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Abstract: Time-series prediction is an important area that inspires numerous research disciplines
for various applications, including air quality databases. Developing a robust and accurate model
for time-series data becomes a challenging task, because it involves training different models and
optimization. In this paper, we proposed and tested three machine learning techniques—recurrent
neural networks (RNN), heuristic algorithm and ensemble learning—to develop a predictive model
for estimating atmospheric particle number concentrations in the form of a time-series database.
Here, the RNN included three variants—Long-Short Term Memory, Gated Recurrent Network,
and Bi-directional Recurrent Neural Network—with various configurations. A Genetic Algorithm
(GA) was then used to find the optimal time-lag in order to enhance the model’s performance.
The optimized models were used to construct a stacked ensemble model as well as to perform the final
prediction. The results demonstrated that the time-lag value can be optimized by using the heuristic
algorithm; consequently, this improved the model prediction accuracy. Further improvement can be
achieved by using ensemble learning that combines several models for better performance and more
accurate predictions.

Keywords: ensemble learning; heuristic algorithm; optimization; recurrent neural network

1. Introduction

Time-series data are a set of observations that are measured and collected sequentially through
time. The data can be in the form of discrete or continuous values, and they may have an internal
structure, such as auto-correlation, trend or seasonal variation. Time-series analysis deals with
time-series data to extract and analyze meaningful statistics and other characteristics of the data.
Time-series modelling uses past observations of time-series data to develop an appropriate model,
in order to make a prediction or forecast. Due to the indispensable importance of time-series modelling,
they have been utilized in numerous practical fields, such as financial analysis, medical sciences,
energy consumption, engineering, tourism, and environment [1–6].
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Air quality measurements are an appropriate example of such time-series data [7]. The application
of time-series analysis and modelling in this field is beneficial to investigate the links between air
pollution and health effects [8,9], as well as climate change [10,11]. The methods have also been used
to estimate air pollutants to substitute unavailable measurement instruments, fill missing data, and for
forecasting [12–14]. A variety of approaches have been utilized in performing those tasks; for example,
expert-based and data-driven approaches [15–17]. In particular, data-driven approaches have gained
popular attention in air pollution research, because they do not typically require deep knowledge in air
pollutant dynamics, chemistry composition, and other explanatory variables [18].

Artificial Neural Networks (ANN) have become the most popular method among data-driven
approaches for estimating and forecasting air pollution. ANN is also known as a general and reliable
function approximator. The availability of powerful and less-complicated computing tools is the
main reason behind the popularity of ANNs [19]. One of the ANN methods is the Recurrent Neural
Network (RNN), which is a representative method of deep learning and is mainly used in time-series
modelling and forecasting. RNN has time-series and non-linear prediction capabilities, because it has
a feedback connection that allows the past information to pass and persist. RNN is a powerful tool
used in time-series problems.

In general, developing a time-series model that is highly accurate and reliable is a challenging task.
Firstly, there are many parameters that should be determined beforehand to setup the RNN. These
include the number of layers, number of neurons, and the time-lag value. The selection of the optimal
value for each parameter may require the running of several experiments to select the best combination
of these tuning parameters and optimize time-series models. In fact, due to computational limitations,
it becomes impossible to attempt all possible combinations of parameters to find the optimal set of
parameters. Secondly, time-series data often have trends and patterns, and this has to be handled
appropriately in order to choose the adequate length of the time-series data to make an accurate
prediction. Finally, all neural network models are categorized as black-box models [20], where the
relationship between variables is not transparent. Most time-series problems involve on-stationery
relationships. These relationships between variables may change in time with irregular patterns.
In this case, the training may result in a limited representation of the overall phenomena. The results
may be good for the training and testing databases, but might fail for new datasets of the time-series.
Consequently, the generalization of the model may not be achieved.

In order to use neural network techniques in air pollution prediction and avoid the previous
listed challenges, in this paper, we proposed the use of three Machine Learning (ML) methods
(Appendix A)—Ensemble Learning, RNN, and Heuristic Search Algorithm. The aim is to propose
a deep learning model that performs better than previous approaches in modelling the non-linear
atmospheric particle number concentrations in Amman, Jordan, while targeting high accuracy
prediction. The main contributions of this paper are summarized as follows:

• Improving the forecasting accuracy for atmospheric time-series data based on the ensemble
technique of different RNN methods, where each method makes the prediction with different
time-lag value.

• Automatic identification of time-lag for the RNN using a heuristic algorithm, which searches for
the optimal (or near optimal) solution.

• A parallel implementation of the proposed model was applied in order to enhance its performance
in terms of computation time without losing the accuracy or reliability.

2. Materials and Methods

2.1. Database, Handling, and Preprocessing

The aerosol database used in this study was adopted from the measurement (1 August 2016–31
July 2017) carried out at the Aerosol Laboratory, which was located on the third floor of the Department
of Physics, University of Jordan [21]. Amman is considered an example of Middle Eastern urban
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conditions. The Middle East region attracts the attention of atmospheric modelling researchers, as it
serves as a compilation of aerosol particle sources including natural dust and new particle formation.

This database consists of particle number concentrations (PN) and local weather conditions
(Temperature (T), Absolute Pressure (P), Relative Humidity (RH), Wind Speed (WS) and Wind Direction
(WD)). The details of the aerosol measurements campaign and the metrological measurements lie
beyond the scope of this paper, and detailed descriptions can be found in previous studies [21,22].

The database was processed into two databases (daily and hourly averages). The daily database
contained 366 samples, and the hourly database contained 8784 records. Typically, a time-series
database requires some preparation prior to being modelled with ML methods. The pre-processing
sub step involves three main phases: Checking, Scaling and Transformation.

