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Abstract

:

In this paper, we study the structure of trajectories of discrete disperse dynamical systems with a Lyapunov function which are generated by set-valued mappings. We establish a weak version of the turnpike property which holds for all trajectories of such dynamical systems which are of a sufficient length. This result is usually true for models of economic growth which are prototypes of our dynamical systems.
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1. Introduction


In [1,2] A. M. Rubinov introduced a discrete disperse dynamical system determined by a set-valued mapping acting on a compact metric space, which was studied in [1,2,3,4,5,6,7]. This disperse dynamical system has prototype in the mathematical economics [1,8,9]. In particular, it is an abstract extension of the classical von Neumann–Gale model [1,8,9]. Our dynamical system is determined by a compact metric space of states and a transition operator. In [1,2,3,4,5,6,7] and in the present paper, this transition operator is set-valued. Such dynamical systems correspond to certain models of economic dynamics [1,8,9].



Assume that   ( X , ρ )   is a compact metric space and that   a : X →  2 X  \  { ∅ }    is a set-valued mapping whose graph


  graph ( a ) = { ( x , y ) ∈ X × X :  y ∈ a ( x ) }  








is a closed set in   X × X  . For every nonempty set   E ⊂ X   define


  a  ( E )  = ∪  { a  ( x )  :  x ∈ E }     and     a 0   ( E )  = E .  











By induction we define    a n   ( E )    for every integer   n ≥ 1   and every nonempty subset   E ⊂ X   as follows:


   a n   ( E )  = a  (  a  n − 1    ( E )  )  .  











In the present paper, we analyze the structure of trajectories of the dynamical system determined by a which is called a discrete dispersive dynamical system [1,2].



We say that a sequence     {  x t  }   t = 0  ∞  ⊂ X   is a trajectory of a (or just a trajectory if a is understood) if


   x  t + 1   ∈ a  (  x t  )  ,  t = 0 , 1 , … .  











Let    T 2  >  T 1    be integers. We say that     {  x t  }   t =  T 1    T 2   ⊂ X   is a trajectory of a (or just a trajectory if a is understood) if


   x  t + 1   ∈ a  (  x t  )  ,  t =  T 1  , … ,  T 2  − 1 .  











Define


  Ω ( a ) = { ξ ∈ X :   for every positive number  ϵ  there exists a trajectory   










    {  y t  }   t = 0  ∞   for whicht   lim inf  t → ∞   ρ  ( ξ ,  y t  )   ≤ ϵ } .    



(1)







Evidently,   Ω ( a )   is a nonempty closed set in the metric space   ( X , ρ )  . In the literature, the set   Ω ( a )   is called a global attractor of a. Note that in [1,2]   Ω ( a )   is called a turnpike set of a. This terminology is motivated by mathematical economics [1,8,9].



For every point   x ∈ X   and every nonempty closed set   E ⊂ X   define


  ρ ( x , E ) = inf { ρ ( x , y ) :  y ∈ E } .  











Let   ϕ : X →  R 1    be a continuous function satisfying


  ϕ ( z ) ≥ 0  for every  z ∈ X ,  



(2)






  ϕ ( y ) ≤ ϕ ( x )  for every  x ∈ X  and every  y ∈ a ( x ) .  



(3)







It is clear that  ϕ  is a Lyapunov function for the dynamical system determined by the map a. It should be mentioned that in mathematical economics usually X is a subset of the finite-dimensional Euclidean space and  ϕ  is a linear functional on this space [1,8,9]. Our goal in [7] was to study approximate solutions of the problem


  ϕ (  x T  ) → max ,  










    {  x t  }   t = 0  T   is a program satisfying   x 0  = x ,  








where   x ∈ X   and   T ∈ { 1 , 2 , … }   are given.



The following result was obtained in [7].



Theorem 1.

The following properties are equivalent:



(1) If a sequence     {  x t  }   t = − ∞  ∞  ⊂ X  ,    x  t + 1   ∈ a  (  x t  )    and   ϕ  (  x  t + 1   )  = ϕ  (  x t  )    for every integer t, then


     {  x t  }   t = − ∞  ∞  ⊂ Ω  ( a )  .   











