This paper proposes a novel technique for representing templates and instances of
concept classes. A template representation refers to the generic representation that captures the
characteristics of an entire class. The proposed technique uses end-to-end deep learning to learn
structured and composable representations from input images and discrete labels. The obtained
representations are based on distance estimates between the distributions given by the class label
and those given by contextual information, which are modeled as environments. We prove that the
representations have a clear structure allowing decomposing the representation into factors that
represent classes and environments. We evaluate our novel technique on classification and retrieval
tasks involving different modalities (visual and language data). In various experiments, we show
how the representations can be compressed and how different hyperparameters impact performance.

Keywords: structured representations; composition; deep learning; multimodal

1. Introduction

We propose a novel technique for representing templates and instances of concept classes that
is agnostic with regard to the underlying deep learning model. Starting from raw input images,
representations are learned in a classification task where the cross-entropy classification layer is
replaced by a fully connected layer that is used to estimate a bounded approximation of the distance
between each class distribution and a set of contextual distributions that we call “environments”.
By defining randomized environments, the goal is to capture common sense knowledge about how
classes relate to a range of differentiating contexts and to increase the probability of encountering
distinctive diagnostic features. This mechanism loosely resembles the associative nature of human
memory. Long-term memory storage is believed to rely on semantic encoding that performs better
if it can be associated with existing contextual knowledge [1]. Additionally, relating classes to
arbitrarily chosen environments increases the probability of encountering distinctive diagnostic
features, which should help retrieval, as might be the case with human long-term memory [2]. A recent
theory named “The Thousand Brains Theory of Intelligence” [3] suggests that multiple parts of the
neocortex learn complete models of objects with respect to different reference frames. The approach in
this paper resembles these mechanisms. Our experiments confirm the value of such an approach.

In this paper, classes correspond to (visual) object labels, and environments correspond
to combinations of contextual labels given by either object labels or image caption keywords.
Representations for individual inputs, which we call “instance representations”, form a 2D matrix
with rows corresponding to classes and columns corresponding to environments, where each

Computers 2020, 9, 79; doi:10.3390/computers9040079 www.mdpi.com/journal/computers

http://www.mdpi.com/journal/computers
http://www.mdpi.com
https://orcid.org/0000-0002-5490-4879
https://orcid.org/0000-0002-3732-9323
http://dx.doi.org/10.3390/computers9040079
http://www.mdpi.com/journal/computers
https://www.mdpi.com/2073-431X/9/4/79?type=check_update&version=2

Computers 2020, 9, 79 2 of 23

element is an indication of how much the instance resembles the corresponding class versus the
environment. The parameters for each environment are defined once at the start by uniformly
selecting a randomly chosen number of labels from the power set of all available contextual labels.
The class representation, which we refer to as the “template”, has the form of a template vector.
It contains the average distance estimates between the distribution of a class and the distributions of
the respective environments. By computing the cosine similarity between the instance representation
and all templates, class membership can be determined efficiently.

To get a better understanding of the setup, Figure 1 provides an example. For an input image
showing a scene from a baseball game, a neural network learns a projection to a 2D representation.
The amount of rows corresponds to the amount of classes and the amount of columns to the amount
of environments. In this example, the first row corresponds to the label “Football”, and the second
row corresponds to the label “Baseball”. Each of the environments e1, e2, . . . consists of a set of
randomly selected labels; for example, e1 could be constructed with the labels “Bat” and “Basketball”.
The instance representation then gives an indication of how this image relates to these environments
for each of the classes. The template representations give the average distance estimate between class
and environments. For example, for the class c2 (i.e., “Baseball”), the template would show a small
distance with respect to e1 as the notions “Baseball” and “Bat” are closely related. By comparing
the values of the instance representation with the template representations, one can find that the
second row of the instance representation (corresponding to c2 = “Baseball”) is highly similar to the
template representation for “Baseball”. At the same time, the first row of the instance representation
(corresponding to c1 = “Football”) is not that similar to the template representation for “Football”.

f2,2

Neural
Network

f1,2f1,1

f2,1
Input sample

c2: Baseball
c1: Football

Instance representation

Template for c1: Football

Template for c2: Baseball

Estimated distance between c2 and e1

e1 e2

n e e
nvironments

Template representations

n
c classes

cos 0.4

cos 0.9

Figure 1. The last layer of a convolutional neural network is replaced with fully connected layers that
map to nc × ne outputs fi,j that are used to create instance representations that are interpretable along
contextual dimensions, which we call “environments”. By computing the cosine similarity, rows are
compared to corresponding class representations, which we refer to as “templates”.

Template and instance representations are interpretable as they have a fixed structure comprised
of distance estimates. This structure is reminiscent of traditional language processing matrix
representations and enables operations that operate along matrix dimensions. We demonstrate this
with a Singular Value Decomposition (SVD), which yields components that determine the values along
the rows (classes) and columns (environments), respectively. Those components can then be altered to
modify the information content, upon which a new representation can be reconstructed. The proposed
representations are evaluated in several settings:

• Multi-label image classification, i.e., object recognition with multiple objects per image;
• Image retrieval where we query images that look like existing images, but contain altered

class labels;
• Single-label image classification on pre-trained instance representations for a previously

unseen label;

Computers 2020, 9, 79 3 of 23

• Rank estimation with regard to the compression of the representations;
• Hyperparameter selection and the influence on classification performance and sensitivity;
• The effect of environment composition on classification performance: we show that models that

are trained with more environments and with a suitable diversity in environment composition
lead to more informative features in the penultimate layer.

Finally, given the novelty of this approach, we will suggest several promising research directions
for future work.

Contributions: (1) We propose a new deep learning technique to create structured representations
from images, entity classes, and their contextual information (environments) based on distance
estimates. (2) This leads to template representations that generalize well, as successfully evaluated in a
classification task. (3) The obtained representations are interpretable as distances between a class and
its environment. They are composable in the sense that they can be modified to reflect different class
memberships as shown in a retrieval task.

2. Background and Related Work

We briefly discuss the useful background related to different aspects of our research and
investigate related works.

2.1. Representing Entities with Respect to Context

Traditionally, natural language processing has relied extensively on discrete representations.
The presence of a word or phrase in a sentence might be indicated by a one or zero (BOW [4]).
A slightly more sophisticated, but widely used version is TF-IDF [5], which takes into account the
frequency of words. This leads to very sparse representations with the undesirable quality that two
sentences that have a similar meaning can be orthogonal in terms of representations. To combat these
issues, neural networks mostly rely on dense, continuous-valued representations. Such representations
are often built in an unsupervised manner by extracting the meaning from the surrounding context.
This is the case for Word2Vec [6] word representations, as well as representations from more recent
language models such as ELMo [7] and BERT [8]. A downside of such representations is that they lose
access to the discrete input symbols and have no direct manner to interpret or manipulate the meaning
that is distributed among the dimensions.

A pragmatic method to represent a collection of documents is by using structured matrices,
e.g., by creating document-term matrices where rows are documents and columns are terms. Such matrices
can be decomposed with SVD or non-negative matrix factorization. Low-rank approximations are found
with methods like latent semantic indexing [9]. This typically solves the higher mentioned orthogonality
and interpretability issues by finding meaningful dimensions regardless of the vocabulary that was used
in the document. Some typical applications are clustering, classification, retrieval, etc. A significant
benefit of such structured representations is that outcomes can usually be interpreted with respect to
the contextual information. For example, when clustering textual documents, one can visually inspect
to what extent particular terms contribute to each cluster. Contrary to our work, earlier methods built
representations purely from labels and did not take deep neural network-based features into account.

Other methods have recently also attempted to use co-occurrence information to represent
information within richer contexts. Singh et al. [10], for example, created an unsupervised sentence
representation where each entity is a probability distribution based on co-occurrence of words.

2.2. Distances to Represent Features

A distinction can be made between machine learning problems that compute metrics between
individual instances (for example, by means of the Euclidean distance) and those that compare subsets
in large datasets. For the latter type of problems, a recent series of works has explored the use of
the “Optimal Transport Problem” (OTP) [11]. The distance that is found by solving the OTP between

Computers 2020, 9, 79 4 of 23

two distributions is called the Earth Mover’s Distance (EMD) [12], also known as the Wasserstein
distance. Whereas the OTP is traditionally solved via some variation of Sinkhorn iterations [13,14],
neural network-based approximations of the EMD have been widely used in recent years [15–17],
mostly in relation to generative adversarial networks [18].

