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Abstract: Currently, almost all robot state estimation and localization systems are based on the Kalman
filter (KF) and its derived methods, in particular the unscented Kalman filter (UKF). When applying
the UKF alone, the estimate of the state is not sufficiently precise. In this paper, a new hierarchical
infrared navigational algorithm hybridization (HIRNAH) system is developed to provide better state
estimation and localization for mobile robots. Two navigation subsystems (inertial navigation system
(INS) and, using a novel infrared navigation algorithm (NIRNA), Odom-NIRNA) and an RPLIDAR-A3
scanner cooperation to build HIRNAH. The robot pose (position and orientation) errors are estimated
by a system filtering module (SFM) and used to smooth the robot’s final poses. A prototype (two
rotary encoders, one smartphone-based robot sensing model and one RPLIDAR-A3 scanner) has been
built and mounted on a four-wheeled mobile robot (4-WMR). Simulation results have motivated
real-life experiments, and obtained results are compared to some existent research (hardware and
control technology navigation (HCTNav), rapid exploring random tree (RRT) and in stand-alone
mode (INS)) for performance measurements. The experimental results confirm that HIRNAH presents
a more accurate estimation and a lower mean square error (MSE) of the robot’s state than those
calculated by the previously cited HCTNav, RRT and INS.
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1. Introduction

Today, we can almost say that robots are used in all areas of human life. From the military,
industrial and even domestic fields, robots are deployed in all those fields, and these deployments
continue to increase every day. These robots are different from each other, depending on the fields in
which they are used and their tasks to be performed. These differences can be described by their shape,
size and performance, among other traits. Some of them are statics and others are dynamics. One can
meet these dynamic robots, especially in public areas such as at airports, in hotels, in hospitals and
even in public transportation stations. Mobile robots are a kind of robot which helps human beings to
be more efficient and productive in daily life activities.

In addition, the motion of these robots is a difficult task to perform, because they should avoid
some obstacles along the road to their destination. Performing object avoidance when moving from
one position to another is a complex and composite task for mobile robots, since this task involves
scanning the surrounding environment, detection of obstacles, path planning and navigation to the
desired destination and dock to achieve a specific task, such as auto-recharging their batteries when
needed. Usually, many of these obstacles are static, but often some of them can be dynamic. In this case,
the complexity level of a robot’s navigation task is increased. As such, it is useful to make these robots
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more accurate. Knowing that a simple error of a mobile robot can lead to collisions and financial losses,
the mobile robots need more space for free movement in their navigation times. Thus, it is essential to
make the mobile robots operate appropriately to maximize space utilization and prevent accidents.
Doing so will save financial loses to both the robot’s developers (companies) and its users (customers).

Actually, to be more economic in the field of robotics, micro-electromechanical sensors (MEMSs) are
a good solution to replace the existing expensive and huge sensors used in mobile robots. These MEMSs
are embedded in almost all modern edge devices. In this context, the authors of [1–3] used acoustic
signals to develop lightweight health monitoring AI systems. The developed technologies, based on
edge devices with a bi-level optimization approach, can be used efficiently in on-board diagnostics
(OBD) and smartphones. A basic platform for the design of a lightweight AI system is provided,
which utilizes its built-in microphone for the health monitoring of agriculture machines. The adopted
strategies considerably reduce the bulky data transmission on the Internet. Therefore, they provide
very lightweight and economic artificial neural networks (ANNs), which are innovative frameworks
and consist of a new roadmap to develop autonomous agriculture machines.

Additionally, several approaches are developed under different modeling assumptions to improve
the robots’ navigation information. For example, to name a few in the motion planning problem,
one can refer to [4–6]. We also have the connectivity graphs, which are used to offer multipath
possibility to the robots. Several studies are done to find the optimal shortest path among these
multipaths for the robots so that an active simultaneous localization and mapping (SLAM) framework
is developed in [7], which exploits a graph structure in order to improve the exploration time and
accuracy. This framework is helped by an online algorithm based on least squares optimization for
compensating the most common sources of errors, allowing the robot to reconstruct a more accurate
graph. James et al. [8] also present four methods to adjust the connectivity of a networked system.
To do so, a basic algorithm to track a desired connectivity profile through the addition and deletion of
a sequence of single connections between two unmanned aerial vehicles (UAV) is developed.

