Supplementary Materials: Evolution of Cooperation in Social Dilemmas with Assortative Interactions

Swami Iyer ${ }^{1}$ and Timothy Killingback ${ }^{2, *}$

1. Additional Results from Individual-Based Simulations

1.1. Discrete Games

1.1.1. Donation Game

Figures S1(a)-(c) show the evolution of the fraction p of cooperators in the donation game with 5 payoff matrix given by equation 9, for different values of the assortativity r. The inset in the plots
6 indicates the long-term fraction p_{∞} of cooperators, averaged over the last 10% of the generations.

Figure S1. Evolution of the frequency p of cooperators in the donation game for different values of assortativity r. (a) $r=0$. (b) $r=0.2$. (c) $r=0.4$. Parameters: $\rho=0.3, n=10000, p_{0}=0.5$, and $\beta=1$.

1.1.2. Snowdrift Game

Figures S2(a)-(c) show the evolution of the fraction p of cooperators in the snowdrift game with , payoff matrix given by equation 11, for different values of the assortativity r. The inset in the plots

Figure S2. Evolution of the frequency p of cooperators in the snowdrift game for different values of assortativity r. (a) $r=0$ ($p^{\star} \approx 0.67$). (b) $r=0.2$ ($p^{\star} \approx 0.92$). (c) $r=0.3$ ($p^{\star} \approx 1.0$). Parameters: $\rho=0.5$, $n=10000, p_{0}=0.5$, and $\beta=1$.

Figure S3. Evolution of the frequency p of cooperators in the sculling game for different values of assortativity r. (a) $r=0$. (b) $r=0.1$. (c) $r=0.2$. Parameters: $\rho=1, n=10000, p_{0}=0.3$, and $\beta=1$.

1.2. Continuous Games

1.2.1. Continuous Donation Game

Figures S4(a)-(c) show the evolution of the distribution of strategies for different values of r in the CD game with linear cost and benefit functions $C(x)=c x$ and $B(x)=b x$, where $b>c$. We also show in this figure the corresponding pairwise invasibility plots (PIPs), in which the regions where a mutant strategy y can invade a resident strategy x (i.e., the set $\mathcal{I}_{+}=\left\{(x, y) \in[0,1]: f_{x}(y)>0\right\}$) are shown in black (and marked " + ") and the uninvadable regions (i.e., the set $\mathcal{I}_{-}=\left\{(x, y) \in[0,1]: f_{x}(y)<0\right\}$) are shown in white (and marked "-").

Figures S5(a)(b) show the evolution of the distribution of strategies x for different values of assortativity r, in the CD game with quadratic cost and benefit functions $C(x)=c_{1} x^{2}$ and $B(x)=$ $-b_{2} x^{2}+b_{1} x$, where $c_{1}, b_{1}, b_{2}>0$. We let $b_{1}=2 b_{2}$; the dotted line in the plots indicates the singular strategy x^{\star} given by equation 24 . Figures $\mathrm{S} 5(\mathrm{c})(\mathrm{d})$ show the corresponding PIPs.

1.2.2. Continuous Snowdrift Game

Figures S6(a)(b) and S7(a)(b) show the evolution of the distribution of strategies x for different values of assortativity r, in hte CSD game with quadratic cost and benefit functions $C(x)=-c_{2} x^{2}+$ $c_{1} x^{2}$ and $B(x)=-b_{2} x^{2}+b_{1} x$, where $c_{1}, c_{2}, b_{1}, b_{1}>0$. The dotted line in the plots indicates the singular strategy x^{\star} given by equation 28 . Figures S6(c)(d) and S7(c)(d) show the corresponding PIPs.

1.2.3. Continuous Tragedy of the Commons Game

Figures S8(a)(b) show the evolution of the distribution of strategies x for different values of assortativity r, in the CTOC game with quadratic cost and cubic benefit functions $C(x)=c_{1} x^{2}$ and $B(x)=-b_{3} x^{3}+b_{2} x^{2}+b_{1} x$. If we let $b_{2}=2 b_{1}$ and $c_{1}=b_{1}$; the dotted line in the plots indicates the singular strategy x^{\star} given by equation 34 . Figures S8(c)(d) show the corresponding PIPs.

Figure S4. Evolution of the distribution of strategies $x(a-c)$ and the corresponding pairwise invasibility plots (d-f) in the CD game with linear cost and benefit functions: $C(x)=0.3 x$ and $B(x)=x$. (a) $r=0$. (b) $r=0.2$. (c) $r=0.4$. Parameters: $n=10000, x_{0}=0.2, x_{m}=1, \mu=0.01, \sigma=0.005$, and $\beta=1$.

Figure S5. Evolution of the distribution of strategies $x(\mathrm{a}, \mathrm{b})$ and the corresponding pairwise invasibility plots (c, d) in the CD game with quadratic cost and benefit functions: $C(x)=x^{2}$ and $B(x)=-x^{2}+2 x$. (a) $r=0\left(x^{\star}=0\right.$ is an ESS). (b) $r=0.5\left(x^{\star}=0.33\right.$ is an ESS). Parameters: $n=10000, x_{0}=0.1, x_{m}=1$, $\mu=0.01, \sigma=0.005$, and $\beta=1$.

Figure S6. Evolution of the distribution of strategies $x(\mathrm{a}, \mathrm{b})$ and the corresponding pairwise invasibility plots (c, d) in the CSD game with quadratic cost and quadratic benefit functions: $C(x)=-c_{2} x^{2}+c_{1} x$ and $B(x)=-b_{2} x^{2}+b_{1} x$, with $c_{1}=4.8, c_{2}=1.6, b_{1}=5, b_{2}=1$. (a) $r=0\left(x^{\star}=0.25\right.$ is an EBP). (b) $r=0.3\left(x^{\star}=0.85\right.$ is an ESS). Parameters: $n=10000, x_{0}=0.1, x_{m}=1, \mu=0.01, \sigma=0.005$, and $\beta=1$.

Figure S7. Evolution of the distribution of strategies $x(\mathrm{a}, \mathrm{b})$ and the corresponding pairwise invasibility plots (c, d) in the CSD game with quadratic cost and quadratic benefit functions: $C(x)=-c_{2} x^{2}+c_{1} x$ and $B(x)=-b_{2} x^{2}+b_{1} x$, with $c_{1}=4, c_{2}=1.5, b_{1}=3, b_{2}=0.2$. (a) $r=0.05\left(x^{\star}=0.4\right.$ is a repeller). (b) $r=0.25\left(x^{\star}=0.125\right.$ is a repeller). Parameters: $n=10000, x_{0}=0.3, x_{m}=1, \mu=0.01, \sigma=0.005$, and $\beta=1$.

Figure S8. Evolution of the distribution of strategies $x(a-b)$ and the corresponding pairwise invasibility plots (c-d) in a CTOC game with quadratic cost and cubic benefit functions: $C(x)=x^{2}$ and $B(x)=$ $-0.0834 x^{3}+2 x^{2}+x$. (a) $r=0\left(x^{\star}=2\right.$ is an EBP); (b) $r=0.4\left(x^{\star}=0.57\right.$ is an ESS). Parameters: $n=10000, x_{0}=0.1, x_{m}=3, \mu=0.01, \sigma=0.005$, and $\beta=1$.