The EMD has been applied to several natural language processing applications recently. The Word
Mover’s Distance (WMD) [19], for example, measures the distance between text documents. The WMD
thus gives the minimal amount of effort to move Word2Vec-based word embeddings from one
document to another. The authors used a matrix representation that expresses the distance between
words in respective documents. They noted that the structure is interpretable and that it performs
well on text-based classification tasks. Singh et al. [10] embedded documents by learning Wasserstein
distances between contexts. Wasserstein distances have also been used to maximize distances between
classes while minimizing intra-class discrepancy for feature learning in Wasserstein discriminant
analysis [20].

2.3. Random Features

Many modern machine learning applications act on data that have very high dimensionality.
A popular method to make tasks more tractable is to first project the data to a lower dimensional space.
Computing a suitable projection can however be computation and resource expensive.

The Johnson–Lindenstrauss (JL) lemma [21] has been a central result in this regard, stating that a
point cloud can be mapped with a random Lipschitz projection to a lower dimensional space in which
intra-point distances are preserved with high probability. Preserving the original structure of the point
cloud is highly desirable as some operations can be performed more easily in the lower dimensional
space. This principle has been applied on sparse data in “compressed sensing” [22,23] applications,
with the additional constraint that the data can be transformed back to the original space.

Similarly, the work by Rahimi and Recht [24] showed that random projections to a
low-dimensional feature space allow fast computations with linear methods for the training of kernel
machines. This idea was further developed by Wu et al. [25], who created the word mover’s embedding,
an unsupervised feature representation for documents. This embedding is obtained with a kernel that
employs a mapping to a lower dimensional space with the word mover’s distance [19]. The feature
space is infinitely large where feature dimensions consist of random documents that are created by
sampling a set of random words. One can then approximate the distance between two documents
by comparing how they relate to the random documents. As we will show in Section 3.6, our work
follows a similar line of thought, but in an end-to-end deep neural network setting with (potentially)
multiple modalities.

2.4. Interpretable Neural Networks

Many works that attempt to increase interpretability in neural networks focus on methods to
visualize features or neurons [26,27]. Other approaches focus on attribution, for example with attention
mechanisms [28]. It is then possible to investigate which elements contributed to an outcome, but this
does not explain satisfactorily why and how a decision was made. To this effect, it would be more
useful to obtain compositionality: understanding how different components interact and can be
combined leads to increased understanding. This can be achieved by imposing more structure to
networks. A typical approach is to aim for disentangled representations, usually performed with
(variational) autoencoders [29,30]. That said, the structure that is obtained from disentanglement is not
immediately useful for further compositions. By mapping instances to a 2D representation, we show
that we obtain a structure that can be used for compositionality (see Section 3.5).

In summary, our work borrows from each of the aspects we mentioned above. We create
representations that characterize entities with respect to different contexts while exploiting the
structure for compositionality. We use a distribution-based distance metric to create contextual features.
As inspired by the word mover’s embeddings, representations consist of feature maps with respect to

Computers 2020, 9, 79 5 of 23

random dimensions. Our work most importantly differs from previous work in the following manners:
(1) we use end-to-end deep neural network training to include rich image features when building
representations; (2) information from different modalities (visual and language) can be combined.

3. CoDiR: Method

In this section, we discuss the methodology to define environments and their usage in instance
and template representations. We will also show how to perform the neural network training and how
to exploit the structure of the representations for composition. We refer to our method as Composable
Distance-based Representation learning (CoDiR). We end this section by exploring the connection to
random feature maps.

3.1. Setting Up Environments

Concretely, in this work, we deal with image instances x that are distributed according to x ∼ pdata.
Images have non-exclusive class labels ci, i ∈ {1, . . . , nc}, which in this work are visual object labels
(e.g., dog, ball, . . .). Image instances x are fed through a (convolutional) neural network N. The outputs
of N will serve to build representations with nc rows and ne columns, where ne indicates the amount
of environments. Each environment will be defined with the use of discrete environment labels
lk, k ∈ {1, . . . , nl}, for which we experiment with two types: (1) the same visual object labels as used
for the class labels (such that nl = nc) and (2) image caption keywords from the set of the nl most
common nouns, adjectives, or verbs in the sentence descriptions in the dataset. We will refer to the
first as “CoDiR (class)” and the latter as “CoDiR (capt)”.

Two types of representations will be created: (1) templates Ti,: ∈ Rne that are generic class
representations and (2) instance representations D ∈ Rnc×ne . Each element Di,j of D is a distance
estimate between distributions pci and pej , where pci is shorthand for p(x = x, x ∈ Ci). Informally,
pci is the joint distribution modeling the data distribution and class membership ci. To obtain pej ,
several steps are performed before training:

1. Hyperparameter ne is set, giving the amount of environments.
2. Hyperparameter R is set, giving the maximum amount of labels per environment.
3. For the j-th environment, we then:

(a) Sample the actual amount of labels rj ∼ U[1, R] ∈ N;

(b) Sample the labels l(j)
m , with m ∈ {1, . . . , rj}, uniformly without replacement from the set of

all discrete environment labels lk, k ∈ {1, . . . , nl}.

Now, Ej, the set of images for environment ej, is given by Ej = ∪rj
m=1L(j)

m with L(j)
m the set of

images with label l(j)
m . Thus, similarly to pci , we have pej = p(x = x, x ∈ Ej). Note that by sampling

a random amount of labels per environment, as inspired by [25], we ensure diversity in the type of
composition of environments, with some holding many labels and some few. In Table 1, we summarize
the most important notations.

Example 1. To clarify the creation of environments before the training phase, we provide a short, simple example.
Assume we have a set of class labels: {dog, cat, ball, baseball, . . .} For this example, we will use these class labels
to construct environments. As a first step, we set the hyperparameters ne = 2 and R = 5, i.e., we will create two
environments with a maximum of five labels in each. Now, for both environments, we will sample the amount of
labels and the labels themselves:

1. For the first environment, we sample r1 ∼ U[1, 5] = 1. Thus, we need to sample one label from {dog, cat,
ball, baseball, . . .} : l(1)1 =“ball”.

2. Similarly, for the second environment, we sample r2 ∼ U[1, 5] = 2. Thus, we need to sample two labels
from {dog, cat, ball, baseball, . . .} : l(2)1 =“dog”, and l(2)2 =“ball”.

Computers 2020, 9, 79 6 of 23

In Section 4.7.1, the selection of hyperparameters ne and R is examined further. In the
following section, we discuss how to obtain distance estimates between the distributions of classes
and environments.

Table 1. Overview of the most important notations used in this paper.

ci Class label i.
nc The number of distinct class labels.
ej The j-th environment.
ne The number of environments.
lk Environment label k, used to construct the environments.
nl The number of distinct environment labels lk.
R The maximum number of labels per environment.
rj Random variable denoting the number of labels used to construct environment ej.

l(j)
m Random variable denoting the m-th sampled label in environment ej.

D(x) Instance representation ∈ Rnc×ne for an instance x.
Ti,: Template representation ∈ Rne for class ci.
cos(., .) Function that computes the cosine similarity between two vectors.
tci The threshold to determine class membership for class ci.