• Checking: The database contained some missing data due to technical and instrumental
issues. These missing values were replaced using the imputation method through interpolation.
Each database became consistent with the expected number of records.

• Scaling: The processed database was normalized because it is preferred to train the model with
data values which fall within the same range as the activation function used in the model training.
So, the scaling factor is dependent on the activation function. In this case, the data were scaled
between 0 and 1 to transform it within the range of the neural network activation function.

• Transformation: The data were transformed from a time-series form to a supervised form.
The supervised data contained a sample with input and output components. The input component
was a number of prior observations (defined by time-lag value). The output component contained
the observation to be forecasted. In another words, the input was the observations from previous
time steps, and the output was the observation of the current time step. The observation of the
current time step became the input for the next time step, and so on.

2.2. Model Setup

The proposed model in this study was comprised of three ML methods: RNN methods (Gated
Recurrent Networks (GRU), Long-Short Term Memory (LSTM), and Bi-Directional Recurrent Neural
Networks (BRNN)), heuristic algorithm, and ensemble learning technique (stacking). The overall
architecture of the proposed model is shown in Figure 1. The reason for choosing these methods can
be summarized as follows:

1. Because it is a time-series forecasting problem, the prediction process can be accomplished using
time-series methods such as RNN, which is able to capture temporal dependencies between data
to produce more accurate results. Other methods can be used, such as Artificial Neural Network
(ANN) and Bayesian Optimization methods, but these methods may cause overfitting as the
time-lag feature is not taken into account. In the time-series data, the proper selection of time-lag
value can reduce dimensionality of the non-linear data and avoid overfitting.

2. The proper selection of time-lag can improve model performance and generate a more accurate
result. The time-series data can be viewed as a set of equal chunks where the records of each chunk
are correlated and consistent. Finding the number of records at each chunk represents time-lag
value, which is a difficult problem to solve and requires the running of several experiments to
search for the best value that may generate the best prediction accuracy. Repeating this process
has a high computational cost and consumes the resources. Using a heuristic algorithm to solve
search problems is highly preferable by researchers as it can find the optimal solution (or near
optimal) in a reasonable time with less computational cost. GA is used in this paper to enable us
to find the optimal time-lag and prevent overfitting, increase model accuracy and generate the
prediction with less computational cost compared to other heuristic algorithms.

3. More accurate results can be achieved through the use of ensemble technique, which combines
the result of each single model to improve accuracy. The prediction result of ensemble method is
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usually better than the prediction of a single model. Heterogeneous ensemble learning is used in
this paper, as different base models are used with different hyperparameter tuning.
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The proposed model consisted of four main phases: (1) database pre-processing, (2) base model
configuration and tuning, (3) GA operation, and (4) ensemble model setting. In the pre-processing
phase, the database was first checked, scaled, and transformed. Then it was split into two main parts:
training set and testing set. The percentage of the splitting process was 80% training and 20% testing.
The training database was used to build a model, where the testing database was used for validation.
In the second phase, the 10-fold cross validation method was applied on the training database for each
RNN, LSTM, GRU, and BRNN along with the pretraining method. The time-lag value was set to 1,
and the best combination of each method hyperparameters was selected. Pretraining involved adding
a new hidden layer to the existing model and refitting. The new model would learn the input from the
existing hidden layer while keeping the weights of it unchanged. This technique is called layer-wise
which allow the adding of new layer at a time. As the solution was aggregated from the local optimal
solution, it was called greedy. The optimal parameters of each network were considered where the
configurations differ from hourly and daily databases. In the third phase, the GA was applied on each
network to find the optimal time-lag after tuning each model (LSTM, GRU and BRNN) to achieve
better performance of the model.

The time-series forecasting problem used lag to make a prediction based on the past observations
of that lag. The choice of the appropriate time-lag value was an important step to ensure the generation
of high-performance predictions in terms of accuracy. Time-lag could capture dependencies between
successive time observations in the model. Because there is no general rule that specified how the lag
variable can be selected [23], different approaches have been used by researchers in different application
domains. The selection of the value that guarantees the optimal solution with high precision and
generation is a complex problem that needs to run and repeat many experiments in order to search for
the best solution. On the other hand, running these methods requires more time to find the optimal
time-lag value that generates the best prediction, which exhausts resources and requires more time,
so using a non-deterministic polynomial (NP) is difficult.
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In order to solve the above-mentioned issue, a heuristic algorithm was used. The GA is an
evolutionary algorithm that has been used by many researchers in the computer science field to solve
complex problems in a variety of domains where the solutions of these problems cannot be found
in a reasonable timeframe. Because it is easy to implement, is a global heuristic search algorithm,
and can generate more accurate results, GA has become one of the most popular algorithms [24].
Previous studies have shown that GA can produce solutions that are near optimal solution, and it has
been applied previously to optimize neural network configurations such as network weights and the
architecture [25,26]. Comparing the performance of GA with other heuristic algorithms on solving
different kinds of complex optimization problems, several studies show that GA performs better in
obtaining the optimal solution, and is faster than other methods such as Differential Evolution (DE),
Particle Swarm Optimizations (PSO), Ant Colony Optimization, and others [27–30]. GA has been
applied widely in many applications from ML, Mathematics, Business, Robotica, etc., because they
have the following advantages in solving complex problems in different domains [31–35]:

1. Robust and strong;
2. Non-deterministic algorithm and can be used for a variety of problems;
3. Works with the string-coded of the variables rather than the variable itself, so the coding discretizes

the search space even if the function might be continuous;
4. An optimal solution could be generated by GA as it works with more than one solution (population).

In this paper, GA was applied in each RNN model to search for the optimal time-lag value.
The training database was split into two sets, training and validation set. The GA was applied on the
training set, while the validation set used to estimate the model performance on the time-lag value.