(2) For every positive number ϵ there exists an integer   T ( ϵ ) ≥ 1   such that for every trajectory     {  x t  }   t = 0  ∞  ⊂ X   which satisfies   ϕ  (  x t  )  = ϕ  (  x  t + 1   )    for every nonnegative integer t the relation   ρ (  x t  , Ω  ( a )  ) ≤ ϵ   is valid for every integer   t ≥ T ( ϵ )  .





Put


  ∥ ϕ ∥ = sup { | ϕ ( z ) | :  z ∈ X } .  











We denote by Card  ( A )   the cardinality of a set A and suppose that the sum over the empty set is zero.



In this paper, we establish a weak version of the turnpike property which hold for all trajectories of our dynamical system which are of a sufficient length and which are not necessarily approximate solutions of the problem above. This result as well as the turnpike results of [7] is usually true for models of economic growth which are prototypes of our dynamical system [1,8,9].



Namely, we prove the following result.



Theorem 2.

Let property (1) of Theorem 1 hold and let ϵ be a positive number. Then there exists an integer   L ≥ 1   such that for every natural number   T > L   and every trajectory    {  x t  }   t = 0  T   the inequality


   C a r d  (  { t ∈  { 0 , … , T }  :  ρ  (  x t  , Ω  ( a )  )  > ϵ }  ) ≤ L  








is valid.





This result is proved in Section 3. Its proof is based on an auxiliary result which is proved in Section 2.



Assume that    {  x t  }   t = 0  ∞   is a trajectory. By (3), there exists


  c =  lim  t → ∞   ϕ  (  x t  )  .  











Evidently, the sequence    {  x t  }   t = 0  ∞   converges to the set   Ω ∩  ϕ  − 1    ( c )   . This fact is well-know in the dynamical systems theory as LaSalle’s invariance principle [10,11,12,13]. In the present paper, we are interested in the structure of trajectories on finite intervals of a sufficiently large length and their turnpike property established in Theorem 1.2, which was not considered in [10,11,12,13].



It should be mentioned that turnpike properties are well known in mathematical economics. The term was first coined by Samuelson in 1948 (see [14]), where he showed that an efficient expanding economy would spend most of the time in the vicinity of a balanced equilibrium path (also called a von Neumann path and a turnpike). This property was further investigated for optimal trajectories of models of economic dynamics. See, for example, [2,8,9] and the references mentioned there. Recently it was shown that the turnpike phenomenon holds for many important classes of problems arising in various areas of research [15,16,17,18,19,20,21,22,23]. For related infinite horizon problems see [9,24,25,26,27,28,29,30,31].




2. An Auxiliary Result


Lemma 1.

Let property (1) of Theorem 1 hold and ϵ be a positive number. Then there exist a positive number δ and an integer   L ≥ 1   such that for every natural number   T > 2 L   and every trajectory    {  x t  }   t = 0  T   satisfying


  ϕ  (  x 0  )  ≤ ϕ  (  x T  )  + δ  








the inequality


  ρ (  x t  , Ω  ( a )  ) ≤ ϵ ,  t = L , … , T − L  








is valid.





Proof. 

Assume the contrary. Then for every integer   n ≥ 1   there are a natural number    T n  > 2 n   and a trajectory    {  x t  ( n )   }   t = 0   T n    which satisfy


  ϕ  (  x 0  ( n )   )  ≤ ϕ  (  x   T n    ( n )   )  + 1 / n ,   



(4)






  max { ρ  (  x t  ( n )   , Ω  ( a )  )  :  t = n , … ,  T n  − n } > ϵ .   



(5)







By of (5), for every   n ∈ { 1 , 2 , … }   there is


   S n  ∈  { n , … ,  T n  − n }    



(6)




for which


  ρ (  x   S n    ( n )   , Ω  ( a )  ) > ϵ .   



(7)







Assume that   n ∈ { 1 , 2 , … }  . Set


   y t  ( n )   =  x  t +  S n    ( n )   ,  t = −  S n  , … ,  T n  −  S n  .   