3.2. Contextual Distance

We propose to represent each image as a 2D feature map that relates distributions of classes
to environments. A suitable metric should be able to deal with neural network training, as well as
potentially overlapping distributions. A natural candidate is a Wasserstein-based distance function [15].
A key advantage is that the critic can be encouraged to maximize the distance between two
distributions, whereas metrics based on Kullback–Leibler (KL) divergence are not well defined if
the distributions have a negligible intersection [15]. In comparison to other neural network-based
distance metrics, the Fisher Integral Probability Metric (Fisher IPM) provides particularly stable
estimates and has the advantage that any neural network can be used as f as long as the last layer is a
linear, dense layer [31]. The Fisher IPM formulation bounds F , the set of measurable, symmetric and
bounded real valued functions, by defining a data dependent constraint on its second order moments.
The IPM is given by:

dFF (pej , pci) = sup
fi,j∈F

E
x∼pej

[fi,j(x)]− E
x∼pci

[fi,j(x)]√
1/2Ex∼pej

[f 2
i,j(x)] + 1/2Ex∼pci

[f 2
i,j(x)]

(1)

In practice, the Fisher IPM is estimated with neural network training where the numerator in
Equation (1) is maximized while the denominator is expressed as a constraint, enforced with a Lagrange
multiplier. While the Fisher IPM is an estimate of the chi-squared distance, the numerator can be
viewed as a bounded estimate of the inter-class distance, closely related to the Wasserstein distance [31].
From now on, we denote this approximation of the inter-class distance as the “distance”. During our
training, critics fi,j are trained from input images to maximize the Fisher IPM for distributions pci

and pej , ∀i ∈ {1, . . . , nc}, ∀j ∈ {1, . . . , ne}. The numerator then gives the distance between pci and
pej . We denote T ∈ Rnc×ne , with Ti,j = E

x∼pej ,train
[fi,j(x)]− E

x∼pci ,train
[fi,j(x)], i.e., the evaluation of the

estimated distances over the training set. Intuitively, one can see why a matrix T with co-occurrence
data contains useful information. A subset of images containing “cats”, for example, will more closely
resemble a subset containing “dogs” and “fur” than one containing “forks” and “tables”.

3.3. Template and Instance Representations

Generic class representations can then simply be obtained from the rows of T as they contain the
average distance estimates of a class with respect to all environments. We thus define Ti,: to be the

Computers 2020, 9, 79 7 of 23

template representation of class ci. Concretely, each element Ti,j gives an average distance estimate for
how a class ci relates to environment ej, where smaller values indicate that the class and environment
are similar or even (partially) overlap. For the instance representation for an input s, we then propose
to use D ∈ Rnc×ne with elements given by Equation (2):

D(s)
i,j = E

x∼pej ,train
[fi,j(x)]− fi,j(s) (2)

where fi,j(s) is simply the output of critic fi,j for the instance s. The result is that for an input s with

class label ci, D(s)
i,: is correlated to Ti,: as its distance estimates with respect to all different environments

should be similar. Therefore, the inner product between vector D(s)
i,: and the template Ti,: will be large

for input instances from class i, and small otherwise.
In general, the inner product of the obtained feature maps can be used to compute similarity

between two instances with respect to a class. For a given class ci and input images x and y,
this would become:

similarityci (x, y) ∼
ne

∑
j=1

D(x)
i,j D(y)

i,j (3)

In this work, we concretely use the cosine similarity as the similarity measure. To express class
membership, we use a shorthand notation D(s) ⊂ ci, and D(s) 6⊂ ci otherwise. As templates indicate
the average distance between classes and environments, we thus evaluate class membership as follows:

D(s) ⊂ ci if cos(D(s)
i,: , Ti,:) > tci (4)

with tci a threshold (the level of which is determined during training), and cos is the cosine similarity.
As classes can be evaluated separately, such templates can be evaluated, for example in multi-label
classification tasks (see Section 4). Finding the classes for an image is then simply calculated by
computing whether ∀ci, D(s) ⊂ ci.

3.4. Implementation

To obtain T and D, it is then necessary to train nc × ne critic networks. This is of course not
feasible in practice. For our approach, we therefore use a common neural network where the last layer
(e.g., the classification layer) is replaced by a single layer, fully connected neural network with output
size nc × ne. The outputs of this network give fi,j with i ∈ {1, . . . , nc} and j ∈ {1, . . . , ne} (see Figure 1).

During training, any given mini-batch will contain inputs with many different ci and ej.
To maximize Equation (1) efficiently, instead of feeding a separate batch for the instances of x ∼ pci and
x ∼ pej , we use the same mini-batch. Additionally, instead of directly sampling x ∼ pci , we multiply
each output fi,j with a mask Mc

i,j where Mc
i,j = 1ci . Here, 1ci stands for the indicator function where

1ci (x) = 1 if x ∈ Ci, zero otherwise, with Ci the set of images with label ci. Similarly, for x ∼ pej ,

we multiply each output fi,j with a mask Me
i,j where Me

i,j = ∑
rj
m=1 1

l(j)
m

. Here, 1
l(j)
m

stands for the indicator

function that indicates whether an input belongs to the set of images with label l(j)
m (i.e., one of the

labels that was sampled for environment ej). The result is that instances then are weighted according
to their label prevalence as required.

From these quantities, the Fisher IPM can be calculated and optimized. Algorithm 1 explains all
the above in detail (the implementation code can be found at https://github.com/GR4HAM/CoDiR).
When comparing to similar neural network-based methods, the last layer imposes a slightly larger
memory footprint (O(n2) vs. O(n)), but the training time is comparable as they have the same amount
of layers. Additionally, note that learned representations can be significantly compressed as explained
in the next section. After training completes, we perform one additional pass through the training set

https://github.com/GR4HAM/CoDiR

Computers 2020, 9, 79 8 of 23

where we use two-thirds of the images to calculate the templates and the remaining third to set the
thresholds for classification (all models are trained on a single 12Gb GPU).

Algorithm 1: Algorithm of the training process. For matrices and tensors, × refers to matrix
multiplication and ∗ to element-wise multiplication.

Input: images s, class labels c, environment labels l
Initialization

Select hyperparameters R and ne.
for j← 1 to ne do

rj ∼ U[1, R] ∈ N
for m← 1 to rj do

l(j)
m ∼ U[1, nl]

end
end
Create V ∈ Nnl×ne , which has a value of 1 for each uniformly selected label, 0 otherwise.
Init λ = 0 ∈ Rnc×ne .
Init weights in neural network N.

while Training do
Sample a mini-batch b, with batch size nb, containing images s and binary class labels

Cb ∈ Nnb×nc and binary environment labels Lb ∈ Nnb×nl .
Create masks

Expand Cb into Mc ∈ Nnb×nc×ne , s.t. Mc
k,i,: = 1ci (sk) for the k-th instance sk.

Multiply Lb and V , then expand the result into Me ∈ Nnb×nc×ne , s.t.
Me

k,:,j = ∑
rj
m=1 1

l(j)
m
(sk) for the k-th instance sk.

Calculate the Fisher GAN loss
Propagate b through N to obtain O f ∈ Rnc×ne containing all outputs fi,j.
Apply masks to N’s outputs: OE = O f ∗Me and OC = O f ∗Mc.
E f E = mean(OE, dim = 0)
E f Es = mean(OE ∗OE, dim = 0)
E f C = mean(OC, dim = 0)
E f Cs = mean(OC ∗OC, dim = 0)
constraint = 1− (0.5 ∗ E f Es + 0.5 ∗ E f Cs)

Minimize loss = −sum(E f E − E f C + λ ∗ constraint− ρ/2 ∗ constraint2)

end

3.5. (De)Composing Representations

As mentioned above, the CoDiR representations have a matrix structure with rows corresponding
to classes and columns corresponding to environments. Similar to early techniques in NLP, we then
propose to decompose the instance representations D with a singular value decomposition: D = USV>.
The outcome is that the rows of U contain the information that is contributed by the respective classes
ci. Similarly, the columns of V correspond to the respective environments ej. We then have two
applications in mind:

1. Composition: After performing the SVD on the instance representations, one has access to
label-level information. The contents of U can then be changed, for example to reflect modified
class membership. A new representation can then be rebuilt with the modified information.
This will be explained in more detail below.

2. Compression: After the SVD, the singular values are available. This means that one can
retain the top k singular values and corresponding singular vectors, thus obtaining compressed
representations of rank k. From this reduced information, new representations can be rebuilt that

Computers 2020, 9, 79 9 of 23

still perform well on classification tasks. As the spectral norm for the instance representations is
large with a non-flat spectrum, the representations can be compressed significantly, for example
by only retaining a few singular vectors of U and V (see Section 4.5). If k = 1, the number of
classes nc = 91, and the number of environments ne = 300, this would equate to a compression of:
(combined size of first singular vectors)/(original representation size) = (91+ 300)/(91× 300) =
1.4% the size of the original representations. We call this method C-CoDiR(k).