The cell decomposition method consists of a kind of connectivity graph by dividing each dimension
of the space into multiple parts. As the resulting path does not satisfy non-holonomic constraints,
C. Zhang et al. [9] proposed trajectory planning and tracking for autonomous vehicles, based on a state
lattice and model predictive control. To find feasible continuous plans, D. Zeng et al. [10] employed
smooth cubic curvature polynomials in their investigation to ensure algorithm completeness and
pick out the best trajectory, taking smoothness, comfort and economy into account. In the field of
mobile robotics, navigation is an essential task classified into global navigation and local navigation.
In global navigation, many methods have been developed such as those in [11,12]. To complete these,
the authors of [13,14] discussed and developed some popular methods used in the local navigation
class. Various researchers solved their navigation problems by successfully using the above two classes
of navigation methods.

To further improve the accuracy of the motion information of robots, many filtering approaches
exist and continue to be developed in the literature. Many applications are using the unscented
Kalman filter (UKF) in various domains nowadays, ranging from target tracking [15] to multi-sensor
fusion [16,17]. Another form of sensor fusion research to improve the performance of existing mobile
robots is found in [18], where two methods (Dempster–Shafer theory and Kalman filtering) are used
to integrate a global positioning system (GPS) and an inertial measurement unit (IMU), and the
obtained results allowed for selecting the most accurate method for robot localization at an appropriate
cost. In addition to completing the governing equations of the robot, the authors implemented
a proportional–derivative controller to control and evaluate the kinematic and localization algorithms
of the robot.

A similar work is [19], in which the encoder, compass, IMU and GPS measurements are used in
combination with extended Kalman filter (EKF) to study and discuss the localization and navigation
algorithms of the mobile robots. In this study, the proposed method contains three main approaches.
In each of them, the method combines the robot controller with the measurements of the considered
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approach using sensor fusion, which combines the on-board sensor and GPS measurements through
EKF. The three approaches were verified in a simulation, and the performance of the proposed
algorithms was demonstrated when a fault in the encoder was considered. In the same field of research,
two filtering approaches had been used by the authors of [20] to analyze the localization performance
of SLAM (SLAM with a linear Kalman filter (KF) and SLAM with EKF). The simulation results of the
proposed SLAM-based algorithms were evaluated and compared, and the results outperformed other
algorithms regarding SLAM. In addition to presenting good accuracy, the proposed SLAM algorithms
also gave a sensible computational complication.

Other examples of SLAM research can be found in [21], where an overview of the existing SLAM
approaches is presented, with a focus on novel hybridized light detection and ranging (LiDAR) camera
solutions. The authors first presented a short theory behind the SLAM process, concerning current,
state-of-the-art LiDAR camera solutions. Then, they discussed visual SLAM with a monocular and
stereo camera, as well as modern red green blue-depth (RGB-D) and event cameras. Therefore, all of
the above research allows us to deepen our understanding regarding SLAM and its contributions to the
artificial intelligence built in mobile robots. Three main contributions are done in this research paper:

• First, a new navigation algorithm, based on IR sensors for mobile robots, is created and named
the novel IR navigation algorithm (NIRNA). This algorithm facilitates the robot’s navigation to
dock to the charger in the docking station.

• The second contribution consists of integrating NIRNA into an odometric system to build
an Odom-NIRNA navigation system. This system greatly increases the quality of the classical
odometer data.

• The navigation systems of the inertial navigation system (INS), Odom-NIRNA and the
KF-based estimation system are combined to develop a new estimation approach, based on
a hybridization technique named hierarchical infrared navigational algorithm hybridization
(HIRNAH), to improve the accuracy of the current estimation systems for four-wheeled mobile
robot (4-WMR) localization.

The build for HIRNAH is based on the principle of Kalman filters (KFs) for nonlinear systems,
such as UKFs. This technique is a tight hybridization technique, which contains three hierarchical
levels and thus provided a better robot state estimation. In the proposed system, each navigation
system processes separately the robot state information and then, based on these results, the errors
in the robot state are calculated. These state errors and the localization data from the RPLIDAR-A3
scanner (measurement unit) are used as inputs into the system filtering module (SFM) to produce the
estimated errors of the robot state. Based on the obtained estimated errors, the robot’s optimal state
estimation is calculated, which is much more accurate than the robot’s state estimation from some
previous research.