The population size was set to be 50 for both hourly and daily databases. Each solution represented
the number of the lag value. The initial population was generated randomly. Next, the solutions
were evaluated according to the fitness function. Each database was prepared according to the chosen
time-lag value, and the network was trained (LSTM, GRU or BRNN). The results were then generated.
MAE was calculated and returned as a fitness score to each current solution. The three GA operations
were performed (selection, crossover and mutation), and the process was repeated for a number of
iterations. At the end, the solution with the best fitness value score was selected as the best solution.
The details of applying GA on each RNN method to find the optimal time-lag value are as follows:

• Initial population: A binary vector randomly initialized the use of the uniform distribution
defining initial solution. The population size was set to have 50 possible solutions.

• Selection: Select the parents from population with the best fitness value.
• Crossover: Exchange the variables between selected parents to generate new offspring. One-point

crossover was used for that.
• Mutation: A binary bit flip with probability of 0.1 was applied to the solution pool by randomly

swapping bits to achieve diversity on the solutions.
• Fitness function: MAE was used to evaluate solution.

The final phase of the proposed model is building the ensemble model, where the output from
RNN methods with its different selected time-lag was run in parallel to generate outputs that were then
combined with each other to produce the final PN concentration estimation. In this paper, the stacking
ensemble model was used. It involved the combination of the predictions from multiple and different
models on the same database. The stacking ensemble consisted of two main levels:

• Level 0 (base models): Used three models (LSTM, GRU and BRNN) with selected time-lag value
proposed by GA. The testing database was divided into 5 folds that were disjointed and of equal
size. One fold remained aside, while others were used to train each model. The prediction was
then made using holdout fold. More robust results are generated for each model.

• Level 1 (meta model): Took the output from level 0 as an input to a single model called
a meta-learner to produce the prediction output. A new training database was constructed
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from the predictions of sub-models where the first column contained predictions generated by
LSTM. The second column contained predictions generated by GRU; the third column contained
predictions generated by BRNN; and the last column contained the actual expected output. This
way, a new stacked database was constructed. A ML algorithm is then used to learn how to best
combine the prediction of sub-models. It is the meta-learner that uses a new stacked dataset
for training.

To evaluate the effectiveness of the proposed model, three metrics were used: Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2). These metrics can be
formulated as follows:

RMSE =

√√1
n

n∑
i = 1

(yi − ŷI)
2

 (1)

MAE =
1
n

n∑
1

∣∣∣yi − ŷi
∣∣∣ (2)

R2 = 1−
∑
(yi − y)2∑
(yi − ŷ)2 (3)

where n is the number of observations, y is the vector of the observed values and ŷ is the vector of the
predicted values. RMSE gives the square root of Mean Square Error (MSE) that measures the average
of the square of the error. MAE Measures the average absolute error of the paired predicted values
from the original ones. It gives the magnitude of the overall error. R2 gives an indication of how strong
the relationship is between the dependent and independent variables of the model.

2.3. Computation Setup and Platform

The work was implemented using Intel (R) Core™ i7-8550U CPU @ 1.80 GHz 1.99 GHz, 8.00 GB
of RAM (Intel Corporation, Santa Clara, CA, USA) and Windows 10 version 1909 (Microsoft, Redmond,
WA, USA). The application program was written in Python language and executed on JetBrains
PyCharm Community Edition 2019.2 ×64. Python provides a set of libraries that can be used to create
deep learning model directly, such as Scikit-Learn and TensorFlow. Scikit-Learn library provides a
set of supervised and unsupervised learning algorithms that can be used and experimented directly.
Table 1 summarizes the toolboxes and packages used.

Table 1. Summary of Software Packages.

Serial Number Software Package Toolbox Usage

1 Pandas Read_csv Read the file of type csv

2 Numpy Array Create an array data type

3 Matplotlib Pyplot Create a figure

4 sklearn.preprocessing MinMaxScaler Scales data to a given range

5 Time Time Finds current time

6 Keras.models Sequential Implement a sequential (not parallel) model

7 Keras.layers Dense
LSTM

Implement a fully connected layer
Implement LSTM cell blocks

8 kernel_initializer Normal Initialize network weights

9 sklearn.metrics r2_score
mean_absolute_error

Evaluate R-squared
Evaluate mean absolute error

10 Multiprocessing Process Divide work between multiple processes

11 GA Genetic algorithm Implements genetic algorithm operations
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3. Results and Discussion

3.1. RNN Models—Evaluation and Performance

Applying 10-fold cross validation into each RNN method (LSTM, GRU and BRNN) results in
tuning the network with the optimal set of parameters that generates best prediction. The values
of each network parameter found by cross validation search optimization for both hourly and daily
databases are given in Table 2. The generated solution from GA was used to train each RNN model
and then was validated. The solution that gives the best fitness score was selected as the best time-lag
value and was used in the network configuration (Figures 2–4).

Table 2. Recurrent Neural Network (RNN) models configuration results using hourly and
daily databases.

Tuned Parameter Optimal Value/Hourly Optimal Value/Daily

Number of hidden layers 3 3
Number of neurons at each layer 150, 100, 50 150, 100, 50

Number of epochs 4000 4000
Learning rate 0.001 0.01

Batch size 126 48
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Figure 2. Mean absolute error (MAE) generated by the Genetic Algorithm (GA) on Long-Short Term
Memory (LSTM) model: (a) hourly database and (b) daily database.
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Analyzing the results generated from the application of GA on LSTM, GRU and BRNN shows that a
different lag value was selected for each method and each database. The performance of each algorithm
differs regarding to the running time and accuracy. All methods performed better as the number of the
time-lag value was increased. For a small time-lag value, the BRNN performed better and generated a
smaller MAE value when compared to LSTM and GRU. The BRNN method also performed better than
LSTM and GRU in terms of accuracy (i.e., MAE value) when the running time of this algorithm was
extended. The backward and forward run of BRNN enhanced prediction performance, but increased
the running time. LSTM and GRU were comparable to one another’s, regardless of the time-lag value
suggested by the GA to be the optimal value. Table 3 lists the best time-lag value selected by GA for each
RNN method along with the running time (in minutes) needed to generate this result.