Let us consider in detail how to achieve the composition. To keep things simple, we only discuss
the case for “CoDiR (capt)”. We then consider the following scenario for an image s, where:

(D(s) ⊂ c+) ∧ (D(s) 6⊂ c−) (5)

The goal is to modify D(s) such that it represents an image s̃ for which:

(D(s̃) 6⊂ c+) ∧ (D(s̃) ⊂ c−) (6)

while preserving the contextual information in the environments of D(s); as an example, for a D(s) of an
image where D(s) ⊂ cdog and the discrete labels from which the environments are built indicate labels
such as playing, ball, and grass. The goal would be to modify the representation into D(s̃) (such that,
for example, D(s̃) ⊂ ccat and D(s̃) 6⊂ cdog) and not to modify the information in the environments.

To achieve this, one needs to:

• Modify the information relating to c+ in D(s). By increasing the value of Uc+ ,:, one can increase
the distance estimate with respect to class c+, thus expressing that D(s) 6⊂ c+. Practically, one can
set the values of Ũc+ ,: to the mean of all rows in U corresponding to the classes c̄ for which
D(s) 6⊂ c̄.

• Modify the information relating to c− in D(s). Here, one can decrease the value of Uc− ,: such that
D(s̃) ⊂ c−. To set the values of Ũc− ,:, one can perform an SVD on the matrix composed of all
nc template representations T, thus obtaining UT STVT . As the templates by definition contain
estimated distances with respect to environments for all classes, it is then easy to see that by
setting Ũc− ,: = UTc− ,: , we express that D(s̃) ⊂ c−, as desired.

A valid representation can then be reconstructed with the outer product D(s̃) = ∑
k

σkŨ:,k ⊗ V>k,:

where σk are the singular values of D(s). In Section 4.3, a retrieval experiment is proposed to illustrate
this mechanism.

3.6. Connection to Random Feature Maps

The theoretical foundation of this work is based on the random feature approximation of
Rahimi and Recht [24]. In their work, they proposed a random projection from the input space
to a low-dimensional Euclidean inner product space, such that the inner product of the projected
points approximates their kernel evaluation. A further work establishes that “fitting data sets onto
a linear combination of randomly selected basis functions can approximate a variety of canonical
learning algorithms that select the basis functions by costly optimization procedures” [32].

With respect to our approach, consider then the following. To determine how similar an image x
is to an image y, one can compare how x and y relate to an image with randomly selected labels. If we
repeat this for many random images, we derive an accurate indication of how x and y relate to each
other. By performing this extra intermediary step, many points of comparison are made with respect
to different contexts. Several of those contexts might highlight differentiating features between x and
y, thus improving the understanding of the relation between them.

Computers 2020, 9, 79 10 of 23

In mathematical terms, we thus explicitly define, analogously to Wu et al. [25], the following
kernel between two input images x and y:

k(x, y) :=
∫

p(ω)φω(x)φω(y)dω (7)

whereφωj(x) := dist(x, ωj) (8)

Here, φωj(x) is a mapping function that computes a distance dist between an input image x and
a random image ωj. More concretely, the latter can be better understood as a (hypothetical) image

containing a collection of randomly chosen labels {lj}
rj
j=1. Then, p(ω) is the distribution over the space

of all possible random images. Similar to Wu et al. [25], φω(x) is a possibly infinite-dimensional feature
map that thus indicates the distances between an image x and all possible images ω.

While Equation (7) can be computed over a possibly infinite-dimensional feature map, for practical
purposes, one can then compute the Monte Carlo approximation for the kernel:

k(x, y) ≈ 〈 1√
ne

φω(x),
1√
ne

φω(y)〉 =
1
ne

ne

∑
j=1

φωj(x)φωj(y) (9)

where the calculation is limited to a finite amount (ne) of random images. For simplicity, we assume
here that p(ω), the distribution over random images, is uniform. In Section 4.7.4, we address this
assumption experimentally.

The main issue now is to compute the mapping φω . While traditional kernel-based methods like
Support Vector Machines (SVM) explicitly avoid calculating the mapping φω through the use of the
kernel trick, we use neural networks to compute this complex mapping. However, computing the
distance with respect to “a random image” is problematic, as it is not clear how to define or create
such random images. Additionally, the distance between two images can be defined in many ways.
Pixel-based distances are not suitable as they discard higher level semantic information. Two images
with similar labels can still exhibit very different content. To resolve these issues, we instead propose to
calculate the distances at a distributional level. Instead of random images, we define environments that
are given by a collection of randomly selected labels. This allows us to use a subset of actual training
images as the basis for a contextual dimension, rather than a fictional random image. The training
method then consists of computing distances between the distributions defined by classes and
environments. To calculate the distance between two distributions, we rely on the earth mover’s
distance. As explained in Section 3.3, neural network training can be used to map an input x to an
approximation of the EMD.

To adapt to this setting, we thus make the following choices:

1. Neural networks are used to compute the distances between the distributions defined by instances
of class ci and those defined by environment ej. Environments are given by a subset of the dataset
with randomly chosen labels. See Section 3.1.

2. We learn separate feature maps for each class with respect to all environments. For individual
inputs, this leads to a 2D representation where each input can be analyzed with respect to different
classes and environments. This structure allows us also to decompose the representation and
perform modifications; see Section 3.5.

3. Rather than the kernel computation as given by Equation (9), we compute a cosine similarity
between the learned feature maps. This is explained in Section 3.3.

4. We make a distinction between instance representations and class representations (templates).
See Section 3.3.

Computers 2020, 9, 79 11 of 23

4. Experiments

We show how CoDiR compares to a (binary) cross-entropy baseline for multi-label image
classification. Additionally, CoDiR’s qualities related to (de)compositions, compression, and rank
are examined.

4.1. Setup

The experiments are performed on the COCO dataset [33], which contains multiple labels and
descriptive captions for each image. We use the 2014 train/valsplits of this dataset as these sets contain
the necessary labels for our experiment, where we split the validation set into two equal, arbitrary
parts to have a validation and test set for the classification task. We set nc = 91, i.e., we use all
available 91 class labels (which includes 11 supercategories that contain other labels, e.g., “animal” is
the supercategory for “zebra” and “cat”). An image can contain more than one class label. To construct
environments, we use either the class labels, CoDiR (class), or the captions, CoDiR (capt). For the latter,
a vocabulary is built of the nl most frequently occurring adjectives, nouns, and verbs. For each image,
each of the nl labels is then assigned if the corresponding vocabulary word occurs in any of the captions.
For the retrieval experiment, we select a set of 400 images from the test set and construct their queries
(all dataset splits and queries are available at https://github.com/GR4HAM/CoDiR). All images
are randomly cropped and rescaled to 224× 224 pixels. We use three types of recent state-of-the-art
classification models to compare performance: ResNet-18, ResNet-101 [34], and Inception-v3 [35].
For all runs, an Adam optimizer is used with the learning rate 5× 10−3. For the Fisher IPM loss, ρ is
set to 1× 10−6. The parameters are found empirically based on the performance on the validation set.

4.2. Multi-Label Image Classification

In this experiment, the objects in the image are recognized. For each experiment, images are
fed through a neural network where the only difference between the baseline and our approach is
the last layer. For the baseline, which we call “BXENT”, the classification model is trained with a
binary cross-entropy loss over the outputs, and optimal decision thresholds are selected based on
the validation set F1 score. For CoDiR, classification is performed on the learned representations as
explained in Section 3.3. We then conduct two types of experiments: (1) BXENT (single) vs. CoDiR
(class): an experiment where only class labels are used; for BXENT (single), classification is performed
on the output with dimension nc; for CoDiR (class), environments are built with class labels, such that
nl = nc; (2) BXENT (joint) vs. CoDiR (capt): an experiment where nl additional contextual labels
from image captions are used; the total amount of labels is nc + nl ; for BXENT (joint), this means
joint classification is performed on all nc + nl outputs; for CoDiR (capt), there are nc classes, whereas
environments are built with the selected nl caption words. For all models, scores are computed over
the nc class labels.

