
games

Article

Evolution of Cooperation with Peer Punishment
under Prospect Theory

Satoshi Uchida 1,*, Hitoshi Yamamoto 2 , Isamu Okada 3 and Tatsuya Sasaki 4,5

1 Research Center for Ethi-Culture Studies, RINRI Institute, Tokyo 102-0094, Japan
2 Faculty of Business Administration, Rissho University, Tokyo 141-8602, Japan; hitoshi@ris.ac.jp
3 Faculty of Business Administration, Soka University, Tokyo 192-8577, Japan; okada@soka.ac.jp
4 F-Power Inc., Tokyo 106-6119, Japan; tatsuyak66@gmail.com
5 Faculty of Mathematics, University of Vienna, 1090 Vienna, Austria
* Correspondence: s-uchida@rinri-jpn.or.jp

Received: 4 December 2018; Accepted: 15 February 2019; Published: 21 February 2019
����������
�������

Abstract: Social dilemmas are among the most puzzling issues in the biological and social
sciences. Extensive theoretical efforts have been made in various realms such as economics, biology,
mathematics, and even physics to figure out solution mechanisms to the dilemma in recent decades.
Although punishment is thought to be a key mechanism, evolutionary game theory has revealed
that the simplest form of punishment called peer punishment is useless to solve the dilemma,
since peer punishment itself is costly. In the literature, more complex types of punishment, such
as pool punishment or institutional punishment, have been exploited as effective mechanisms.
So far, mechanisms that enable peer punishment to function as a solution to the social dilemma
remain unclear. In this paper, we propose a theoretical way for peer punishment to work as a
solution mechanism for the dilemma by incorporating prospect theory into evolutionary game theory.
Prospect theory models human beings as agents that estimate small probabilities and loss of profit as
greater than they actually are; thus, those agents feel that punishments are more frequent and harsher
than they really are. We show that this kind of cognitive distortion makes players decide to cooperate
to avoid being punished and that the cooperative state achieved by this mechanism is globally stable
as well as evolutionarily stable in a wide range of parameter values.

Keywords: evolution of cooperation; social dilemma; punishment; evolutionary games; prospect
theory; nonlinear utility
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1. Introduction

Although cooperative relationships can be found in diverse systems ranging from microbiological
communities to global economic spheres, cooperation frequently poses a scientific puzzle. Cooperation
is clearly important to make biological and human societies effective and smooth, and evolutionary
biologists and social scientists have long puzzled over the origin of cooperation. In recent decades,
extensive theoretical efforts from various disciplines, such as economics, biology, mathematics, or even
physics, have been made to figure out solution mechanisms to the cooperation dilemma [1–7].

In the literature, the cooperation puzzle is often called the social dilemma or the free rider
problem. This can be described as follows: (1) individuals in a society have binary choices: cooperation
(contributing to the community) or defection (refusing to contribute, i.e., free-riding), (2) a society
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consisting of cooperators is more profitable than that with only defectors, (3) but within a society,
individual defectors do better than individual cooperators, since cooperators must incur a cost for
contribution, while defectors do not.

Thus, the defective strategy dominates the cooperative strategy and is the Nash equilibrium in
the framework of game theory. In other words, it is more advantageous for individuals to choose
defection regardless of what other individuals choose, which, by natural selection or social learning,
leads to a society with only defectors. The theoretical issue therefore is to explain why cooperation is
so ubiquitous in the real world.

In the literature on the evolution of cooperation, various mechanisms have been proposed and
investigated. Representative examples include kin selection, direct reciprocity, indirect reciprocity,
group selection, and spatial and network reciprocity [8]. Besides these well-studied mechanisms,
punishment is thought to be one of the effective mechanisms and is extensively investigated in the
literature [9–14]. If individuals have a possibility of being punished when they do not pay costs for
cooperation and if the strength of the punishment is so harsh that it cancels the profit obtained by
free-riding, the players are expected to choose cooperation.