Table 3. Time performance for each Recurrent Neural Network (RNN) method on selected time-lag by
the genetic Algorithm (GA).

Long-Short Term
Memory (LSTM)

Gated Recurrent
Networks (GRU)

Bi-Directional Recurrent
Neural Networks (BRNN)

Time-Lag Run Time Time-Lag Run Time Time-Lag Run Time

Hourly 21 76.8 14 53.05 11 89.3
Daily 6 2.29 7 2.53 10 2.92

The configuration of each RNN model chosen from the cross-validation process along with an
appropriate time-lag value selected by GA was used to construct the stacked ensemble model and
generate the final prediction. The three methods were run in parallel using multi-cores in order
to enhance running time performance. The testing database was used to train each base model,
the out-of-sample data generates the predictions. The results of level 0 from the stacked ensemble
model are given in Table 4 and shown in Figure 5.

An enhancement in the model performance was achieved in terms of speed by the parallel
implementation. It took 25.05 min to finish the training and make a prediction for the three methods.
The stacking ensemble technique was preferred when multiple models with different skills were used
to train the same database, and each model may behave in a different way.

For both databases (i.e., hourly and daily), the LSTM outperformed GRU and BRNN in terms of
RMSE and MAE metrics (Figure 5). The running time of BRNN was more when compared to LSTM
and GRU, due to the forward and backward architecture of BRNN. The GRU method, which had
a similar architecture to the LSTM, was less effective than LSTM. This was due to the architecture
of the GRU, which had fewer gates than the LSTM. Capturing the time dependency between series
observations was not as accurate as with the LSTM method; this result was concluded from the R2

value of GRU, which was the lowest on the hourly database.
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Table 4. Results of Long-Short Term Memory (LSTM), Gated Recurrent Networks (GRU), and Bi-Directional Recurrent Neural Networks (BRNN) with optimized
time-lag value. Here, RMSE is the root mean square error, MAE is the mean absolute error, and R2 is the coefficient of determination.

LSTM GRU BRNN

RMSE MAE R2 Time-Lag RMSE MAE R2 Time-Lag RMSE MAE R2 Time-Lag

Hourly 0.015 0.007 0.95 21 0.013 0.010 0.94 14 0.013 0.011 0.96 11
Daily 0.007 0.005 0.96 6 0.015 0.011 0.96 7 0.026 0.019 0.97 10
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The output of each method was used to construct a stacked database. The new database was
used to train the ANN model (meta model) and generate the final prediction results. In order to show
the enhancement achieved by the ensemble model in terms of prediction accuracy, Table 5 shows the
accuracy generated by each base model (LSTM, GRU and BRNN) and the ensemble model for the
hourly and daily databases.

Table 5. Accuracy values generated by each model on the hourly and daily databases.

Model
Hourly Daily

Accuracy Variance Run Time Accuracy Variance Run Time

Long-Short Term Memory (LSTM) 95.1% 0.00476 76.866 91.3% 0.0214 2.292
Gated Recurrent Networks (GRU) 94.2% 0.00459 53.058 86.5% 0.0275 2.531
Bi-Directional Recurrent Neural

Networks (BRNN) 93.7% 0.00512 89.409 88.1% 0.0232 2.929

Ensemble 97.1% 0.00402 27.082 92.8% 0.0213 1.103

The ML methods used in this paper were supervising learning methods. These kinds of methods
can be clearly analyzed using bias and variance trade-off. As the goal of any supervised learning
method is to best estimate the mapping function (f) for the output variables (y) given an input variable
(x). The prediction is then generated and the error is estimated. The error can be broken into two parts:
bias and variance. The bias error is the prediction error. It reflects the distance between the actual and
predicted values, and can be estimated by finding MSA, RMSE, etc. The variance error reflects the
amount of change in the prediction accuracy if different training data are used.

The ML algorithm with high variance was highly influenced by the specific training data.
This means that these data influenced the choice of parameter types and numbers used in the
network training to characterize the mapping function. A good ML algorithm has a low bias and
low variance. Through this, it generalized the error and achieved a good prediction performance.
The parameterization of the ML algorithm to reduce bias and variance was often difficult, especially
when working with non-linear algorithms such as neural networks.

In this paper, the results of modelling time-series data using a heterogenous ensemble learning
model that is composed of three different variants of RNN method—LSTM, GRU and BRNN—can be
summarized as follows:

1. The performance of any neural network depends on the parameters tuning. The good selection of
each parameter (such as the number of neurons, the number of layers, the number of time-lag, etc.)
can either increase or decrease accuracy. Finding the optimal selection of network parameters is
an NP problem that requires repeating the experiment by changing one parameter while keeping
the other fixed. Determining the set of parameters that influence the network performance
depends on the problem domain and the type of data. In this paper, time-series data are used
where the RNN method is well-suited to be applied. The number of lags is a very effective
parameter that can increase or decrease the model accuracy. The use of a heuristic algorithm
in the proposed work searched for the best value of the time-lag to be chosen for each network
architecture. This selection guarantees the use of the best value, that produces a robust model
and enhances accuracy.