With the same underlying architecture, Table 2 shows that the CoDiR method compares favorably
to the baselines in terms of F1 score (multi-label scores as defined by [36]). When adding more detailed
contextual information in the environments, as is the case for CoDiR (capt), our model outperforms
the baseline in all cases (for reference: a k-nearest neighbors (k = 3) on pre-trained ImageNet features
of a ResNet-18 achieves an F1 of 0.221). In terms of complexity, the classification inference procedure
of the baseline models requires a forward pass and a simple thresholding operation over nc classes.
For CoDiR, this is entirely the same, with the exception of an extra cosine similarity computation
between instance representations and template representations. A cosine similarity over n dimensions
can be implemented as O(n). For CoDiR, nc cosine similarities are computed over the environment
dimension such that the time complexity for this operation becomes O(nc × ne).

https://github.com/GR4HAM/CoDiR

Computers 2020, 9, 79 12 of 23

Table 2. F1 scores, Precision (PREC), and Recall (REC) for different models for the multi-label
classification task. σ is the standard deviation of the F1 score over three runs. All results are the average
of three runs. An asterisk * is added to indicate a model for which outperformance is statistically
significant at a 0.05 significance level with respect to its corresponding baseline in a one-tailed t-test
with unequal variances. The highest F1 score for each comparison is indicated in bold.

MODEL METHOD ne nl R F1 PREC REC σ

ResNet-18 BXENT (single) - - - 0.566 0.579 0.614 3.6× 10−3

ResNet-18 CoDiR (class) 300 91 40 0.601 * 0.650 0.613 8.0× 10−3

ResNet-101 BXENT (single) - - - 0.570 0.582 0.623 1.3× 10−2

ResNet-101 CoDiR (class) 300 91 40 0.627 * 0.664 0.648 2.5× 10−3

Inception-v3 BXENT (single) - - - 0.638 0.663 0.669 5.4× 10−3

Inception-v3 CoDiR (class) 300 91 40 0.617 0.648 0.646 4.7× 10−3

ResNet-18 BXENT (joint) - 300 - 0.611 0.631 0.654 1.1× 10−3

ResNet-18 BXENT (joint) - 1000 - 0.614 0.637 0.653 9.3× 10−3

ResNet-18 CoDiR (capt) 300 300 40 0.629 * 0.680 0.641 2.7× 10−3

ResNet-18 CoDiR (capt) 1000 1000 100 0.638 * 0.686 0.651 1.9× 10−3

ResNet-101 BXENT (joint) - 300 - 0.598 0.619 0.640 1.1× 10−2

ResNet-101 BXENT (joint) - 1000 - 0.592 0.611 0.638 7.0× 10−3

ResNet-101 CoDiR (capt) 300 300 40 0.645 0.696 0.655 2.8× 10−2

ResNet-101 CoDiR (capt) 1000 1000 100 0.657 * 0.702 0.666 1.3× 10−2

Inception-v3 BXENT (joint) - 300 - 0.644 0.671 0.675 1.5× 10−2

Inception-v3 BXENT (joint) - 1000 - 0.63 0.655 0.663 3.0× 10−2

Inception-v3 CoDiR (capt) 300 300 40 0.660 0.699 0.675 1.9× 10−3

Inception-v3 CoDiR (capt) 1000 1000 100 0.661 0.700 0.676 6.5× 10−3

4.3. Retrieval

The experiments here are designed to show the interpretability, composability, and compressibility
of the CoDiR representations. All models and baselines in these sections are pre-trained on the
classification task above. We performed two types of retrieval experiments:

1. NN: the most similar instance to a reference instance is retrieved.
2. M-NN: an instance is retrieved with modified class membership while contextual information

in the environments is retained. Specifically: “Given an input sr that belongs to class c+ but
not c−, retrieve the instance in the dataset that is most similar to sr that belongs to c− and not
c+”, where c+ and c− are class labels (see Figure 2). We will show that CoDiR is well suited for
such a task, as its structure can be exploited to create modified representations D(s̄r) through
decomposition as explained in Section 3.5.

This task is evaluated as shown in Table 3. Note that for the M-NN task, we want to evaluate two
things: (1) to measure whether both labels were modified correctly, we evaluate the Precision (PREC)
as a simple retrieval experiment where a retrieved example with the correctly modified classes is a true
positive and a retrieved example with any incorrectly modified class is a false positive. (2) To indicate
how well the contextual information is preserved after the modifications, the F1% score measures the
proportion of the F1 score for the contextual caption words on the M-NN task over the F1 score for the
contextual caption words on the NN task. The goal is then to achieve a good combination of M-NN
PREC and F1% (for the latter, higher percentages are better). To clearly indicate that the F1% measures
a proportion over F1 scores, we explicitly use a percentage notation for this score. For the sake of
completeness, we also report the F1 score, precision, and recall over all classes in Appendix A.

Computers 2020, 9, 79 13 of 23

Figure 2. Example of retrieval results for both NNand M-NN. For NN, based on the representation
D(sr), the most similar instance is retrieved. For M-NN, D(sr) is modified into D(s̄r) before retrieving
the most similar instance.

Table 3. For the NN and M-NN retrieval, the F1 score of class labels and the Precision (PREC) of the
modified labels are shown for the first retrieved instance. The F1% score measures the proportion of the
F1 score for the contextual caption words on the M-NN task over the F1 score for the contextual caption
words on the NN task. A higher F1% score is better. Methods are used in combination with three
different base models: ResNet-18/ResNet-101/Inception-v3. All results are the average of three runs.

Method NN M-NN
F1 PREC F1%

SEM (single) 0.64 /0.66/0.70 0.53/0.55/0.55 93/87/89
SEM (joint) 0.71/0.70/0.73 0.29/0.28/0.31 97/100/96

CNN (joint) 0.71/0.70/0.70 0.37/0.26/0.33 92/90/92
CM 0.72/0.74/0.74 0.19/0.15/0.18 100/100/100

CoDiR 0.70/0.72/0.72 0.30/0.30/0.27 97/97/95
C-CoDiR(5) 0.70/0.72/0.72 0.30/0.29/0.26 97/94/93

Computers 2020, 9, 79 14 of 23

We use the highly structured sigmoid outputs of the BXENT (single) and BXENT (joint) models as
baselines, denoted as SEM (single) and SEM (joint), respectively. With SEM (joint), it is possible
to directly modify class labels while maintaining all other information. It is thus a “best-case
scenario”-baseline for which one can strive, as it combines a good M-NN precision and F1% score.
SEM (single) on the other hand only contains class information and thus presents a best-case
scenario for the M-NN precision score, yet a worst-case scenario for the F1% score. Additionally,
we compare with a simple baseline consisting of Convolutional Neural Network (CNN) features from
the penultimate layer of the BXENT (joint) models with nl = 300. We also use those features in a
Correlation Matching (CM) baseline, which combines different modalities (CNN features and word
caption labels) into the same representation space [37]. The representations of these baseline models
cannot be composed directly. In order to compare them to the “M-NN” method, therefore, we define
templates as the average feature vector for a particular class. We then modify the representation for a
instance s by subtracting the template of c+ and adding the template of c−. All representations except
SEM (single) are built from the BXENT (joint) models with nl = 300. For CoDiR, they are built from
CoDiR (capt) with nl = 300.

For all baselines, similarity is computed with the cosine similarity, whereas for CoDiR, we exploit
its structure as: similarity = mean_cos(D(s̄r), D(s)) over all classes c for which cos(D(s̄r)

c,: , Tc) > 0.75× tc.
Here, the notations are taken from Section 3.5, and D(s̄r) is the modified representation of the reference
instance. mean_cos(D(s̄r), D(s)) is the mean cosine similarity between D(s̄r) and D(s) with the mean
calculated over class dimensions. The similarity is thus calculated over class dimensions where classes
with low relevance, i.e., those that have a low similarity with the templates, are not taken into account.

The advantages of the composability of the representations can be seen in Table 3 where CoDiR
(capt) has a comparable performance to the fully semantic SEM (joint) representations. CNN (joint)
manages to obtain a decent M-NN precision score, thus changing class information well, but at
the cost of losing contextual information (low F1%), performing almost as poorly as SEM (single).
Whereas CM performs well on the NN task, it does not change the class information accurately and thus
(inadvertently) retains most contextual information. All baseline models require a cosine similarity,
thus resulting in a time complexity of O(nc). For CoDiR, we see above that nc cosine similarities are
computed over the environment dimension such that the time complexity becomes O(nc × ne).