The remainder of the paper is structured as follows: Section 2 describes the experimental
configurations (parameters, setup and implementation) based on a real robot, while Section 3 is
devoted to presenting the results and discussion of the experiments (statistical evaluation analysis
and comparison of results). The future works then end this section. Section 4 describes the HIRNAH
system proposed to improve the location of the robot in detail. Finally, the conclusion is presented in
Section 5.

2. Experimental Configurations

To achieve the objective of this research, which consists of increasing the accuracy of the robot’s
localization using NIRNA and verifying the applicability of our approach, several tests were conducted
on real experimentation in our laboratory.
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2.1. Experiment Setups and Implementations

A test space (docking space) of a 3 × 3 m2 flat floor was defined, which contained the robot’s
docking station and four obstacles (landmarks). In this docking station, the robot battery’s charger was
positioned at the middle of the upper side borderline of the test space. It broadcasted six separate IR
signals from its three infrared transmitters (IRT) to guide the robot in its navigation (docking operation).
These three IRTs were called the left IRT, central IRT and right IRT. They were positioned so that all of
them were transmitting in different directions, and the angles separating the central IRT and the other
two (left IRT and right IRT) were 35 degrees for each one. Finally, each IRT had a coverage angle of
30 degrees and defined its own covered area. Together, these covered areas defined the whole docking
space. Figure 1 below illustrates the experiment docking space.
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Figure 1. A four-wheeled mobile robot (4-WMR), charger and the four landmarks in the experiment
docking space.

The role of these landmarks (L1, L2, L3 and L4) was twofold in this test space. First, they were
used as references for the sensor measurement RPLIDAR-A3 scanner. Secondly, they interfered (to
block) the broadcast IR signals from the charger to the robot. The robot departure position (RDP) was
defined as the experiment starting position. From this RDP, the robot ran Algorithm 1 until finishing its
docking operation. In addition to its infrared receiver (IRR), the robot was equipped with two encoders
and one IMU module (smartphone-based sensor model) to provide Odometer and INS navigation data,
respectively. These odometers provided wheel rotation rates, while the INS through the smartphone
provided the acceleration force and the angular velocity to determine the robot’s orientation.

Algorithm 1. Working principle of Odom-NIRNA

Input: IR signals, direction, v, ω, θ for initial heading
Output: POdomN(xR, yR, θR), CFlag Robot well docked to the charger
1: repeat
2: Call Algorithm 2
3: Calculate robot pose POSOdom(k + 1)
4: Update Robot pose to POdomN(k) by using Equation (2)
5: Move forward at more 1 m
6: if Robot not well connected then
7: goto line 2
8: else the Robot reaches the goal
9: CFlag = True
8: return POdomN(xR, yR, θR), CFlag
9: end if
10: until the Robot reaches the goal (End of Docking process)
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The robot (4-WMR), using its IRR, followed the received IR signals to dock to the charger in the
docking station. In addition, its RPLIDAR-A3 scanner was implemented to get the observation data
of the robot. Below, Table 1 presents the main specifications of the 4-WMR used, and some of its
experimentation steps are illustrated in the Figures 2–5.

Table 1. 4-WMR model parameters.

Symbol Value Quantity

d [cm] 40 Distance between the Two Back
Wheels

L [cm] 45 Distance between the Wheels’
Axles

r [cm] 12 Wheels Radius
N 2/1 Gear Ratio

ν [m s−1] [0.01; 0.05] 4-WMR Linear Velocity
ω [rad s−1] [0.1; 0.66] 4-WMR Angular Velocity
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2.2. Experiment Parameters and Performance Measurements

The performance criterion was to determine the effect of NIRNA on the odometry localization
approach used in this research. This was done by experimenting with our built system to identify the
smallest pose errors of the robot. Recall that HIRNAH is a system based on an improved implementation
of the classical UKF. This improvement came from the input data into the SFM, which in turn was
based on the effect of NIRNA in the Odom-NIRNA navigation system. To realize this, the RDP was
placed at 3.25 m from the charger on the main transmission line of the central IRT. In each experiment,
the robot’s linear speed v parameters (minimum and maximum) were set to be 0.01 m/s and 0.05 m/s
respectively, and its angular velocities ω (minimum and maximum) were set to be 0.1 rad/s and
0.66 rad/s respectively, as indicated in Table 1 above.