2. A recurrent neural network is the best method to be used to design a predictive model for
time-series data. Many variants of RNN have been developed in the literature where each version
has its advantages and disadvantages. The three selected RNN methods used in this paper are
LSTM, GRU and BRNN. Three models are designed using each method. The results can be
summarized as follows:

(a) LSTM model is accurate, robust and efficient. For a large amount of data, LSTM needs
more time to generate an accurate prediction.
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(b) GRU is simpler than LSTM. On the other hand, it is less accurate, although the time needed
to run a GRU model is less than the LSTM running time.

(c) BRNN is accurate and robust, but it needs much time to produce a prediction on account
of its backward and forward architecture.

3. The number of the time-lag has a great effect on the algorithm performance for time-series data.
Increasing the time-lag value (window size) increases the running time of the model.

4. An improvement in the prediction accuracy can be achieved by combination of the result of each
method to produce a final one. This is achieved by designing stacked heterogenous ensemble
learning that combines the output of each RNN method and uses a new learner to generate the final
output. The ensemble learning technique improves accuracy, and the parallel implementation
reduces running time. Having three base-learners with a different time-lag number and different
architecture reduced error generalization and overfitting, and increased diversity, as shown in
Table 5.

5. The parallel implementation of ensemble method enhances model performance, by reducing time
needed to make the prediction.

3.2. Comparison with Other and Previous Methods

The model performance and accuracy were compared with previous and other methods.
Zaidan et al. [18] proposed a framework using an Artificial Neural Network (ANN) to model PN
concentrations in Amman, Jordan (i.e., the same data used here). Different sets and combinations of
all weather parameters were the descriptors used. According to their results, the best combination
was including the five weather parameters, which were then compared with the results produced in
this paper using LSTM, GRU and BRNN with time-lag value equal to 1 (Table 6). It is evident that
our new approach (i.e., LSTM, GRU and BRNN) outperforms the previous one (i.e., ANN). Besides
that, ANNs require an optimum network structure with optimum configurations to avoid overfitting
and achieve better accuracy; this requires running several epochs, resulting in a long training time.
Therefore, it can be said that for a time-series application, it is recommended to use a time-series model
based on the use of RNN to achieve better prediction and accuracy.

Table 6. Performance comparison between the proposed ensemble model and an artificial neural
network (ANN). Here, RMSE is the root mean square error, MAE is the mean absolute error, and R2 is
the coefficient of determination.

Model
Hourly Daily

RMSE MAE R2 RMSE MAE R2

Artificial Neural Networks (ANN) 0.086 0.035 0.78 0.049 0.052 0.43

Long-Short Term Memory (LSTM) 0.037 0.028 0.71 0.076 0.057 0.79

Gated Recurrent Networks (GRU) 0.058 0.041 0.80 0.077 0.058 0.78

Bi-Directional Recurrent Neural
Networks (BRNN) 0.037 0.027 0.73 0.046 0.033 0.80

We also compared the current approach with other ensemble approaches, which were
based on Bagging and Voting representing heterogeneous and homogeneous ensemble techniques.
The experiment was divided into two main phases: (1) six benchmark learning algorithms that were
trained over two databases (i.e., hourly and daily), and (2) three ensemble models (bagging, voting
and stacking) (Figure 6).
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In Phase 1, the performance of LSTM, GRU and BRNN was compared with other benchmark
ML algorithms. The selected algorithms were Feed-forward Neural Network (FFNN), Time Delay
Neural Network (TDNN), and Support Vector Regression (SVR). The results had six ML algorithms
that were used as base learners. This main task accomplished through this phase was to prepare each
algorithm by tuning it for training. The performance of each algorithm was investigated using a 10-fold
cross validation and the Greedy layer-wise pretraining technique, where the accuracy of them all was
compared. The best three algorithms were used to construct the homogeneous and heterogenous
ensemble method (i.e., Phase 2). Here, the time-lag value was not investigated in this experiment and
was set to 1; in fact, the effect of choosing a proper time-lag value has been sufficiently investigated
using GA. The prediction accuracy results for each of them were evaluated using the same evaluation
metrics—RMSE, MAE and R2. In Phase 2, we constructed the ensemble learning algorithms as follows:
(1) selected the top three most accurate algorithms in Phase 1; (2) developed a homogeneous ensemble
learning method (i.e., Bagging); (3) developed a heterogenous ensemble learning method (i.e., Voting);
and (4) the results of the homogenous and heterogenous ensemble models were compared with the
current model (i.e., using stacking ensemble). The results generated in Phase 1 are presented in Table 7.
The main aim of this phase was to conduct and compare the performance of each base learner algorithm
(LSTM, GRU, BRNN, FFNN, TDNN and SVR) over two databases (hourly and daily) in terms of three
evaluation metrics (MAE, R2 and RMSE). Figures 7 and 8 show the prediction scatter graph for PN
concentrations using six base learner algorithms over both databases.

According to the models performance in Phase 1, the current method (i.e., three variants of
the RNN models) outperformed the other three base learners (i.e., FFNN, TDNN and SVR) for the
hourly database (Table 7 and Figure 7). This result shows that LSTM, GRU and BRNN can handle the
high dimensionality of the non-linear hourly database and capture correlation between independent
variables and the dependent variable (input and output). LSTM, GRU and BRNN can be also used
to construct voting and stacking ensemble models. FFNN, TDNN and SVR can be used to construct
the bagging ensemble model. As for the daily database (Table 7 and Figure 8), the TDNN method
performed the best, and SVR was the worst. Consequently, the best base learners (i.e., TDNN, FFNN
and BRNN) were used to construct the heterogeneous ensemble learning model (voting and stacking).
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The worst base learners (i.e., SVR, LSTM and GRU) were used to construct the homogeneous ensemble
learning model (Bagging). The performance and accuracy using the homogeneous and heterogeneous
runs are presented in Table 8 and Figures 9 and 10. Many studies have been carried out for time-series
prediction and using ensemble models. When compared to those methods, the current model is robust
(Table 9).

