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Abstract: Improving and maintaining cooperation are fundamental issues for any project to be
time-persistent, and sanctioning free riders may be the most applied method to achieve it. However,
the application of sanctions differs from one group (project or institution) to another. We propose
an optional, public good game model where a randomly selected set of the free riders is punished.
To this end, we introduce a parameter that establishes the portion of free riders sanctioned with
the purpose to control the population state evolution in the game. This parameter modifies the
phase portrait of the system, and we show that, when the parameter surpasses a threshold, the full
cooperation equilibrium point becomes a stable global attractor. Hence, we demonstrate that the
fractional approach improves cooperation while reducing the sanctioning cost.

Keywords: evolutionary game theory; lyapunov stability; optional public good game; random
punishment; stability perturbation

1. Introduction

Improving cooperation is a fundamental issue in human activities. The emergence and
evolution of cooperation have been studied in life and social science; for instance, biologists
have vastly studied altruism [1–3], and economists have studied social dilemmas [4,5].
In many cases, this problem has been modeled by using game theory [6,7] and, lately,
with the development of evolutionary game theory [8] by using evolutionary dynamics
models [9–11].

In the literature, two main mechanisms that affect cooperation are found: incen-
tives and abstention. Incentives are known to improve the rate of cooperative behav-
ior in a group [12–17], while abstention to participate in a project is useful to maintain
cooperation [18,19]. However, incentives are expensive; for this reason, a punishment
system is a public good itself [12].

In this paper, we consider improving cooperation by sanctioning only a fraction of
the free riders, denominated from here onwards, as fractional punishment. This approach
seeks to reduce the number of free riders while minimizing the cost of the sanctioning
system. The punishment is built as an extension of the optional public good game model
presented in [18].

Therefore, the optional public good game that will be analyzed in this paper consists
of a set of randomly selected individuals from the population who shares an institutional
service. Each of the individuals decides among three strategies: refuse to play, decide to
play and contribute to the common pool (pay for the service), and decide to play but do
not contribute (use the service but do not pay for it). In the public good game, the benefit
from the common pool is divided equally among all the players. In this work, a fraction of
the free riders are randomly selected, and their payoff is reduced to zero.
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Sanctioning System

In public good games, the two well-studied forms of sanctioning free riders are peer
punishment and pool punishment [20]. In peer punishment, after the game, an individual
that contributed (a cooperator) can decide to use part of its payoff to sanction all the free
riders in the population. On the contrary, pool punishment is defined before the game;
each cooperator must decide to contribute or not to a second pool that will be later on used
to sanction the free riders.

A cooperator that is willing to sanction free riders plays a punisher strategy. A
punisher has to contribute to the game and to the sanctioning system. A cooperator that
decides not to sanction free riders becomes themselves a free rider for the sanctioning
system (called second-order free riders). With peer punishment, the cost for a small number
of punishers in a group with mostly defectors prevents the punishers from prospering;
conversely, in a group without defectors, cooperators and punishers have the same payoff.
Therefore, punishers tend to disappear, allowing defectors space to invade the population.
With pool punishment, this cannot occur since the punishers must contribute ex ante to
the game. Pool punishment, however, is a fixed cost that exists even when there are no
defectors in the population [20,21].

Both sanctioning methods were studied and compared in theoretical models and
experiments [13,20,22,23]. For instance, it was found that pool punishment can stabilize
cooperation if second-order free riders are also punished [21,22]. In addition, the second-
order free-riding problem was analyzed in [23–25].

Peer and pool punishment are rarely applied in their pure form in practical situations.
More recently, some authors have explored different ways to penalize free riders often
inspired in real-life situations. In [26], the sanction that a defector has to pay is a fixed
amount. Avoiding second-order free riding by introducing an entrance fee was analyzed
in [15]. A set of the cooperators was randomly selected to perform as punishers in [27], the
cost of punishing was shared between cooperators in [28], and a ceiling payoff for defectors
was introduced to promote cooperation in [29,30].

In this work, we assume that the sanctions have to be implemented with the fee
collected periodically in a fee pool. This is observed as a common practice in institutions
that provide a service. Within this framework, second-order free-riding does not occur since
those who pay for the service implicitly are paying for the sanctioning system. However,
this also implies that the profit that each player receives is reduced, given that a part of the
collected resources must be used to penalize free riders.

The institution decides the fee-pool portion that will be used for each expense: pro-
viding the service and sanctioning free riders. The sanctioning system may not be a fixed
cost; when free-riding decreases, the fee-pool amount required to sanction free riders will
also decrease. Besides, the institution may limit sanctioning expenses by penalizing only a
fraction of the free riders.