(8)







In view of (8),    {  y t  ( n )   }   t = −  S n     T n  −  S n     is a trajectory. By (4) and (8),


  ϕ  (  y   T n  −  S n    ( n )   )  − ϕ  (  y  −  S n    ( n )   )  = ϕ  (  x   T n    ( n )   )  − ϕ  (  x 0  ( n )   )  ≥ − 1 / n .   



(9)







Equations (3) and (9) imply that for every integer   t ∈ { −  S n  , … ,  T n  −  S n  − 1 }  , we have


  ϕ  (  y  t + 1   ( n )   )  − ϕ  (  y  t   ( n )   )  ≥ ϕ  (  y   T n  −  S n    ( n )   )  − ϕ  (  y  −  S n    ( n )   )  ≥ − 1 / n .   



(10)







Equations (7) and (8) imply that


  ρ  (  y 0  ( n )   , Ω  ( a )  )  = ρ  (  x   S n    ( n )   , Ω  ( a )  )  > ϵ .   



(11)







Clearly, there is a strictly increasing sequence of positive integers    {  n j  }   j = 1  ∞   such that for every integer t there exists


   y t  =  lim  j → ∞    y t  (  n j  )   .   



(12)







By Equations (11) and (12),


  ρ (  y 0  , Ω  ( a )  ) ≥ ϵ .   



(13)







By (12) and the closedness of the graph of a, we have


   y  t + 1   ∈ a  (  y t  )   for all integers  t .   



(14)







By (10) and (12), for all integers t,


  ϕ  (  y  t + 1   )  − ϕ  (  y t  )  =  lim  j → ∞   ϕ  (  y  t + 1   (  n j  )   )  −  lim  j → ∞   ϕ  (  y  t   (  n j  )   )  ≥  lim  j → ∞    ( −  n j  − 1   )  = 0 .  











Combining with (3) this implies that


  ϕ  (  y  t + 1   )  = ϕ  (  y t  )   for all integers  t .   



(15)







Property (1) of Theorem 1, (14), (15) imply the inclusion


   y t  ∈ Ω  ( a )   








for every integer t. This inclusion contradicts Equation (13). The contradiction we have reached completes the proof of Lemma 1. □






3. Proof of Theorem 2


Lemma 1 implies that there are a positive number   δ < ϵ   and    L 0  ∈  { 1 , 2 , … }    for which the following property holds:



(a) for every integer   T > 2  L 0    and every trajectory    {  x t  }   t = 0  T   satisfying


  ϕ  (  x 0  )  ≤ ϕ  (  x T  )  + δ  








we have


  ρ  (  x t  , Ω  ( a )  )  ≤ ϵ ,  t =  L 0  , … , T −  L 0  .  











Choose an integer


  L > 2  L 0  + 2 +  ( 4  L 0  + 7 )   ( 1 + 2   δ  − 1    ∥ ϕ ∥ ) .    



(16)







Suppose that   T > L   is a natural number and that a sequence    {  x t  }   t = 0  T   is a trajectory. By induction we define a strictly increasing finite sequence    t i  ∈  { 0 , … , T }   ,   i = 0 , … , q  . Set


   t 0  = 0 .   



(17)







If


  ϕ  (  x T  )  ≥ ϕ  (  x 0  )  − δ ,  








then set


   t 1  = T  








and complete to construct the sequence.



Assume that


  ϕ  (  x T  )  < ϕ  (  x 0  )  − δ .  











Evidently, there is an integer    t 1  ∈  (  t 0  , T ]    satisfying


  ϕ  (  x  t 1   )  < ϕ  (  x 0  )  − δ   



(18)




and that if an integer S satisfies


   t 0  < S <  t 1  ,  








then


  ϕ  (  x S  )  ≥ ϕ  (  x 0  )  − δ .   



(19)







If    t 1  = T  , then we complete to construct the sequence.