To determine accurate measurements of the robot’s final pose, pose errors were defined and
used as measurement units in this experiment. Pose errors for each run were defined to be the
absolute values of the differences between the actual pose and the calculated pose for each performance
measurement (HIRNAH, hardware and control technology navigation (HCTNav), rapid exploring
random tree (RRT) [22] and INS(IMU)), defined in Table 2 below. For each performance measurement,
ten experiments were conducted.

Table 2. The definitions of the performance measurements.

Performance Measurements Definitions

HIRNAH Hierarchical Infrared Navigational Algorithm
Hybridization (our proposed system)

HCTNav Hardware and Control Technology Navigation
RRT Rapid Exploring Random Tree

INS(IMU) Inertial Navigational System (Inertial Measurement Unit)

3. Comparison Analysis and Statistical Evaluation of the Results

The produced errors of the position and orientation are presented in Figures 6 and 7, while the
statistical analysis based on mean square error (MSE) are presented in Table 3 below.
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Table 3. The mean square errors (MSEs) (mm) over 10 runs. Errors stated with respect to the true
robot’s state (position (x, y) and orientation (θ)).

MSE
Performance Measurements

HIRNAH HCTNav RRT INS(IMU)

x-axis (mm) 0.36 0.60 0.69 0.82
y-axis (mm) 0.44 0.47 0.68 1.30

Heading (degree) 0.20 0.22 0.28 0.54

In these experimentation tests, the robot’s travel path consisted of reaching the charger from the
RDP by implementing successively the system based on NIRNA, HCTNav, RRT and INS (IMU) and
then comparing the results. Implementing the system based on NIRNA, HCTNav or RRT consisted
of successfully using as a navigation algorithm in the Odom-NIRNA module (see Figure 8) NIRNA,
HCTNav or RRT. While implementing INS (IMU), the system was helped by camera data for navigation.
The robot at the RDP facing the charger began to find the shortest path to the charger using the system.
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(HIRNAH) architecture.

From Figures 6 and 7 and Table 3, one can see that HIRNAH (the system when using NIRNA)
provided more accurate positions and orientations, which was better than the system results when
HCTNav, RRT or INS (IMU) were considered. In Figure 6, ten runs in each performance measurement
of the robot’s final poses are shown. In this figure, HIRNAH was the best with the lowest errors
on average along the x-axis (8.22 mm) and along the y-axis (4.64 mm), followed successively by
HCTNav and RRT. For HCTNav, the average errors along the x-axis and y-axis were 15.60 mm and
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8.31 mm, respectively. That was slightly better than those of RRT, which were 23.02 mm and 10.20 mm,
respectively. Finally, the worst-case performance measurement was given by INS(IMU), with the more
erroneous information, on average, 26.55 mm errors along the x-axis and 35.8 mm errors along the
y-axis. In Figure 7, one can notice that HIRNAH presents the best performance measurement (in terms
of the robot’s orientation errors for ten runs) with the lowest curve, followed successively by the curves
for HCTNav, RRT and INS (IMU).

Throughout the ten experimental runs, HIRNAH provided less errors than the other performance
measurements, except in run number four, where HIRNAH and HCTNav had the same errors. This is
an exception which doesn’t appear often; otherwise (if it appears several times) it means the above
supremacy of HIRNAH can be reversed under some conditions. Finally, the worst-case orientation
errors of the robot were provided when the system used INS (IMU) in standalone mode.

Moreover, a statistical analysis based on the mean square error (MSE) metric was also done to
evaluate the performance of our proposed method. The MSE values for the different estimation methods
used are summarized in Table 3. Recall that a low MSE implies high confidence for the localization
and states estimation methods. From these results in Table 3, the proposed HIRNAH method presents
the most accurate results when compared with the others (HCTNav, RRT and INS (IMU)) used in this
research. The large values of the MSE for INS (IMU) were due to its accumulated drifts during a long
period of operation in the computation of the state variables. When HCTNav is considered, low MSE
values were provided, compared with those of RRT and INS (IMU). This describes the effectiveness
of this navigation algorithm. For RRT, the random choice of the next node made it perform worse,
with somewhat high MSE values. Finally, HIRNAH provided smaller (and therefore more precise)
values in terms of MSE along the three parameters of the robot state variables, thanks to the low noise
associated with the robot’s pose when using NIRNA and given the history of measurements that
can affect the accuracy of the robot’s state. Therefore, the proposed HIRNAH method, which uses
a filtering technique and NIRNA, can significantly reduce the MSE of the robot state.