The most elementary type of punishment is informal or peer punishment, typified by the “As you
wronged me, I will punish you” attitude. However, the evolution of this type of punishment remains a
theoretical challenging puzzle [15–17]: a simple theory on the evolution of peer punishment predicts
that no one chooses to punish to avoid bearing the implementation cost of the punishment. This new
type of dilemma caused by the introduction of punishment is called the second-order dilemma. In fact,
punishment itself incurs a cost on punishers; consequently, those who perform the punishment earn
less payoff than those who do not punish. Punishment would be effective if there were those who
choose to punish in the population. In this sense, punishers can be interpreted as a different type of
contributor than cooperators. However, rational individuals will never choose to punish others. Thus,
the second-order dilemma occurs.

Peer punishment itself is interpreted as a cooperative act; thus, it could be used for the avoidance
of the second-order dilemma. One way is to introduce the possibility of punishing those who do not
punish defectors—the second-order punishment. However, this again raises the third-order dilemma
that no one chooses to implement the second-order punishment since it is costly. In general, an
introduction of the n-th order punishment raises the (n + 1)-th order dilemma, which results in an
infinite regress of peer punishment [18–20]. The theoretical task is therefore to search for ways or
mechanisms to cut the infinite chain.

In order to prevent the emergence of higher order dilemmas (which mean the n-th order dilemmas
for n > 1), additional and mostly complex mechanisms have been proposed in the literature on
evolutionary game theory [21–31]. For instance, if players are asked whether to contribute to public
goods that will be used for punishment in the future, the second-order dilemma can be avoided; thus,
cooperation evolves. This type of punishment is called formal or pool punishment.

In this present paper, we show a way for peer punishment to work without additional mechanisms.
To do this, we take cognitive distortions of human beings into account. Most game-theory studies on the
evolution of cooperation are based on the linear expected utility theory, which asserts that individuals’
decisions rely on accurate calculations of expected payoffs. On the other hand, experimental researches
in behavioral economics and experimental economics have revealed that real human beings are not so
rational that they can objectively estimate probabilities and values without biases, both of which are
elements of expected payoffs [32–37]. Thus, payoffs attributed to real human beings are subjective,
and this fact plays an essential role in actual decision-making processes.

One of the most successful theories describing irrationality is prospect theory [38–40]. In this
theory, distortions of probabilities and values are modeled as a weighted function and a value function,
respectively. The nonlinearities and asymmetric properties of these functions represent the irrationality
of human beings in prospect theory. What happens if we analyze peer punishment, not assuming the
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linear expected utility theory but based on prospect theory to estimate expected payoffs? This is the
main issue considered in this paper.

Thus, this paper gives the first opportunity to study the coevolution of cooperation and peer
punishment in the framework of evolutionary game theory combined with prospect theory. Our main
finding is that enlarging the effect of small probabilities makes it possible to avoid the second-order
dilemma, which enables cooperation to evolve and to be sustained.

In the next section, we describe the game, strategies, and the model setting of this paper. Then,
we derive the results and discuss them.

2. Materials and Methods

2.1. Game and Strategies

An infinitely large, well-mixed population of individuals (or players) is considered. From time
to time, two players are selected at random from the population and made to engage in a “donation
game” [5]: each player decides whether to support the opponent at a personal cost, c. If a player chooses
to support the other, the opponent receives a benefit b > c; otherwise, the player obtains nothing.
Each individual in the population will experience such decision-making many times. From here on, we
denote the action “support” by “C” and “refuse” by “D”. Table 1 shows the payoffs player A obtains
when playing the donation game with player B.

Table 1. Payoffs player A obtains in donation game.

Player B’s Options
Player A’s Options Cooperate (C) Defect (D)

Cooperate (C) b − c −c
Defect (D) b 0

After they have played the donation game, both players consider whether to punish their
opponents or not if the other player chose D in the donation game. If a player chooses to punish
its opponent, the other player’s payoff is reduced by s. The punishment is not free but costly and
therefore incurs a cost r on the punisher. We assume the strength of punishment s is greater than the
punishment cost r. We denote the decisions “punish” and “not punish” by “P” and “N”, respectively.