Table 7. Comparison between the current method and other benchmark Machine Learning methods
presented in Phase 1 (Figure 9). Here, RMSE is the root mean square error, MAE is the mean absolute
error, and R2 is the coefficient of determination.

Model
Hourly Daily

RMS MAE R2 RMSE MAE R2

Long-Short Term Memory (LSTM) 0.037 0.028 0.71 0.076 0.057 0.79
Gated Recurrent Networks (GRU) 0.058 0.041 0.80 0.077 0.058 0.78

Bi-Directional Recurrent Neural Networks (BRNN) 0.037 0.027 0.73 0.046 0.033 0.80
Feed-forward Neural Networks (FFNN) 0.078 0.055 0.55 0.071 0.54 0.84
Time Delay Neural Networks (TDNN) 0.061 0.041 0.55 0.086 0.063 0.93

Support Vector Regression (SVR) 0.18 0.63 0.32 0.1 0.071 0.77

Table 8. Comparison between the current method and other ensemble methods presented in Phase 2
(Figure 9).

Model
Hourly Daily

RMSE MAE R2 RMSE MAE R2

Bagging-Feed-forward Neural Networks 0.048 0.036 0.77 0.062 0.046 0.86
Bagging-Time Delay Neural Networks 0.041 0.025 0.83 0.062 0.047 0.86

Bagging-Support Vector Regression 0.08 0.30 0.72 0.067 0.051 0.83
Voting -Long-Short Term Memory, Gated Recurrent Networks,

Bi-Directional Recurrent Neural Networks 0.026 0.019 0.88 0.042 0.030 0.93

Stacking -Time Delay Neural Networks, Feed-forward Neural
Networks, Bi-Directional Recurrent Neural Networks 0.019 0.014 0.94 0.035 0.024 0.95

Table 9. Analysis of ensemble model used in the literature for time-series prediction.

Related Works Ensemble Method Application Domain Results

Khairalla et al. [36] Stacking heterogeneous ensemble Energy consumption 91.24%

Siwek and Osowski [37]
The multilayer perceptron, Elman network,

radial base function and support vector
machine

Air pollution 92%

Tan, et al. [38] Recurrent Neural Networks Enhancer
classification 75.5%

Qi, et al. [39] Long-Short Term Memory
Chinese

Stock
Market prediction

58.8%

The proposed
ensemble model

Long-Short Term Memory, Gated Recurrent
Networks and Bi-Directional Recurrent

Neural Networks
Air pollution 97.1
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Figure 7. Comparison between the measured and modeled hourly database using six base learners:
(a) Long-Short Term Memory (LSTM), (b) Gated Recurrent Networks (GRU), (c) Bi-Directional Recurrent
Neural Network (BRNN) (d) Feed-forward Neural Network (FFNN), (e) Time Delay Neural Network
(TDNN), and (f) Support Vector Regression (SVR).
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Figure 8. Comparison between the measured and modeled hourly database using six base learners:
(a) Long-Short Term Memory (LSTM), (b) Gated Recurrent Networks (GRU), (c) Bi-Directional Recurrent
Neural Network (BRNN) (d) Feed-forward Neural Network (FFNN), (e) Time Delay Neural Network
(TDNN), and (f) Support Vector Regression (SVR).
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Figure 9. Comparison between prediction and measurement for the hourly database using different
ensemble models: (a) Bagging-Feed-forward Neural Networks, (b) Bagging-Time Delay Neural
Networks, (c) Bagging-Support Vector Regression, (d) Voting-Long-Short Term Memory, Gated
Recurrent Networks, Bi-Directional Recurrent Neural Networks, and (e) Stacking-Time Delay Neural
Networks, Feed-forward Neural Networks, Bi-Directional Recurrent Neural Networks.
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Figure 10. Comparison between prediction and measurement for the daily database using different
ensemble models: (a) Bagging-Feed-forward Neural Networks, (b) Bagging-Time Delay Neural
Networks, (c) Bagging-Support Vector Regression, (d) Voting-Long-Short Term Memory, Gated
Recurrent Networks, Bi-Directional Recurrent Neural Networks, and (e) Stacking-Time Delay Neural
Networks, Feed-forward Neural Networks, Bi-Directional Recurrent Neural Networks.
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4. Conclusions

Time-series prediction is an important area for many applications. Using state-of-the-art ML
methods, such as ensemble learning and Recurrent Neural Network (RNN), can improve the prediction
accuracy and enhance the results. In this paper, we proposed a new approach that consists of four
main phases to predict particle number concentrations in the form of a time-series prediction. The first
step was to perform data pre-processing and split into two parts: a training set and a testing set.
The training database was used to build the model. The testing database was used to construct the
ensemble model. The RNN base learner models were fed by using training data, and each network was
configured using 10-fold cross validation. The optimum configuration of each network was considered
and tested. Then, the Genetic Algorithm (GA) was applied on each network to find the most optimal
time-lag. The final phase of the proposed method was to establish the ensemble model using a testing
database, where the output from RNN method with its different selected time-lag was run in parallel to
generate outputs that were combined with one another to produce a final PN concentration estimation.