We show some examples of retrieval results in Figure 2. In the first column, six example images
from the test set are shown. For each example, the most similar image is retrieved and shown in
the NN column. In the third column, a query is shown for the M-NN task that illustrates how the
representation D(sr) should be modified in order to create D(s̄r). In the last column, the most similar
image is shown to the modified representation. The first three examples show successful results for
both the NN and M-NN method. The fourth example shows a debatable result for M-NN where a
spoon is now visible next to the dish, but it is not clear whether the food comes in a bowl or a pot.
In Example 5, the M-NN method does show a table, but clearly not a dining table. The last example
shows a failure case for the NN method where a baseball pitch is returned instead of a field with sheep.
The M-NN method does return a cow, but on a beach rather than a grass field.

4.4. Rank

While the previous section shows that the structure of CoDiR representations provides access
to semantic information derived from the labels on which they were trained, we hypothesize that
the representations contain additional information beyond those labels, reflecting local, continuous
features in the images. To investigate this hypothesis, we perform an experiment, similar to [38],
to determine the rank of a matrix composed of 1000 instance representations of the test set. To maintain
stability, we take only the first 3 rows (corresponding to 3 classes) and all 300 environments of each
representation. Each of these is flattened into a 1D vector of size 900 to construct a matrix of size
1000 × 900. Small singular values are thresholded as set by [39]. The model used is the CoDiR (capt)
ResNet-18 model with nl = 300. We obtain a rank of 499, which exceeds the amount of class and

Computers 2020, 9, 79 15 of 23

environment labels (3+300) within, suggesting that the representations contain an additional structure
beyond the original labels.

4.5. Compressed Representations

The representations can thus be compressed. Table 3 shows that C-CoDiR with k = 5, denoted as
C-CoDiR(5), approaches CoDiR’s performance across all defined retrieval tasks. In Table 4, we show
the performance on the retrieval task of Section 4.3 for compressed C-CoDiR(k) representations for
different ranks k. It can be seen that the compressed representations still perform well up to k = 5.
For extreme compressions where k = 3 and k = 1, the performance on either the M-NN precision or
the F1% metric deteriorates, which is to be expected as too much relevant information is lost.

Table 4. For different values of rank k, we show the effect of compression on the outcomes of the
retrieval task. For the NN and M-NN retrieval setups, the F1 score of class labels and the Precision
(PREC) of the modified labels are shown respectively for the first retrieved item. The F1% score
measures the proportion of the F1 score for the contextual caption words on the M-NN task over the F1
score for the contextual caption words on the NN task. A higher F1% score is better. Values are shown
for a ResNet-18 CoDiR (capt, nl = 300) model.

Method NN M-NN
F1 PREC F1%

C-CoDiR(45) 0.70 0.27 100
C-CoDiR(23) 0.70 0.28 99
C-CoDiR(9) 0.70 0.29 99
C-CoDiR(5) 0.70 0.29 98
C-CoDiR(3) 0.70 0.29 95
C-CoDiR(1) 0.70 0.17 100

4.6. Unseen Labels

To show that the CoDiR representations contain information beyond the pre-trained labels, we also
use cross-validation to perform a binary classification task with a simple logistic regression. A subset
of 400 images of dogs is taken from the validation and test sets, of which 24 and 17 respectively are
positive examples of the previously unseen label: panting dogs. The logistic regression is performed
with 2-fold cross-validation with an L2 penalty for regularization (the standard “LogisticRegression”
implementation of the scikit-learn library was used for this computation, with the “lbfgs” solver
and a maximum of 200 iterations for convergence). The inputs for the regression are the flattened
representations of the input instances. The outcome in Table 5 shows that the CoDiR and C-CoDiR(5)
representations outperform the purely semantic representations of the SEM model, which suggests
that the additional continuous information is valuable. Nevertheless, the scores are overall quite low.
Future work could expand on these results and further investigate the level of detail contained within
the continuous-valued CoDiR embeddings.

Computers 2020, 9, 79 16 of 23

Table 5. F1 score for a simple logistic regression on pre-trained representations to classify a previously
unseen label (“panting dogs”). For the last three models, nl = 300. Methods are used in combination
with three different base models: ResNet-18/ResNet-101/Inception-v3. All results are the average
of three runs. Note that for cases where both precision and recall are zero, the F1 score is undefined.
For simplicity and legibility, we write that in such cases, the F1 score is 0 as well.

Method F1

SEM (single) 0.00/0.00/0.00
CoDiR (class) 0.10/0.06/0.07
C-CoDiR(5) (class) 0.06/0.08/0.09

SEM (joint) 0.00/0.10/0.00
CoDiR (capt) 0.08/0.15/0.20
C-CoDiR(5) (capt) 0.10/0.14/0.19

4.7. Environment Composition

In this section, we investigate the properties of the environments, their composition, and their
effect on the performance on the multi-label classification task of Section 4.2.

4.7.1. Hyperparameters

The performance of CoDiR depends on the parameters ne and R. To measure their influence,
the multi-label classification task is performed for different values of these parameters.

Increasing ne or the amount of environments (i.e., the amount of columns of the CoDiR
representation) leads in general to better performance, although it plateaus after a certain level.
Intuitively, this can be understood as follows: as more and more environments are chosen through
a selection of random labels, the odds diminish that a new environment will add new, relevant,
differentiating features. This is illustrated for the ResNet-18 CoDiR (class) approach to the multi-label
classification problem of Section 4.2 in Figure 3.

F1
 s

co
re

0.45

0.5

0.55

0.6

0.65

R (log)
1 10 100

ne (log)
1 10 100

F1 for different ne (top)
F1 for different R (bottom)

Figure 3. Influence of R and ne on the F1 score for multi-label image classification using the CoDiR
(class) approach with ResNet-18. When modifying R, ne is fixed to 300. When modifying ne, R is fixed
to 40. All data points are the average of three runs.

For R, the maximum amount of labels per environment, an optimal value can be found empirically
between 0 and nl . Combining a large amount of labels in any environment evidently creates a unique
subset for comparison with instances. When R is too large, however, subsets with unique features are
no longer created, and performance deteriorates. In Figure 3, the influence of R on the F1 score for
multi-label image classification is also shown.

Computers 2020, 9, 79 17 of 23

4.7.2. Sensitivity

A concern might be that classification results with our method would be highly sensitive to the
choice of random environments. However, it turns out that even when ne and R are small, the outcome
is not sensitive with regard to the choice of environments, suggesting that the amount and diversity are
more important than the composition of the environments. This is shown in Tables 6 and 7, which give
the standard deviations of the F1 scores for different values of ne and R, respectively. This raises
some interesting questions about the importance of the selected environments. We investigate these
questions further in the following subsections.

Table 6. Standard deviations of the F1 scores of the classification experiment for different values of ne.
Each value is computed on the basis of three runs.

ne = 2 ne = 4 ne = 8 ne = 16

R = 1 6.5× 10−2 2.8× 10−2 2.1× 10−2 3.5× 10−2

Table 7. Standard deviations of the F1 scores of the classification experiment for different values of R.
Each value is computed on the basis of three runs.

R = 2 R = 4 R = 8 R = 16

ne = 2 7.2× 10−2 2.7× 10−2 3.3× 10−2 4.4× 10−2

4.7.3. Sufficient Number of Environments

As the sensitivity of outcomes is relatively small even when a limited number of environments
are used, it raises the question about how much the chosen environment compositions truly matter.
Do models that are trained with more environments benefit because they have a better chance of
containing more informative environments, or does a larger variety of environments help to learn
better features at training time? To investigate this, we take the fully trained ResNet-18 CoDiR (class)
models from Section 4.2 and only retain a number ns of environments where environments are selected
randomly. We then perform the classification experiment from Section 4.2 again, but this time using the
CoDiR representations with the reduced number of environments. Intuitively, we expect more selected
environments to lead to better F1 scores. This is indeed the case, as can be seen in Figure 4, although
the effect diminishes for larger ns. Interestingly, from this plot, it immediately becomes clear that two
randomly selected environments from a model that was trained with a large number of environments
(e.g., ne = 100) leads to better class membership estimations than from a model that was trained with
a small number of environments (e.g., ne = 2). As the models are for the rest identical, there is nothing
special about the selected environments. The reason why they thus outperform in this experiment
must therefore be attributed to the larger number of environments during training, which thus leads
to improved feature learning in the penultimate layer.