Thus, the game considered in this paper consists of two phases, which we call “donation phase”
and “punishment phase”. We call the combined game “donation–punishment game”. In the donation
phase, individuals consider whether to cooperate (support the other) or not, and in the punishment
phase, they consider whether to punish their opponents when they choose D in the donation phase.

As a result, individuals have 4 options in total, i.e., there are 4 types of strategies: cooperate punish
(CP), cooperate not-punish (CN), defect punish (DP), and defect not-punish (DN). Each individual
follows one of these strategies and makes decisions according to the strategy. We denote the payoff
matrix of the donation–punishment game described in Table 2 by M.

Table 2. Payoffs player A obtains in donation-punishment game.

Player B’s Options
Player A’s Options

Cooperate
Punish (CP)

Cooperate
Not-Punish (CN)

Defect
Punish (DP)

Defect
Not-Punish (DN)

Cooperate
Punish (CP) b − c b − c −c − r −c − r

Cooperate
Not-punish (CN) b − c b − c −c −c

Defect
Punish (DP) b − s b −s − r −r

Defect
Not-punish (DN) b − s b −s 0
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We assume that individuals sometimes deviate from their strategies due to error. By a small
probability, those individuals who intend to cooperate do not cooperate and vice versa. In the same
way, individuals who intend to punish may not punish and vice versa. Note that we assume symmetric
deviations in double meanings to reduce parameters. Firstly, probabilities of deviations from C (P)
to D (N) and from D (N) to C (P) are the same. Secondly, probabilities of deviations from C to D and
from P to N are the same, which implies that error between C and D and error between P and N are
independent. All probabilities of deviations are denoted by one parameter, ε.

2.2. Payoff and Strategy Switching

2.2.1. Linear Expected Utility Theory

The long-term payoff of an individual depends on its strategy and other individuals’ strategies.
For the sake of convenience, we denote the strategies by numbers: we call CP strategy 1, CN strategy 2,
DP strategy 3, and DN strategy 4. Then xi denotes the frequency of the i-th strategy in the population.
These frequencies affect the expected payoffs that individuals obtain.

As mentioned above, we assume that individuals sometimes commit errors. This means that the
strategy of an individual and its decisions may be different since actual actions can deviate from its
strategies due to errors. We denote a strategy and an action actually chosen in a game by the same
label. For instance, i = 1 either means strategy CP or action CP, depending on the context.

Clearly, errors also affect the expected payoffs. Since an error occurs in decisions both for the
donation and for the punishment, an individual with strategy i may actually choose any other action.
In order to calculate the expected payoffs, considering these, we introduce error vectors. A player
with strategy 1 actually chooses its actions according to the following error vector: (ε = 1− ε is the
probability that an error does not occur.)

→
E1 =

(
ε2, εε, εε, ε2

)T
. (1)

Here, the first element of the vector (the square of ε) gives the probability that the individual
chooses action 1 (CP), because a player with strategy 1 actually chooses action C (cooperation) with
probability ε and P (punishment) with the same probability ε. The second, the third, and the fourth

elements are defined in the same way. Thus,
→
E1 provides the probability distribution of actions chosen

in a game of individuals with strategy 1.

Similarly, the vectors
→
E2 =

(
εε, ε2, ε2, εε

)T
,
→
E3 =

(
εε, ε2, ε2, εε

)T
,
→
E4 =

(
ε2, εε, εε, ε2)T

characterize
the probability distributions on the action space of individuals with their corresponding strategies.