The results demonstrated that LSTM, GRU and BRNN were suitable techniques for time-series
modelling, as they were found to be robust and accurate. Among them, LSTM was the best, but requires
more time to process a large amount of data. The number of the time-lag values had a great effect
on the algorithm performance for time-series data. A different time-lag value was selected by the
heuristic algorithm for each learning method. The selected lag value generated the best accurate result.
A stacked heterogenous ensemble learning method that combines the output of each RNN method
and uses a new learner to generate the final output was constructed. The ensemble learning technique
improved accuracy, and the parallel implementation for base learner methods reduced running time.
Having three base-learners with a different time-lag number and different architecture reduced error
generalization and overfitting, and increased diversity.

As a recommendation, we state the following points for future research:

1. An improvement in the prediction model can be achieved by including more data with different
features, such as the use of air quality image data. A combination between Convolutional
Neural Network and Recurrent Neural Network can provide a more robust and high precision
predictive model.

2. Parallelize neural network models by dividing the single neural network algorithm into tasks
where each task can be run in a single core. The running time of the neural network can be
reduced, and the performance will be enhanced in terms of speedup.

3. Various optimization parameters can be tested and investigated to improve accuracy such as the
learning function and network structure.
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Appendix A. Recurrent Neural Network (RNN)

RNN provides a robust approach for time-series prediction, because it can handle high
dimensionality non-linear data by the proper selection of time-lag values. In this paper, we utilized an
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heuristic algorithm to guarantee the proper selection of a lag value which improved the accuracy of
the model prediction. Three RNN methods were used—LSTM, GRU and BRNN. Each RNN model
was optimized and tuned using a cross-validation method. The model that generated the best results
was used with its setting parameters. Greedy layer-wise pretraining was used to optimize the building
of deep neural network to achieve state-of-the-art performance.

An heuristic algorithm was used to investigate the effect of time-lag values in each RNN model.
The GA was a search optimization algorithm used to find the optimal solution within a given search
space. Each base model used a different time-lag as selected by the GA. This enabled the model to see
enough past values that were relevant to the future prediction for more accurate and stable forecasting.

Further improvement in accuracy was achieved by using the ensemble learning technique.
This involved the use of multiple models that were trained independently, and the output of all
models was combined using a specific technique to improve the accuracy of the prediction task.
The ensemble network could be homogeneous or heterogeneous. In the homogeneous ensemble,
all models were of the same type but with different structure. The heterogeneous ensemble contained
an identical independent model structure where each model was trained with different training data.
The optimization of time in terms of computation time was achieved by using parallel implementation
for the proposed ensemble learning model, where the three base learners used in the ensemble model
were run in parallel on a multicore platform.

In the real-world, time-series forecasting (e.g., air quality and weather) involves complex nonlinear
relationships between multiple variables. Traditional forecasting approaches have limitations related
to [14]:

• Missing data and outliers. For example, some statistical models (e.g., Support Vector Machine
(SVM)) are sensitive to missing data and the forecasting accuracy is affected.

• Assumptions of linear relationship, which cannot deal with complex nonlinear relationships.
For example, the ARIMA model can only describe the linear relationship between variables.

• Number of variables in the regression equation. For example, the prediction accuracy of a
regression model depends on the number of dependent variables. Increasing the number of
variables improves the accuracy but increases the computation time.

In practice, ML methods are widely utilized in computer science, statistics, and neural computing.
ML have many advantages: they can be used to describe the data characteristics without prior
knowledge about their distribution; they depend on the data parameters to model application behavior;
they are simpler than statistical methods to adjust; and show reliable performance when applied to
non-linear and complex series. ML have some disadvantages: they are black-box models, and they use
historical data to learn the stochastic relationship between past and future observations [40].

Neural Network (NN) models are the most popular type of ML method. They are based on a
mathematical model that is inspired by the behavior of biological neurons. They are developed to
learn the mapping from inputs to outputs over a long sequence of both structured and non-structured
data [41]. They can handle missing data, model complex nonlinear relationships, and support
multiple inputs.

In general, there are many models of NNs, starting from the Multiple Linear Perceptron (MLP)
to the advanced deep learning neural networks that become a powerful tool of ML and artificial
intelligence. Recurrent Neural Network (RNN) is the most popular used method for time-series
data forecasting. The RNN structure consists of one input layer, one output layer and one hidden
layer with one or more feedback loops [42]. The hidden layer in RNN contains states and a memory
block where the state of the hidden layer at current time is conditioned with its previous state [43].
The memory block enables RNN to store, remember and process past data for a long period of time.
A number of modifications to the original RNN architecture have been developed over the years.
Some RNN variants include Long-Short Term Memory (LSTM), Gated Recurrent Network (GRU) and
Bi-directional Recurrent Neural Network (BRNN), which are mainly used in the proposed model.
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Appendix A.1. Long-Short Term Memory (LSTM)

Long-Short Term Memory is a type of RNN that is capable of learning a long dependency in
sequence prediction problems [44]. When an RNN model fails to learn the data with a limited time-lag,
LSTM is designed to address this problem by using specific units in its internal structure.

The architecture of LSTM consists of one input layer, one output layer, and a series of hidden
layers that are recurrently connected and known as memory blocks (Figure A1). Each block consists of
one or more self-recurrent memory cells in order to make it connected to itself, and three main units
(input, output and forget gates). In each block, the three gates provide continuous read, write and reset
operations; the interactive operations between three gates make LSTM sufficient to solve long-term
dependencies that RNN cannot handle.
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In the deep learning of neural networks, the gradient vanishing problem occurs when the previous
hidden layer’s learning speed is slower than that of deeper hidden layers. This decreases the accuracy
of the hidden layer learning [45]. The memory cells in LSTM make it better able to learn a long sequence
with longer time steps. This makes it suitable to solve problems with time serial issues.