4. Hierarchical Infrared Navigational Algorithm Hybridization (HIRNAH)

The HIRNAH system presented in this paper contains two navigation systems (one Odom-NIRNA
and one INS) and an RPLIDAR-A3 scanner as an observation measurement unit (module). Below in
Figure 8, the block scheme of the HIRNAH architecture is shown. These two navigation systems
are combined to profit from their complementation. From the first navigational system, NIRNA and
Odometer are handled together in order to produce the first navigational data, while in the second
navigational system, an INS using an IMU provides the second navigation data. These navigational
data are used to compute the robot state error, called error. This error, in addition to the Odom-NIRNA
data (POSOdomN) and the localization data from the RPLIDAR-A3 scanner (measurement unit), are used
as inputs for the SFM to calculate the state estimated errors of the robot. These estimated errors in turn
are used to compute the current optimal estimated state of the robot (POSHIRNAH) and to correct the
INS mechanization equations for the next loop. Independently, the system provides the INS navigation
data (POSINS(k+1)).

Let us consider a 4-WMR with the inertial reference frame {XI, YI} and robot body frame {XR, YR}.
In the Cartesian coordinate system and inertial frame, our robot’s pose is expressed by POS[x y θ]T.
The robot body frame {XR, YR} is selected so that x is forward and y is lateral, with the origin located at
the robot’s kinematics center. The inertial reference frame {XI, YI} is stationary and attached to the
initial position of the robot. Thus, by applying a UKF as a localization algorithm for a 4-WMR, the state
variables considered are for its pose POS(x, y, θ), which can be defined as

[POSUKF] =


xUKF(k)
yUKF(k)
θUKF(k)

 (1)
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In the rest of this paper, the state variable POSUKF = [XUKF(k) YUKF(k) θUKF(k)]
T will be

represented by POS = [x(k) y(k) θ(k)]T for simplicity reasons.

4.1. Position Based on Odom-NIRNA

4.1.1. Novel Infrared Navigational Algorithm (NIRNA)

The new docking strategy, named the novel infrared navigation algorithm (NIRNA), aims to
navigate the autonomous robots to a specific place (here a docking station). Its controller’s operating
principle is summarized below in Algorithm 2. The novelty lies in the structure and the positioning of
the IR sensors in both the charger and the charge controller on the robot. The final pose (xR, yR, θR) and
connection status (CFlag) are the algorithm outputs, and a detailed description is given in [23]. In this
paper, NIRNA is embedded into the odometer technology, and then the differential drive model [24] is
adopted to estimate the kinematic model of the robot.

Algorithm 2. Controller of Novel Infrared Navigational Algorithm (NIRNA)

Input: 6 broadcast IR signals from the three IRTs of the charger
Output: v, ω, direction//direction can be left, right, ahead and back

1: while (1)
2: looking for the 6 broadcast IR signals from charger
3: if Any signals Received then
4: Identify Signal sources and Signal level
5: if Obstacle in front of the Robot then
6: Calculate Distance between Robot and the Obstacle
7: Choose direction, v, ω to bypass the Obstacle
8: Return direction = left or right or back, ω = 0.01, v = 0.01
9: else//go ahead at more 1 m by following the received IR Signal
10: Return direction = ahead, v = 0.03,ω = 0
11: end if
12: else goto line 5
13: end if
14: end while

4.1.2. Odom-NIRNA Based Localization

For localization purposes, a mobile robot has to know its current location and orientation so
that it can easily move from its current location to a destination. In the literature, there are many
localization techniques with respect to mobile robots. Dead reckoning is one of them, which is
more popularly used by scientific researchers. Thus, in this paper, we used the dead reckoning
model, as applied in [23], as our research method for robot location. The selected velocities vk, ωk
(linear and angular) and the orientation θk by NIRNA are used to calculate the output (position
vector) of the Odom-NIRNA navigation system, denoted OdomN. Algorithm 1 above illustrates
the working principle of Odom-NIRNA. The robot’s Cartesian position is specified by the vector
POdomN(k) = [xk, yk]