With these error vectors, the expected payoff of an individual with strategy i when playing a
game with an individual with strategy j is given by

Pij =
→
E

T

i M
→
E j. (2)

Since the probability that an individual with strategy i encounters an individual with strategy j is
xj by the definition, the expected payoff of an individual with strategy i is given by

Pi =
4

∑
j=1

Pijxj. (3)

We obtain the same expected payoff with a different approach. This approach will be used to
derive distorted expected payoffs in the framework of prospect theory. The vector

→
A =

4

∑
j=1

→
E jxj, (4)
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represents the probability distribution of actions chosen by an arbitrary player selected at random
from the population. Now we define matrix Bi by

Bi =
→
E i
→
A

T
. (5)

The element (Bi)mn of the matrix is interpreted as the probability that a player with strategy i
obtains a payoff of (M)mn of the payoff matrix of the donation–punishment game. Thus, matrix Bi is a
probability distribution over payoff matrix M in the eyes of individuals with strategy i. The expected
payoff is then expressed as a sum of values (payoffs) multiplied by probabilities.

Pi =
4

∑
m=1

4

∑
n=1

(M)mn(Bi)mn. (6)

Players adaptively switch their strategies, aiming at more expected payoffs, which results in
gradual changes of strategy frequencies. We assume that the time evolution of the frequency of strategy
i is governed by the replicator equation [41]:

.
xi = xi

(
Pi −

4

∑
j=1

Pjxj

)
. (7)

2.2.2. Prospect Theory

The element (Bi)mn of the matrix Bi represents the probability that the outcome (m, n) of the game
is realized. Following prospect theory, we assume that this probability is subjectively calculated in a
distorted way. The subjective probability is given by applying a nonlinear function called weighted
function to the objective probability (Bi)mn :

(Wi)mn = w((Bi)mn), (8)

with
w(x) =

xγ[
xγ + (1− x)γ] 1

γ

, (9)

where x is an objectively given probability.
The function contains a parameter γ. If γ = 1, the function is linear, and this case corresponds to

linear expected utility theory. The smaller γ is, the more distorted the subjective probability is. If γ is
too small (γ < 0.28), the function is not monotonically increasing anymore. Therefore γmust be equal
to or greater than 0.28 theoretically. In the literature of prospect theory, it is reported that values of γ
around 0.65 best fit experimental results [38–40]. We set γ to 0.65 in the following analysis. The shape
of the function with this parameter value is shown in the left panel of Figure 1. According to this
function, small objective probabilities are estimated to be greater than they are because of w(x) > x for
small x. Analyses with other values of γ can be found in the supporting material.

Thus, the matrix Wi is interpreted as a subjective probability distribution on M in the eyes of
individuals with strategy i. Note that the probability distribution is not normalized; thus, the sum of
subjective probabilities is not one in general because there is no experimental evidence that people are
so rational that they normalize probabilities. In fact, the weighted function given by Equation (9) is
asymmetric with respect to x = 1/2, which implies that w(x) + w(1− x) is not equal to one (see the
left panel of Figure 1).

In the same way as in the case of probabilities, the payoff matrix M is also distorted by a
nonlinear function

(V)mn = v((M)mn). (10)

The function is called the value function, which is given by
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v(x) =

{
xα (x ≥ 0)

−λ(−x)α (x ≤ 0)
, (11)

where x represents an objectively given outcome. The value function depends on two parameters α and
λ. If both parameters are one, the function is linear, which corresponds with the linear expected utility
theory. In the original literature on the prospect theory [38], α = 0.88 and λ = 2.25 are typical values that
best fit experimental data. We adopt these parameter values in the following analysis. The right panel in
Figure 1 shows the value function with these parameter values. Parameter α < 1 implies that the value
function is concave and that a person obeying this function is risk-averse. Parameter λ > 1 means that a
person following this function is more sensitive to a loss than a gain (“loss-averse” so to say).

The subjectively distorted payoff matrix V does not depend on strategies. Note that since the
function is nonlinear, the baseline of the payoff matrix or the reference point influences the results,
which is different from the linear expected utility theory. We assume that the payoff obtained from the
outcome (4, 4) in M, which is zero, is the reference point.