Assume that   k ∈ { 1 , 2 , … }   and that we defined a strictly increasing sequence    t 0  , … ,  t k  ∈  { 0 , … }    such that


   t 0  = 0 ,   t k  ≤ T  








and that for each   i ∈ { 0 , … , k − 1 }  ,


  ϕ  (  x  t  i + 1    )  < ϕ  (  x  t i   )  − δ  








and if an integer S satisfies    t i  < S <  t  i + 1    , then


  ϕ  (  x S  )  ≥ ϕ  (  x  t i   )  − δ .  








(In view of (18) and (19), the assumption is true with   k = 1  ).



If    t k  = T ,   then we complete to construct the sequence. Assume that    t k  < T  . If


  ϕ  (  x T  )  ≥ ϕ  (  x  t k   )  − δ ,  








then we set    t  k + 1   = T   and complete to construct the sequenced.



Assume that


  ϕ  (  x T  )  < ϕ  (  x  t k   )  − δ .   



(20)







Evidently, there is a natural number


   t  k + 1   ∈  (  t k  , T ]   








for which


  ϕ  (  x  t  k + 1    )  < ϕ  (  x  t k   )  − δ  








and that if an integer S satisfies


   t k  < S <  t  k + 1   ,  








then


  ϕ  (  x S  )  ≥ ϕ  (  x  t k   )  − δ .  











Evidently, the assumption made for k is true for   k + 1   too. Therefore by induction, we constructed the strictly increasing finite sequence of integers    t i  ∈  [ 0 , T ]   ,   i = 0 , … , q   such that


   t 0  = 0 ,   t q  = T  








and that for every i satisfying   0 ≤ i < q − 1  ,


  ϕ  (  x  t  i + 1    )  < ϕ  (  x  t i   )  − δ   



(21)




and for each   i ∈ { 0 , … , q − 1 }   and each integer S satisfies    t i  < S <  t  i + 1    , we have


  ϕ  (  x S  )  ≥ ϕ  (  x  t i   )  − δ .   



(22)







By (21),


   2 ∥ ϕ ∥  ≥ ϕ  (  x  t 0   )  − ϕ  (  x  t  q − 1    )   










  ∑  { ϕ  (  x  t i   )  − ϕ  (  x  t  i + 1    )  :  i  is an integer  ,  0 ≤ i ≤ q − 2 }  ≥ δ  ( q − 1 )   








and


  q ≤ 1 + 2  δ  − 1    ∥ ϕ ∥  .   



(23)







Set


  E = { i ∈  { 0 , … , q − 1 }  :   t  i + 1   −  t i  ≥ 2  L 0  + 4 } .   



(24)







Let


  i ∈ E .  



(25)







By (24) and (25),


   t  i + 1   − 1 −  t i  ≥ 2  L 0  + 3 .   



(26)







Equations (22) and (26) imply that


  ϕ  (  x   t  i + 1   − 1   )  ≥ ϕ  (  x  t i   )  − δ .   



(27)







Equations (26), (27) and property (a) applied to the program    {  x t  }   t =  t i     t  i + 1   − 1    imply that


  ρ  (  x t  , Ω  ( a )  )  ≤ ϵ ,  t =  t i  +  L 0  , … ,  t  i + 1   − 1 −  L 0  .   



(28)







Equation (28) implies that


  { t ∈  { 0 , … , T }  :  ρ  (  x t  , Ω  ( a )  )  > ϵ }  










  ⊂ ∪ {  {  t i  , … ,  t  i + 1   }  :  i ∈  { 0 , … , q − 1 }  \ E }  










  ∪  {  {  t i  , … ,  t i  +  L 0  − 1 }  ∪  {  t  i + 1   −  L 0  , … ,  t  i + 1   }  :  i ∈ E }  .   



(29)







By (23), (24) and (29),


   C a r d  (  { t ∈  { 0 , … , T }  :  ρ  (  x t  , Ω  ( a )  )  > ϵ }  )  










  ≤ q  ( 2  L 0  + 5 )  +  ( 2  L 0  + 2 )  q = q  ( 4  L 0  + 7 )   










   ( 4  L 0  + 7 )   ( 1 + 2   δ  − 1    ∥ ϕ ∥ )  ≤ L .  











Theorem 2 is proved.
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