Computers 2020, 9, 79 18 of 23

F1
 s

co
re

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Amount of environments selected
1 10 100

Model with ne = 100
Model with ne = 20
Model with ne = 2

Figure 4. F1 score (y-axis) for multi-label image classification using the CoDiR (class) approach with
ResNet-18. For models trained with different amounts of environments (ne), we perform multi-label
classification while using only a portion of the environments. The amount of environments that are
used (ns) is shown on the x-axis. The environments used are selected randomly. All models are CoDiR
(class) with nl = 91 and R = 40.

4.7.4. Number of Labels Per Environment

Another question is whether some environments contribute more to classification performance
than others. To investigate this, we again take fully trained ResNet-18 CoDiR (class) models from
Section 4.2. We again only retain a limited number of environments, denoted by ns, and perform the
classification experiment from Section 4.2. However, instead of randomly selecting the environments,
we selected environments that have a particular value of rj, i.e., the amount of labels in the environment.
Figure 5 shows this for ns = 3, where it becomes clear that environments with either small or large
rj perform worse. Intuitively, this can be understood by the fact that an environment with rj = 1
will probably correspond to fewer images in the dataset. This might make it harder to estimate the
distributional distance accurately. On the other hand, environments with large rj contain a very large
amount of images in the dataset and most likely significantly overlap with many classes. This makes it
harder to separate class from environment.

ns = 3

F1
 s

co
re

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Amount of labels in selected environments
0 10 20 30 40

Model with R = 80
Model with R = 40
Model with R = 20

Figure 5. F1 score (y-axis) for multi-label image classification using the CoDiR (class) approach with
ResNet-18. For models trained with different maximum amounts of labels per environment (R),
we perform multi-label classification while using only three of the available environments (ns = 3).
The x-axis indicates the number of labels rj the environments have (e.g., given ns = 3, x = 20
denotes the classification experiment where 3 environments were used for which in each case, rj = 20).
All models are CoDiR (class) with nl = 91 and ne = 300.

Computers 2020, 9, 79 19 of 23

Finally, in Figure 6, we perform the same experiment, but now, we select ns = 10 environments.
To allow enough environments for each value, we select the environments from ranges of rj. One can see
here that the effect of small rj shown in Figure 5 is already largely diminished. However, the same is not
true for large rj. This suggests that (1) some environments with small rj contain some complementary
information and (2) environments with too large rj learn less useful features.

ns = 10

F1
 s

co
re

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Amount of labels in selected environments
1-5 5-10 10-15 15-20 20-25 25-30 30-40

Model with R=80
Model with R=40
Model with R=20

Figure 6. F1 score (y-axis) for multi-label image classification using the CoDiR (class) approach
with ResNet-18. For models trained with different maximum amounts of labels per environment
(R), we perform inference while using only 10 of the available environments (ns = 10). The x-axis
indicates the number of labels rj the environments have (e.g., given ns = 10, x = “15–20” denotes
the classification experiment where 10 environments were used for which in each case, rj is a value
between 15 and 20). All models are CoDiR (class) with nl = 91 and ne = 300.

While the effect is thus relatively small, it could make sense to address the weight that is given
to each environment. In this paper, a uniform distribution was assumed for p(ω) in Equation (9),
thus assigning equal weights. Two alternatives for future work can be formulated as a possible
improvement to this approach: (1) assigning non-uniform weights to environments at inference time
by modeling a more realistic p(ω); or (2) ensuring that, while constructing environments, the randomly
selected (class or caption) labels are sampled such that they are consistent with a uniform distribution
for p(ω).

5. Discussion

CoDiR opens an interesting path for deep learning applications to explore the uses of structured
representations, similar to how such structured matrices played a central role in many language
processing approaches in the past. In zero-shot settings, the structure might be exploited, for example,
to make compositions of classes and environments that were not seen before.

Whereas the current work focused on a multimodal setting for image and text, interesting
applications can surely be found for other modality combinations. As an example, captions might
help achieve increased action classification accuracy for videos. We also see a path to integrate useful
information from more modalities into one representation by extending the 2D CoDiR structure
into more dimensions. As CoDiR representations are obtained by calculating distances between
distributions, it should be possible to do the same for marginal distributions from a multimodal
distribution combining several modalities.

Additionally, further research might explore unsupervised learning. Both classes and
environments might be handled in a symmetric manner by clustering relevant subsets of the dataset,
for example. Similar to a k-means approach, initial cluster centers could be selected randomly or with
a simple heuristic. Training set instances could then be assigned to the nearest cluster, and the cluster

Computers 2020, 9, 79 20 of 23

center could be updated iteratively over different batches. Downstream tasks could then potentially be
performed on the learned representations from few examples.

Finally, as mentioned in Section 3.6, we use a Wasserstein-based distance to obtain relevant
distance estimates for neural network-based instances. There is room to study other similarity or
distance metrics in the context of such structure representations.

6. Conclusions

We introduce CoDiR, a novel deep learning method that creates multimodal, structured
representations. With convolutional networks, labeled information from different modalities is used to
project images into instance representations that are 2D structures where rows correspond to classes
and columns to environments. Template representations are derived from instances to generalize
over classes and are interpretable as distance estimates between respective classes and environments.
In a multi-label classification task, it is demonstrated that CoDiR compares favorably to traditional
cross-entropy-based methods, especially when environments are created from labels from image
captions. Additionally, it is shown that as richer contextual information is added, performance
increases. While the representations are continuous, they have a clear structure. We show in a retrieval
task that this structure allows one to decompose the representations, modify particular content,
and recompose them while maintaining existing information. The representations have a high rank
and are also able to classify images with a logistic regression model according to a label that was
never seen during the original training phase. Finally, the representations can also be compressed
significantly while maintaining a large amount of information.

Author Contributions: Conceptualization, G.S. and M.-F.M.; methodology, G.S.; software, G.S.; writing, original
draft preparation, G.S.; writing, review and editing, G.S. and M.-F.M.; visualization, G.S.; supervision, M.-F.M.;
project administration, M.-F.M.; funding acquisition, M.-F.M. Both authors read and agreed to the published
version of the manuscript.

Funding: This work was partly supported by the FWO and SNSF, Grants G078618N and #176004, as well as an
ERC Advanced Grant, #788506.

Acknowledgments: We thank NVidia for granting us two TITAN Xp GPUs.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; nor in the decision to
publish the results.

Appendix A. Additional Retrieval Results

In Tables A1 and A2, we add additional numbers for the retrieval results of the NN and M-NN
experiments respectively from Section 4.3. In both cases, we report the F1 score, Precision (PREC), and
Recall (REC) over all class labels. Note that for the M-NN experiment, we reported a different precision
in Table 3, which was calculated over only the modified labels, to indicate clearly the impact of the
modifications in the representations. The same conclusions can be drawn from both tables however.

Table A1. For the NN retrieval experiment, we report performance metrics F1 score, Precision (PREC),
and Recall (REC) over the class labels. Methods are used in combination with three different base
models: ResNet-18/ResNet-101/Inception-v3. All results are the average of three runs.

Method F1 PREC REC

SEM (single) 0.64/0.66/0.70 0.64/0.67/0.70 0.65/0.66/0.70
SEM (joint) 0.71/0.70/0.73 0.72/0.70/0.73 0.70/0.71/0.73

CNN (joint) 0.71/0.70/0.70 0.71/0.70/0.70 0.71/0.70/0.70
CM 0.72/0.74/0.74 0.73/0.73/0.72 0.72/0.74/0.76

CoDiR 0.70/0.72/0.72 0.68/0.70/0.71 0.71/0.73/0.72
C-CoDiR (5) 0.70/0.72/0.72 0.69/0.71/0.71 0.71/0.73/0.72

Computers 2020, 9, 79 21 of 23

Table A2. For the M-NN retrieval experiment, we report performance metrics F1 score, Precision
(PREC), and Recall (REC) over the class labels. Methods are used in combination with three different
base models: ResNet-18/ResNet-101/Inception-v3. All results are the average of three runs.