With these subjective probabilities and payoffs, the expected payoff is calculated by

Pi =
4

∑
m=1

4

∑
n=1

(V)mn(Wi)mn. (12)

The strategy change is described by the ordinary replicator dynamics mentioned in the last
subsection (Equation (7)).
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Figure 1. Left panel: The weighted function (solid curve) defined by Equation (9) with parameter
γ = 0.65. The horizontal axis represents objectively given probabilities x and the vertical axis is
subjective probability denoted by y. The linear function with γ = 1 corresponding to the linear expected
utility theory is also displayed (dashed line). Right panel: The value function (solid curve) given by
Equation (11) with parameters α = 0.88, λ = 2.25. The x-axis represents objectively given outcomes
and the y-axis subjective values. The linear function with α = λ = 1 is also shown (dashed line).

3. Results

By calculating Pij for all i and j, we find some basic characteristics of the model. Firstly, the
contradictory strategy DP (strategy three) is dominated by DN. Since it never becomes evolutionarily
stable, we eliminate the strategy from the analysis. We are interested in the time evolution of the vector
(x1, x2, x4), which we call the state of the population.

Secondly, if the strength of punishment s is so large that it exceeds c/ε, P2 > P4 holds for the
linear expected utility theory. This means that strategy two (CN) dominates strategy four (DN).
In other words, the second-order dilemma does not occur even with the linear expected utility theory.

We exclude these trivial situations and focus on the parameter region s < c
ε

def
= smax, in which the

second-order dilemma (thus the first-order dilemma) occurs in the framework of the linear expected
utility theory. The addressed question is whether the second-order dilemma will be solved in this
parameter region under the prospect theory.
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In the following analysis, we set c = r = 1 and b = 4 to reduce the dimension of the parameter
space. Therefore, the variable parameters are the strength of punishment s and error rate ε.

3.1. Vector Fields

We show vector fields generated by the respective replicator dynamics derived from the linear
expected utility theory and prospect theory, and we compare them in Figure 2. The state space is the
simplex {(x1, x2, x4)|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x4 ≤ 1, x1 + x2 + x4 = 1}, which will be represented
as a rectangular triangle in Figure 2. The vertex CP corresponds to (x1, x2, x4) = (1, 0, 0), CN to (0, 1, 0),
and DN to (0, 0, 1). The state of the population (x1, x2, x4) evolves along the vector fields in the state
space. In the figure, stable fixed points are illustrated as solid circles. Note that the vector fields are
normalized so that all vectors’ lengths are one. The strength of punishment is varied from s = 2, s = 6,
to s = 10 and we set the error rate at 0.05 as an example here. As we will see, we find qualitatively
different outcomes (vector fields) with these three parameter sets. The same changes in outcomes occur
if we set the error rate at other values (see Figure 3 in the next subsection in which both parameters s
and ε are varied).

Games 2018, x, x FOR PEER REVIEW 7 of 14 

 

In the following analysis, we set 𝑐 = 𝑟 = 1 and 𝑏 = 4  to reduce the dimension of the 
parameter space. Therefore, the variable parameters are the strength of punishment 𝑠 and error 
rate ε. 

3.1. Vector Fields 

We show vector fields generated by the respective replicator dynamics derived from the linear 
expected utility theory and prospect theory, and we compare them in Figure 2. The state space is 
the simplex {(𝑥 , 𝑥 , 𝑥 )|0 ≤ 𝑥 ≤ 1,0 ≤ 𝑥 ≤ 1,0 ≤ 𝑥 ≤ 1, 𝑥 + 𝑥 + 𝑥 = 1} , which will be 
represented as a rectangular triangle in Figure 2. The vertex CP corresponds to (𝑥 , 𝑥 , 𝑥 ) = (1,0,0), 
CN to (0,1,0), and DN to (0,0,1). The state of the population (𝑥 , 𝑥 , 𝑥 ) evolves along the vector 
fields in the state space. In the figure, stable fixed points are illustrated as solid circles. Note that the 
vector fields are normalized so that all vectors’ lengths are one. The strength of punishment is 
varied from 𝑠 = 2, 𝑠 = 6, to 𝑠 = 10 and we set the error rate at 0.05 as an example here. As we will 
see, we find qualitatively different outcomes (vector fields) with these three parameter sets. The 
same changes in outcomes occur if we set the error rate at other values (see Figure 3 in the next 
subsection in which both parameters 𝑠  and ε are varied).  