The aim of this paper consists in modeling mathematically a fractional punishment
mechanism commonly applied in real situations to reduce expenses. We prove that frac-
tional punishment improves cooperation and reduces the cost of punishing, and full
cooperation can be achieved when the fraction of sanctioned defectors surpasses a mini-
mum. Moreover, depending on the size of the punished fraction, the cooperation can be
attained faster. This means that, by adjusting the parameter, the fractional punishment
modifies the nature of the equilibrium points of the system and the phase portrait itself.
With this analysis, decision-makers of the institutions can produce scenarios to foresee the
effect of the fraction sanctioned in the improvement of the cooperation.

This article is organized as follows: in Section 2, the proposed model and dynamic,
as well as the definition of the payoff, are presented. In Section 3, the system is analyzed,
and the equilibrium points are characterized as a function of the punishment parameter
denoted by d. The implications of the model, along with the penalization of a limited set
of the free riders, are discussed in Section 4, while some concluding remarks are finally
presented in Section 5.
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2. Materials and Methods

Consider a large population where from time to time n randomly selected individuals
are offered to play in a public good game (n = nx + ny + nz; n ≥ 2). Those who refuse
to play are known in the game as loners (nz). The loners have a payoff σ that is constant
and independent of the game. Those who decide to play the public good game will
receive their payoff from the game (s = nx + ny). In the game, each player must decide
if either contributes or not with a positive amount c to the common pool. Individuals
who contribute are cooperators (nx), and those who do not are defectors (ny). The total
contribution to the common pool (obtained from cooperators) is then multiplied by a factor
r (1 < r < n); in a public good game, the amount in the common pool is distributed equally
between all the players, regardless of whether they are cooperators or defectors. Instead, in
this work, a randomly selected set of defectors will be sanctioned reducing their payoff
to zero.

For modeling the population dynamics, in this paper and following [11], every indi-
vidual in the population follows a strategy i (for i = x, y, z) from the three options available:
cooperators x, defectors y, and loners z.

Let 0 ≤ x(t), y(t), and z(t) ≤ 1 be the frequency of each of the corresponding available
strategies of the population at a specific time t. To simplify the notation, we drop henceforth
the time dependency t and simply write x, y, and z. The frequency distribution of the
whole population at a specific time t is defined by the state [x, y, z], which belongs to the
unit simplex S3 given by

S3 =
{
[x, y, z] ∈ R3 : x, y, z ≥ 0 and x + y + z = 1

}
. (1)

The interior of S3 is defined as the set of points where all strategies are present (i.e., x >
0, y > 0, and z > 0) and the boundary of S3 is defined as the set of points that are not interior
points. The boundary of the simplex comprises vertices and borders. The vertices x, y, and
z represent a homogeneous population of cooperators, defectors, and loners, respectively.
In the borders, xy, yz, and zx, one strategy is absent.

Assuming a large enough population in which generations blend continuously into
each other, each strategy evolves with a rate that expresses its evolutionary success follow-
ing the replicator equation 

ẋ = x(px− p̄)
ẏ = y

(
py− p̄

)
ż = z(pz− p̄)

(2)

with x(0), y(0), and z(0) as initial conditions in the simplex S3, with p̄ = xpx+ypy+zpz,
where pi is the payoff of the ith strategy, and p̄ is the average payoff of the population.

It is important to remark that the simplex S3 remains invariant under the flow of
Equation (2) (see [11,31]); hence, if the state [x, y, z] ∈ S3 at t = 0, then [x, y, z] ∈ S3 ∀t, and
it is endowed with the standard norm ‖ · ‖2. Notice that, in Expression (2), an important
behavior relies on the payoff pi of the ith strategy with respect to the average population
payoff p̄ in the sense that, if pi > p̄, then the proportion of the i strategy increases, otherwise
it decreases. Next, the payoff of each strategy is defined.

Considering a group of nx cooperators, ny defectors, and nz loners and assuming that
each contribution is equal (c = 1), the payoffs of each strategy in an optional public good
game without punishment is defined by [18,32]:

px = r
nx

s
− 1, py = r

nx

s
, pz = σ, (3)

where the parameters r, σ, and n are considered under the following assumptions:

Assumption 1. The interest rate on the common pool r satisfies 1 < r < n.
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If 1 < r, i.e., if all individuals cooperate, they are better off than if all defects. If r < n,
each individual is better off defecting than cooperating [18].

Assumption 2. The payoff of the loner strategy σ satisfies 0 < σ < r− 1.

This means that the revenue of a cooperator in a group of cooperators (profiting (r− 1)
each) is better off than loners that receive σ, but loners are better off than a defector in a
group of defectors, where the payoff is equal to 0 [18].