Method F1 PREC REC

SEM (single) 0.69/0.69/0.72 0.68/0.68/0.71 0.69/0.70/0.73
SEM (joint) 0.64/0.65/0.66 0.63/0.64/0.65 0.64/0.66/0.66

CNN (joint) 0.67/0.60/0.65 0.66/0.60/0.64 0.67/0.60/0.66
CM 0.61/0.62/0.65 0.62/0.61/0.63 0.61/0.62/0.66

CoDiR 0.64/0.65/0.63 0.61/0.62/0.61 0.67/0.67/0.65
C-CoDiR (5) 0.64/0.64/0.63 0.61/0.61/0.62 0.67/0.67/0.65

References

1. Murdock, B.B. A theory for the storage and retrieval of item and associative information. Psychol. Rev. 1982,
89, 609. [CrossRef]

2. Nairne, J.S. The myth of the encoding-retrieval match. Memory 2002, 10, 389–395.
3. Hawkins, J.; Lewis, M.; Klukas, M.; Purdy, S.; Ahmad, S. A framework for intelligence and cortical function

based on grid cells in the neocortex. Front. Neural Circuits 2019, 12, 121. [CrossRef]
4. Salton, G.; Buckley, C. Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 1988,

24, 513–523. [CrossRef]
5. Robertson, S.; Walker, S. Some simple effective approximations to the 2-Poisson model for probabilistic

weighted retrieval. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Dublin, Ireland, 3–6 July 1994; pp. 232–241.

6. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space.
arXiv 2013, arXiv:1301.3781.

7. Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized
Word Representations. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, New Orleans, LA, USA,
1–6 June 2018; Volume 1, pp. 2227–2237.

8. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA,
2–7 June 2019; Volume 1, pp. 4171–4186.

9. Deerwester, S.; Dumais, S.T.; Furnas, G.W.; Landauer, T.K.; Harshman, R. Indexing by latent semantic
analysis. J. Am. Soc. Inf. Sci. 1990, 41, 391–407. [CrossRef]

10. Singh, S.P.; Hug, A.; Dieuleveut, A.; Jaggi, M. Context Mover’s Distance & Barycenters: Optimal transport
of contexts for building representations. In Proceedings of the ICLR Workshop on Deep Generative Models,
New Orleans, LA, USA, 6–9 May 2019.

11. Hitchcock, F.L. The distribution of a product from several sources to numerous localities. J. Math. Phys. 1941,
20, 224–230. [CrossRef]

12. Rubner, Y.; Tomasi, C.; Guibas, L.J. The earth mover’s distance as a metric for image retrieval. Int. J.
Comput. Vis. 2000, 40, 99–121. [CrossRef]

13. Sinkhorn, R. A relationship between arbitrary positive matrices and doubly stochastic matrices.
Ann. Math. Stat. 1964, 35, 876–879. [CrossRef]

14. Altschuler, J.; Niles-Weed, J.; Rigollet, P. Near-linear time approximation algorithms for optimal transport
via Sinkhorn iteration. In Proceedings of the Advances in Neural Information Processing Systems 30,
Long Beach, CA, USA, 4–9 December 2017; pp. 1964–1974.

15. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the
34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223.

16. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein
gans. In Proceedings of the Advances in Neural Information Processing Systems 30, Long Beach, CA, USA,
4–9 December 2017; pp. 5769–5779.

http://dx.doi.org/10.1037/0033-295X.89.6.609
http://dx.doi.org/10.3389/fncir.2018.00121
http://dx.doi.org/10.1016/0306-4573(88)90021-0
http://dx.doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/10.1002/sapm1941201224
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1214/aoms/1177703591

Computers 2020, 9, 79 22 of 23

17. Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral Normalization for Generative Adversarial
Networks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC,
Canada, 30 April–3 May 2018.

18. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems 28,
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

19. Kusner, M.; Sun, Y.; Kolkin, N.; Weinberger, K. From Word Embeddings to Document Distances.
In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 957–966.

20. Flamary, R.; Cuturi, M.; Courty, N.; Rakotomamonjy, A. Wasserstein discriminant analysis. Mach. Learn.
2018, 107, 1923–1945. [CrossRef]

21. Johnson, W.B.; Lindenstrauss, J. Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 1984,
26, 1.

22. Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly
incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [CrossRef]

23. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
24. Rahimi, A.; Recht, B. Random features for large-scale kernel machines. In Proceedings of the Advances in

Neural Information Processing Systems 21, Vancouver, BC, Canada, 8–13 December 2008; pp. 1177–1184.
25. Wu, L.; Yen, I.E.; Xu, K.; Xu, F.; Balakrishnan, A.; Chen, P.Y.; Ravikumar, P.; Witbrock, M.J. Word Mover’s

Embedding: From Word2Vec to Document Embedding. In Proceedings of the 2018 Conference on EMNLP,
Brussels, Belgium, 31 October–4 November 2018; pp. 4524–4534.

26. Olah, C.; Mordvintsev, A.; Schubert, L. Feature visualization. Distill 2017, 2, e7. [CrossRef]
27. Spinks, G.; Moens, M.F. Evaluating textual representations through image generation. In Proceedings

of the Workshop on Analyzing and Interpreting Neural Networks for NLP, EMNLP, Brussels, Belgium,
31 October–4 November 2018.

28. Zagoruyko, S.; Komodakis, N. Paying more attention to attention: Improving the performance of
convolutional neural networks via attention transfer. arXiv 2016, arXiv:1612.03928.

29. Higgins, I.; Matthey, L.; Pal, A.; Burgess, C.; Glorot, X.; Botvinick, M.; Mohamed, S.; Lerchner, A. Beta-vae:
Learning basic visual concepts with a constrained variational framework. In Proceedings of the International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

30. Pandey, A.; Fanuel, M.; Schreurs, J.; Suykens, J.A. Disentangled Representation Learning and Generation
with Manifold Optimization. arXiv 2020, arXiv:2006.07046.

31. Mroueh, Y.; Sercu, T. Fisher gan. In Proceedings of the Advances in Neural Information Processing Systems
30, Long Beach, CA, USA, 4–9 December 2017; pp. 2513–2523.

32. Rahimi, A.; Recht, B. Uniform approximation of functions with random bases. In Proceedings of the 2008
46th Annual Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, IL,
USA, 23–26 September 2008; pp. 555–561.

33. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco:
Common objects in context. In Proceedings of the 13th European Conference on Computer Vision, Zurich,
Switzerland, 6–12 September 2014; pp. 740–755.

34. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

35. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV,
USA, 26 June–1 July 2016; pp. 2818–2826.

36. Sorower, M.S. A literature survey on algorithms for multi-label learning. Or. State Univ. Corvallis 2010,
18, 1–25.

37. Rasiwasia, N.; Costa Pereira, J.; Coviello, E.; Doyle, G.; Lanckriet, G.R.; Levy, R.; Vasconcelos, N. A new
approach to cross-modal multimedia retrieval. In Proceedings of the 18th ACM International Conference on
Multimedia, Firenze, Italy, 25–29 October 2010; pp. 251–260.

http://dx.doi.org/10.1007/s10994-018-5717-1
http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.23915/distill.00007

Computers 2020, 9, 79 23 of 23

38. Yang, Z.; Dai, Z.; Salakhutdinov, R.; Cohen, W.W. Breaking the Softmax Bottleneck: A High-Rank RNN
Language Model. In Proceedings of the 6th International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April–3 May 2018.

39. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific
Computing; Cambridge University Press: Cambridge, UK, 2007.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Work
	Representing Entities with Respect to Context
	Distances to Represent Features
	Random Features
	Interpretable Neural Networks

	CoDiR: Method
	Setting Up Environments
	Contextual Distance
	Template and Instance Representations
	Implementation
	(De)Composing Representations
	Connection to Random Feature Maps

	Experiments
	Setup
	Multi-Label Image Classification
	Retrieval
	Rank
	Compressed Representations
	Unseen Labels
	Environment Composition
	Hyperparameters
	Sensitivity
	Sufficient Number of Environments
	Number of Labels Per Environment

	Discussion
	Conclusions
	Additional Retrieval Results
	References