(a) 

 
(b) 

 
(c) 

 

Figure 2. The vector fields yielded by the replicator dynamics for the linear expected utility theory
(left panel) and for the prospect theory (right panel). The state space is the simplex defined by
{(x1, x2, x4)|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 0 ≤ x4 ≤ 1, x1 + x2 + x4 = 1}, which is drawn as a rectangular
triangle. The arrows in each triangle show in which direction the state (x1, x2, x4) evolves in the
rectangular triangle (including its edges). Parameters: c = r = 1, b = 4, ε = 0.05. The strength of
punishment is varied: (a) s = 1, (b) s = 6, (c) s = 10. Stable fixed points are illustrated as solid circles.
We see that CN becomes stable as s becomes larger for prospect theory, while DN is the unique stable
fixed point in all cases for the linear expected utility theory.
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If the strength of the punishment is low (panel (a)), the defective state DN is the only stable fixed
point in both cases. On the edge CP–CN, CN dominates, and on the edge CN–DN, DN dominates.
The difference of the two theories is found in the edge DN–CP. In the case of the linear expected utility
theory, there is an unstable fixed point in the edge, and the system is bistable. On the other hand,
strategy DN dominates strategy CP in the edge in case of prospect theory.

This tendency does not change if the strength of punishment is increased in the framework of the
linear expected utility theory (the left picture of panel (b)). However, in the case of the prospect theory
(the right picture of panel (b)), two unstable fixed points emerge in the edge CN–DN and in the edge
DN–CP. As a result, the system becomes bistable. Thus, depending on initial conditions, trajectories
approach either the cooperative state CN or defective state DN.

When the strength of punishment is increased further, there is no qualitative change for the linear
expected utility theory (the left picture of panel (c)). Still, DN is the unique stable fixed point. In the
case of prospect theory, however, DN becomes unstable and CN is the only stable fixed point in the
state space; all trajectories (except for trajectories starting in the edge DN–CP) approach the cooperative
state CN.

3.2. Stability Analysis of DN and CN

The above analysis clarified that the strength of punishment largely affects the system in the
prospect theory. In fact, CN becomes “more” stable as the strength of punishment becomes large.
Moreover, CP is always unstable regardless of the parameters. Taking these into account, we focus on
the relation between CN and DN in the framework of prospect theory in this subsection. In order to
investigate the effect of both parameters s and ε, we look for conditions for the parameters with which
CN can invade DN and/or vice versa.

To do this, we define Hij (i ∈ {2, 4}, j ∈ {2, 4}) as the expected payoff of individuals with strategy
i in the situation where they only encounter individuals with strategy j. This expected payoff is given by

Hij =
4

∑
m=1

4

∑
n=1

v((M)mn)w
(
EimEjn

)
, (13)

where v and w are the value function and the weighted function, respectively, (M)mn is the

(m, n)-element of payoff matrix M, and Eim
(
Ejn
)

is the m-th (n-th) element of the error vector
→
E i (

→
E j).

Or, we can obtain Hij by substituting xj = 1 into Pi defined by Equation (12): Hij = Pi with xj = 1.
For instance, H42 represents the expected payoff in the situation where individuals with the DN

strategy only encounter those with the CN strategy, and H24 is the expected payoff in the situation
where individuals with the CN strategy only encounter those with the DN strategy.

Then, the inequality H22 < H42 implies that a DN individual can invade into the population
consisting of CN individuals. The inequality H44 > H24 means that the population consisting of DN
individuals cannot be invaded into by a CN individual. If both inequalities hold, which corresponds to
the right panel of Figure 2a), we see that DN is globally stable. Likewise, if both inequalities H22 > H42

and H44 < H24 are true, CN is globally stable, which corresponds to the right panel of Figure 2c. If both
H22 > H42 and H44 > H24 hold, DN cannot invade into CN and vice versa. Therefore, the system is
bistable (The right panel of Figure 2b). We look for regions in the parameter space (ε, s) in which the
above inequalities hold.