T, and its orientation is defined by θOdomN(k). Using the two coordinate frames
(inertial reference frame {XI, YI} and robot body frame {XR, YR}) during mobile robot motion, with
respect to the inertial reference frame, the position vector POdomN(k) is updated based on POdomN(k− 1),
which is the position vector from the odometer POSOdom(k + 1).

By adding the increments (travel distance (∆s) and change in angle (∆θ)) of the robot from a known
position (starting point), one can get its estimated pose [xOdomN(k), yOdomN(k), θOdomN(k)]

T.
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At time Ts, the estimated robot configuration is given by the following:
xOdomN(k)
yOdomN(k)
θOdomN(k)

 =


xOdomN(k− 1)
yOdomN(k− 1)
θOdomN(k− 1)

+


cos
(
θ+ ∆θ

2

)
0

sin
(
θ+ ∆θ

2

)
0

0 1

×
[

∆s
∆θ

]
(2)

In the absence of wheel slippage and backlash, using the velocity data (linear and angular) of
the robot, in addition to the odometric prediction above (commonly referred to as dead reckoning),
good accuracy can be obtained on the location of the robot.

4.2. Position Based on INS (Inertial Measurement Units-Based Localization)

The INS (IMU) system can be used in two modes: standalone and cooperative. When used in
standalone mode, it can be helped by a camera to navigate the robot to its charger. In cooperative mode,
it will be used with the Odom-NIRNA system to determine robot state errors. The inertial measurement
units (IMUs) play an important role in the INS to determine the position and orientation of the vehicles
(robots here). This device is frequently used in robotics to help the robots in their navigation process.
Usually, it contains many sensors such as accelerometers, gyroscopes and so on. The results (the linear
acceleration and the velocity) produced by an accelerometer for mobile robots are affected by significant
noise and accumulated drifts. The orientation obtained from a gyroscope contains some temporal
drift and bias, which are the main source of gyroscope’s errors. To overcome this unbounded error,
several data fusion techniques have been developed [25–27]. Therefore, fusion (of both an accelerometer
and gyroscope sensor) into a single device (IMU) is suitable to determine the pose of an object and to
make up for the weakness of one over the other. In this paper, our used IMU is a 6-Degree of Freedom
(DoF) accelerometer and gyroscope used to determine the pose estimation of our robot, as done in [23].

The measurements of the rotational rate from the gyroscope (in our used IMU) have to be
integrated to yield the orientation. This is represented by

.
θimu(k) =

.
θ

a
imu(k) + eimu(k) + ηimu(k), (3)

where
.
θimu(k) is the robot’s heading rate based on the IMU’s reading,

.
θ

a
imu(k) is the robot’s actual

heading rate, eimu(k) is the IMU bias drift error and ηimu(k) is the associated white noise. The value of

θa
imu(k) is obtained by integrating

.
θ

a
imu(k). Equation (4) below presents the robot’s actual orientation

based on the IMU reading:

θa
imu(k + 1) = θa

imu(k) +
.
θ

a
imu(k)Ts, (4)

In the inertial reference frame, based on the readings of the accelerometer data from the IMU
model used, the position of the robot Pimu(k + 1) is estimated by

Pimu(k + 1) = Pimu(k) +


cos(θa

imu) −sin(θa
imu) 0

sin(θa
imu) cos(θa

imu) 0
0 0 1

vrb(k), (5)

where the robot velocity in the robot body frame is vrb(k) =
[
vb

x(k),
.
θimu(k)

]
, with vb

x(k) as the robot’s

linear velocity and
.
θimu(k) as its angular velocity.