Appendix A.2. Gated Recurrent Networks (GRU)

Gated Recurrent Networks (GRU) are designed to learn with long-range dependencies [46].
GRUs are similar to LSTM in gating units; the information flow occurs with short memory and few
gates (two gates, reset and update gate). The reset gate determines how to combine the new input with
the previous data. The update gate indicates how much of the previous memory remains. Having
fewer gates makes GRU faster at learning than LSTM. At each timestep, GRU exposes the whole state
and computes the linear sum between the current state and the newly computed state [47].

It is important to keep in mind that both LSTM and GRU are efficient in predicting long-term
dependencies. Both are used in state-of-the-art deep learning applications, such as speech recognition
and natural language processing.

Appendix A.3. Bi-Directional Recurrent Neural Networks (BRNN)

In the BRNN, future context is used in the learning process and for the current prediction. BRNN
considers all the available input sequences in the past and future to estimate output [48]. It processes
the sequence in the two directions—forwards and backwards (Figure A2). In the forward direction,
one RNN processes the sequence from start to end. In the backward direction, another RNN processes
the sequence from end to start in a negative time direction. There is no interaction between the two
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RNNs. The output of forward direction is not used as an input to the backward direction, and vice
versa. The challenge of using BRNN is the requirement to determine the start and end of the input
sequence in advance.
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Appendix A.4. Ensemble Learner Algorithm

Ensemble learning is another ML method that is used to enhance learning accuracy (Figure A3).
It is based on the use of more than one models (more than one base learner), that are trained with a
given database to provide a solution for a given problem with a higher reliability and accuracy than
what can be achieved using only one model [49–51].
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There are three major elements in the ensemble technique:

• The Training Data (i.e., problem database);
• Ensemble Models (i.e., NN methods used as a base learner);
• Combination Techniques (i.e., the way to produce the final prediction).
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Changing any of the three ensemble elements affects the final prediction results. It is challenging
to design the best combination of ensemble learning models to generate the most reliable and accurate
results.

• Training Data: The base learner models used in the ensemble method can be trained with the
same problem database, or each model can be trained with a subset database that is different from
the subset used with other learners. The k-fold cross validation method can be used to divide
the database into samples where each base learner uses one sample for training. It is preferred
that each base learner generates a result with a low correlation with results generated by other
base learners to achieve a generalization in the model performance. Based on this, using different
samples to train each base learner is preferred when constructing the ensemble model.

• Ensemble Models: Selecting base learners that contribute to the ensemble architecture depends
on the problem domain. In time-series data, RNN and its variants can be used to construct the
ensemble model. The tuning of each base learner model becomes a challenge that influences its
performance. When the ensemble model is constructed using the same kind of learning algorithm
as for base learners (for example, a neural network), then it is called a homogeneous ensemble.
If it is made up of more than one different learning algorithm, it is called heterogeneous [53].
When training the base learner models used in the ensemble design, each base learner model will
have an error value that reflects its prediction accuracy. It is recommended to use models that
result in a low correlation of error made by each model. This implies the tuning of each model
with a different value of parameters.

• Combination Techniques: At the end of training, the results are combined to produce the final
prediction. There are many ways to do this:

1. Bagging: Dividing the database into samples where each one is fed to one base learner
model. The final prediction is estimated by finding the average of each base learner model
prediction. There are different bagging models, including Bagged Decision Tree, Random
Forest and Extra Trees.

2. Boosting: Building a chain of base learner models where each one attempts to fix the error
of the model that proceeds it. Common boosting models include AdaBoost and Stochastic
Gradient Boosting.

3. Voting: Building an ensemble model with more than one base learner with some statistics
(such as mean) to combine the final prediction.

Appendix A.5. Genetic Algorithm (GA)

In artificial intelligence and mathematical optimization, the heuristic algorithm is a technique
used to solve complex problems in a reasonable timeframe where classic methods fail [54]. The solution
provided by the heuristic algorithm may not be the best among other solutions, but it may simply
approximate the exact solution.

Genetic Algorithm (GA) is a search heuristic algorithm that is inspired by natural evolution [55].
The algorithm reflects the process of natural selection, where the best individuals are selected from
population to produce new offspring for the next generation [24]. The selection of parent individuals
depends on a score assigned to each one in the population which is called “fitness value”. The process
keeps iterating until a generation with the fittest individuals is generated. Five phases can be considered
for GA:

1. Initial population;
2. Fitness function;
3. Selection;
4. Crossover;
5. Mutation.



Computers 2020, 9, 89 23 of 26

The algorithm repeats the operations described above to a number of iterations that guarantee
the generation of the optimal solution of the problem. For a given problem, the initial population
can be defined to have a set of individuals, where each one represents a possible solution to the
problem. Each individual is characterized by a set of parameters called genes. The joined genes form a
chromosome (solution). There are different types of representation for solutions in GA. These could be
binary, decimal, integers, and others. Each type is selected according to the problem and is treated
differently. The fitness function gives a fitness score to each individual. Based on the fitness score,
the ability of an individual to compete with other individuals can be determined, and the selection of
an individual for reproduction depends on its fitness score.

Selection, crossover and mutation are the three main operations applied by GA to solve a given
problem. The idea of selection phase is to select the fittest individuals in order to pass their genes to the
next generation. The individuals with the highest fitness score are usually selected for reproduction.

Crossover is more significant; it selects a point for each pair of parents to be mated and makes
crossover between them. The new offspring are generated by exchanging the genes of parents among
themselves until reaching the point of crossover. The new offspring can then be added to the population.
Crossover can be one point, two points, uniform, and others.

The mutation operation enhances the new offspring by flipping some bits in the offspring bit string.
Mutation occurs to maintain diversity within the population, and prevents premature convergence.
Mutation types are bit flip, inverse, uniform, non-uniform, and more.
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