The result is shown in Figure 3. Note that the strength of punishment s is normalized; thus,
the vertical axis represents the value of s/smax. If this parameter value exceeds 1, the second-order
dilemma is resolved even in the case of the linear expected utility theory, and CN is globally stable.
This means that in the parameter space given in the figure, the second-order dilemma occurs in the case
of the linear expected utility theory; thus, DN is globally stable. The question is where the prospect
theory can resolve the dilemma in this parameter region.
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In the framework of the prospect theory, regardless of parameter ε, DN is globally stable with
small s (region (I)). In this region there is no qualitative difference from the linear expected utility
theory. The solid triangle illustrated in this region in the figure corresponds to the parameter set
(ε = 0.05, s = 1) used to generate Figure 2a. However, increasing the strength of punishment gradually
destabilizes DN and alternatively stabilizes CN in the case of the prospect theory. As a result, the
system becomes bistable (region (II)) with moderate ε. The solid square in this region corresponds
to (ε = 0.05, s = 6), which was used to generate Figure 2b. With high ε, CN becomes able to invade
DN populations, and CN becomes globally stable. We also see that the values of s

smax
that represent

boundaries between the regions (illustrated by solid and dashed curves in the figure) become large
as functions of error rate ε. The solid circle put above the boundary in this region corresponds to
(ε = 0.05, s = 10) used for Figure 2c.

The boundary drawn by the dashed curve in Figure 3 was found by numerically solving the
equation H22 = H42 with respect to s for ε = εmin, εmin + δ, εmin + 2δ, · · · , εmax, where εmin = 10−5,
εmin = 0.1, and δ = (εmax − εmin)/200. Note that we excluded ε = 0, since cooperation cannot evolve
even under the prospect theory in this case. The inequality H22 < H42 (H22 > H42) holds under
(above) this boundary. In order to find the boundary illustrated by the solid curve in Figure 3, the
equation H24 = H44 with respect to s was solved. The inequality H24 < H44 (H24 > H44) holds under
(above) this boundary.

As mentioned above, we used a specific set of values for parameters γ, α, and λ to produce
Figure 3. We also generated figures with different parameter values, which are presented in the
supporting material. No qualitative differences are found when the values of these parameters are
varied. Nevertheless, we see that stable regions become larger as values of parameters γ and α are
smaller and that the parameter λ does not affect the results very much. This indicates that the system
becomes more easily stable as the weighted function, and the value function gains “more nonlinearity”.
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Figure 3. Different domains in the parameter space (ε, s

smax
) for prospect theory: (I) DN is globally

stable (under the dashed line) in the case of the prospect theory, (II) both CN and DN are stable (the
region sandwiched by the solid and dashed line). (III) CN is globally stable (the region above the solid
line). In the parameter region shown in the figure, DN is globally stable in the case of the linear expected
utility theory. The solid triangle in the figure corresponds to the parameter set (ε = 0.05, s = 1) used
to generate Figure 2a, the solid square to (ε = 0.05, s = 6), which was used to generate Figure 2b and
the solid circle to (ε = 0.05, s = 10) for Figure 2c. We see that CN becomes stable as s becomes larger
for each error rate. However, the boundaries depicted by solid and dashed curves are monotonically
increasing functions of error rate ε.
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4. Discussion

We explored the effects of cognitive distortions described by the prospect theory in the context
of the evolution of cooperation by peer punishment. Our main finding is that cognitive distortions
make it possible for cooperation to evolve even in the parameter region in which cooperation cannot
be achieved in the framework of the linear expected utility theory. We also found that the cooperative
punitive strategy (CP) is dominated by cooperative nonpunitive strategy (CN). Thus, not CP but CN
plays an essential role to sustain cooperation.

The CN players basically do not punish others, but they actually punish with a small probability
due to error. This erroneous punishment effectively drives cooperation as far as the prospect theory
is utilized. The same erroneous punishment cannot promote cooperation when the linear expected
utility theory is adopted.