In the Cartesian coordinate system, Equation (5) is rewritten to
ximu(k + 1)
yimu(k + 1)
θimu(k + 1)

 =


ximu(k)
yimu(k)
θimu(k)

+


cos(θa
imu) −sin(θa

imu) 0
sin(θa

imu) cos(θa
imu) 0

0 0 1

vrb(k), (6)
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4.3. Position Based on RPLIDAR-A3 Scanner

The sensor measurements considered in this section were provided by an RPLIDAR-A3 scanner,
similar to the approaches adopted in [28–30]. It was positioned on the robot at height hL (46 cm)
above the ground and with the tilt control fixated at θL = 9◦. Recall that, in the Cartesian coordinate
system and in the inertial frame, our robot’s position is expressed by POS[x y θ]T. N landmarks at
known positions

(
xi

L, yi
L

)
, i = 1, . . . , N are considered in the robot’s navigation space. We assumed

to be zero, for simplicity, the uncertainties associated with landmark locations. During the robot’s
motion, at each time step, the distance d and the relative angle φ to one or more landmarks were
observed. That means, with RPLIDAR-A3 scan readings given in the plane of the RPLIDAR-A3 scanner,
each RPLIDAR-A3 scan PL(di, φi) comprises a set of distance readings di, i ∈ [1, N] and the angles
φi ∈ [−90◦, 90◦] associated with these. The observation model provides a mechanism for computing
the expected values of observations from the sensors, given the knowledge of the robot’s navigation
space (location of the charger and all the landmarks) and an estimate of the robot’s location. In the
frame of the RPLIDAR-A3 scanner, the scans PL are represented in polar coordinates. Through the
sensors mounted on the robot, at each time step k + 1, both the distance and the relative angle to the
landmarks were observed, and the observation model is given by

di
k+1 =

√((
xi

L − xk+1

)2
+

(
yi

L − yk+1

)2
)
+ωr,

φi
k+1 = φi

R = atan
(

yi
L−yk+1

xi
L−xk+1

)
− θk+1 +ωφ,

(7)

where ωr and ωφ are zero-mean Gaussian observation noises and θk+1 = θOdomN(k).
To get the Cartesian coordinates of a measurement in the robot fixed frame, the following mapping

transformationMRL(hL, θL) : PL(di, φi)→ Pi
R(xi

R, yi
R, zi

R), as shown in Equation (8), can be applied,
where Pi

R denotes the robot position related to the landmark i using the measurement model of
an RPLIDAR-A3 scanner:

Pi
R =


xi

R
yi

R
zi

R

 =


dicosθLcosφi
disinφi

hL − disinθLcosφi

, (8)

As our robot’s navigation space is a flat environment and its body frame in consideration is
a two-dimensional frame {XR, YR}, the zi coordinate was set to be zero and replaced by φi

R, the related
angle between the robot and the landmark i for analysis simplicity. In the same body frame,
the RPLIDAR-A3 scan measurement angle φi

R was zero forward and positive to the left. In this context,
Equation (8) can be rewritten and represented below by Equation (9):

Pi
R =


xi

R
yi

R
φi

R

 =


dicosθLcosφi
disinφi

atan
(

yi
L−yk+1

xi
L−xk+1

)
− θk+1 +ωφ

, (9)

4.4. System Filtering Module

In order to estimate the errors of the robot state, the following standard discrete time equations
can be used to represent the system, with the system model represented abstractly as f and the
measurement model represented abstractly as h (be they linear or non-linear):

Ek = f
(
Ek−1, qk−1, u1, k−1

)
,

Zk = h
(
Ek, nk, u2, k

)
,

(10)
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where E is the system state, q is the process noise, n is the observation noise, u1 is the exogenous input
to the state transition function, u2 is the exogenous input to the state observation function and Z is the
noisy observation of the system.

This SFM aims to smooth the location of the robot. To do so, the considered state variable of
the robot is the error term (E) between Equations (2) and (6), which is found by subtracting POdomN
from Pimu.