A key reason for why the error has a large impact on the population in the case of the prospect
theory is found in the weighted function w and the value function v. According to the weighted
function, individuals estimate small probabilities greater than they really are, and according to the
value function, they assess the loss of benefit more than it actually is. Therefore, agents described by
the prospect theory feel that punishment is more frequent and harsher than they really are.

In other words, individuals described by prospect theory are more sensitive to peer punishment
than those described by the linear expected theory. Alternatively, we could say that individuals
described by the prospect theory have the ability to imagine punishment, and this kind of imagination
induces the fear to be punished. Such individuals who are afraid of punishment, even if it seldom
occurs due to error, choose to cooperate to avoid being punished.

In spite of the findings mentioned so far, we have to remark that there remain several issues
relevant for the coevolution of cooperation and peer punishment. The model studied in this present
research especially has many limitations, which offers some tasks for future research.

Here, we mention the following two issues: the emergence problem and antisocial punishment.
The emergence problem relates to the question about who starts giving punishment for the first time
in the population [28]. Even in pool punishment, it is not easy to start costly punishment successfully,
since punishing right and left in a sea of defectors imposes too much effort and cost on punishers.
Several studies have proposed additional mechanisms or assumptions to overcome this emergence
problem [42–46]. A similar problem holds for the peer punishment studied in this paper. We assumed
that individuals punish others due to an error with a small probability. That is, individuals have
an idea that they have the option to punish others from the beginning, even though the punishing
activities are performed unintentionally. Under this assumption, we analyzed differences between the
linear expected utility theory and the prospect theory.

Moreover, we assumed that only defectors are punished, and there is no chance for cooperators to
be punished. Allowing punishment against prosocial behavior, such as cooperative actions, can offset
the payoff advantage of the cooperators over free-riding. If antisocial punishment is included into
our model, individuals afraid of counterpunishment might stop choosing cooperation. This problem
caused by antisocial punishment occurs not only in our model, but is widely recognized as a serious
issue in the literature of evolution of cooperation with punishment [47–49].

On the other hand, if we turn our attention to indirect reciprocity, which is known to be a
powerful mechanism for the evolution of cooperation, the evolution of social norms is extensively
investigated [50–55]. Social norms are defined as views on what is “good” or “bad”, and indirect
reciprocity works in the way that bad individuals are discriminated in the population (bad individuals
are not supported). However, there are many possibilities for the definitions of what is good or bad
(thus social norms), and one of the main tasks in indirect reciprocity is to search for evolutionarily
stable social norms that can maintain cooperation.

From the viewpoint of indirect reciprocity, the assumption that only defectors are punished is
equivalent to assuming that the population has the unique social norm that prescribes to assessments
of defectors as bad (and bad individuals are punished). This type of social norm is named “Scoring” in
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the literature. Then, punishing cooperators (antisocial punishment) is equivalent to the social norm
that regards cooperators as bad (“Antiscoring”). However, these are just a few examples of social
norms. It is possible to consider other types of social norms, for instance, a norm that regards those as
bad who cooperate with bad individuals.

A recent study using agent-based simulations revealed that prosocial norms such as “Scoring”
can evolve, and antisocial norms such as “Antiscoring” become extinct in the melting pot of social
norms if not a few but diverse norms coexist in the population [56]. In the model of this study, bad
individuals are not punished, but they are not given help in the population. We can modify the model
so that bad individuals are punished. Whether prosocial norms can also evolve in this modified model
and thus whether the problem of antisocial punishment is solved is interesting and necessary research
yet to be done. Recently, a paper was published which studies the coevolution of indirect reciprocity
and punishment [57].

In extending our model with many social norms, agent-based simulations could be useful rather
than an analytical approach taken in this paper. In this paper, we have discussed the evolution of
cooperation in an analytical way under the assumption that there is a unique social norm in the
population, and we have provided the first step to study the effects of cognitive distortions on the
evolution of cooperation via peer punishment.
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