The adopted process model is presented below by Equation (11), which is a recursive equation
deducted from Equations (2) and (6):

E(k + 1) = AE(k) + M(k)


vb

x(k)
vb

y(k)
z(k)

,
= f

{
E(k), vrb(k),θa

imu(k), θOdomN(k)
}
,

(11)

where A is a 3 × 3 identity matrix, z(k) =
.
θ

a
imu(k) −

.
θOdomN(k) and M(k) is a 3 × 3 rotational cosine

matrix related to the control unit of the system and defined by

M(k) =


a b 0
c d 0
0 0 1

,
a = cosθa

imu(k) − cosθOdomN(k)
b = −sinθa

imu(k) + sinθOdomN(k)
c = sinθa

imu(k) − sinθOdomN(k)
d = cosθa

imu(k) − cosθOdomN(k),

(12)

The state variable of our system is defined by Equation (13):

[EUKF] =


ximu(k) − xOdomN(k)
yimu(k) − yOdomN(k)
θimu(k) − θOdomN(k)

 =


ex(k)
ey(k)
eθ(k)

, (13)

The first step of the UKF implementation is the state vector augmentation. Thus, the n-dimension
state vector E of the system needs to be restructured and augmented with q-term process noise. That is
presented below in Equation (14):

Ea
k−1 =

[
Ek−1, qk−1

]T
, (14)

where qk−1 is the augmented part and the dimension of the augmented state vector is na = n + q.
The process model can be rewritten as a function of Ea

k−1 to calculate the a priori state estimate:

Êk = f
(
Ea

k−1

)
= E(k− 1) + η(k− 1) =


ex(k− 1)
ey(k− 1)
eθ(k− 1)

+

ηx(k− 1)
ηy(k− 1)
ηθ(k− 1)

, (15)

where the modeled part of the predefined data differences is represented by E(k− 1) while the
augmented part is η(k− 1), a zero mean white noise.

Here, we only consider the system input error while neglecting the system model error.
Thus, the augmented a priori state estimate and its covariance matrix are restructured as

Ea
k =

[
Êk

03×1

]
, Pa

k =

[
P̂k 0
0 Qk

]
, (16)
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where P̂k, and Qk are the covariance matrices of the state variable E and the process noise q, respectively.
The observation model used here, called the output function or errors estimated, is represented

below by Equation (17):

ẑ(k + 1) = Ê(k + 1) = h
{
POdomN(k), Pi

R(k), E(k)
}

=


xOdomN(k) − xi

R(k)
yOdomN(k) − yi

R(k)
θOdomN(k) −φi

R(k)

/


ex(k− 1)
ey(k− 1)
eθ(k− 1)

 =


ex
est(k)

ey
est(k)

eθest(k)

, (17)

The procedure and implementation of the UKF algorithm adopted here is same as that given
in [20]. By merging the INS’s belief (Pimu) with the probability of making exactly that observation Êk,
the robot corrects its posture. That is PHIRNAH(k + 1), represented in Equation (18) by PRobot(k + 1).

PRobot(k + 1) = Pimu(k + 1) − Êk, (18)

where PRobot(k) is the corrected pose using HIRNAH along the corresponding axis.

5. Conclusions

A new HIRNAH system for mobile robot state estimation and localization has been constructed
in this research paper. Based on sensor fusion through a tight hybridization technique, the built
system contains three hierarchical levels. Two navigation systems (Odometer and INS) and a sensor
measurement module (an RPLIDAR-A3 scanner) cooperated to achieve this HIRNAH system.
The information from the two navigation systems (INS(IMU) and Odom-NIRNA) are used to
estimate the robot’s state errors. These errors are entered into the SFM with the sensor measurement
(RPLIDAR-A3 scanner) data to produce estimated errors and smooth the robot pose provided by the
INS(IMU) system in order to produce the robot’s final pose of the entire system. The Odom-NIRNA
system is built based on integrating a new navigation algorithm NIRNA and odometry to improve the
classical odometry navigation data.

In this research, simulations were conducted in order to validate the applicability of the proposed
system. Based on the results from these simulations, a real system was built and used to experiment
on a real robot in our laboratory. The experiment results show that HIRNAH outperforms all the
performance measurements used in this research, such as HCTNav, RRT and INS(IMU). This means
that the odometry integrated with NIRNA can be used to provide a more accurate estimation of the
location information (position and orientation) for a 4-WMR.

In our future work, we plan to improve the proposed method by taking into account another
scenario, including more landmarks and some dynamic objects. In addition, as we only tested the
proposed method on a robot using a single IRR, there is further need to extend the number of IRRs to
three (left IRR, central IRR and right IRR) and perform more evaluations of our built HIRNAH system.
Another extension possibility will be to increase the number of runs in the experiments to at least
a hundred times, and perhaps with other filtering techniques.
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