To compute the payoff of a player in a group, consider that this group composition
depends on the frequencies of all strategies in the population. In the sample group of size
n, where s (s ≤ n) is the number of those who will participate (cooperators and defectors),
and n− s is those who refuse (loners), if s = 1, the game cannot take place, and the payoff
will be equal to a loner payoff regardless of the strategy of the player, and this happens
with a probability zn−1. If s ≥ 2, an individual that agrees to play has s− 1 coplayers from
the n− 1 sample given by the probability [18](

n−1
s−1

)
(1−z)s−1zn−s. (4)

Furthermore, the probability that j of these s−1 coplayers will be cooperators and the other
s−1−j defectors is [18] (

s−1
j

)(
x

x+y

)j( y
x+y

)s−1−j
. (5)

In this work, we consider that only a fraction d (0 ≤ d ≤ 1) of the defectors will be
punished, modifying the payoff presented in (3). In particular, we assume that this set of
randomly selected defectors will have their corresponding payoff reduced to 0, while the
remaining free riders will obtain the normal payoff. Therefore, a defector not knowing if
they will be punished or not, in the presence of j cooperators, will have a payoff equal to

py = (1−d)
(

rj
s

)
+d0. (6)

The expected payoff for a defector in a group of s (s = 2, ..., n) players over all possible
numbers of cooperators is

(1−d)
r
s

s−1

∑
j=0

j
(

s−1
j

)(
x

x+y

)j( y
x+y

)s−1−j
= (1−d)

r
s
(s−1)

x
x+y

.

Taking into consideration that a defector can be alone (s = 1) or in a group (s ≥ 2) and that
both the number or participants (s) and cooperators (j) in the group are random variables,
the average payoff for a defector over all possible numbers of participants is given by

py(x, z, d) = σzn−1+(1−d)

(
r

x
1−z

n

∑
s=1

(
n−1
s−1

)
(1−z)s−1zn−s

(
1−1

s

))
.

Observing that (n−1
s−1) = (n

s)
s
n , then the expression for py can be rewritten as [18]

py(x, z, d) = σzn−1+(1−d)

(
r

x
1−z

(
1− 1

n

n

∑
s=1

(
n
s

)
(1−z)s−1zn−s

))

= σzn−1+(1−d)
(

r
x

1−z

(
1− 1

n
1−zn

(1−z)

))
.
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For the sake of simplicity, we define an auxiliary function a := (1− zn)/(n(1− z)). The
payoff then finally takes the following form:

py(x, z, d) = σzn−1 + (1− d)r
x

1−z
(1− a). (7)

A similar analysis can be performed to obtain the expected payoff of a cooperator in
the population. To distinguish the contribution from one cooperator to the contribution of
the other cooperators in the group, the payoff can be rewritten:

px =

(
r(nx−1)

n
+

r
n

)
−1.

where nx−1 (the remaining cooperators in the game) is defined as j.

px =

(
rj
n
+

r
n

)
−1 =

(
r(j+1)

n

)
−1.

Therefore, the expected payoff for a cooperator in a group of s (s = 2, ..., n) players over all
possible numbers of cooperators is

s−1

∑
j=0

(
s−1

j

)( r
s
(j+1)−1

)( x
x+y

)j( y
x+y

)s−1−j
=

r
s
(s−1)

x
1−z

+
r
s
−1.

If the cooperator is the only one that wants to play, that is, if s = 1, the payoff is σzn−1. If
(s ≥ 2), the payoff depends on the number or participants (s) in the group. Hence, the
expected payoff for a cooperator is given by

px(x, z) = σzn−1+
n

∑
s=2

(
n−1
s−1

)
(1−z)s−1zn−s

(
r
s
(s−1)

x
1−z

+
r
s
−1
)

px(x, z) = σzn−1+r
x

1−z

(
n

∑
s=2

(
n−1
s−1

)
(1−z)s−1zn−s

)
−r

x
1− z

(
n

∑
s=2

(
n− 1
s− 1

)
(1− z)s−1zn−s 1

s

)

+r

(
n

∑
s=2

(
n−1
s−1

)
(1−z)s−1zn−s 1

s

)
−

n

∑
s=2

(
n−1
s−1

)
(1−z)s−1zn−s.

Observing that (n−1
s−1) = (n

s)
s
n , we obtain

px(x, z) = σzn−1+r
x

1−z
(1−zn−1)−r

x
1−z

(
1
n
(1−zn)

(1−z)
−zn−1

)
+r
(

1
n
(1−zn)

(1−z)
−zn−1

)
−1+zn−1.

Rearranging and using, as before, the auxiliary function a, we obtain

px(x, z) = σzn−1+ra+r
x

1−z
(1−a)+(1−r)zn−1−1. (8)

The difference in payoff between defector and cooperator strategies shows the relative
benefit (or drawback) of defectors over cooperators, and it is essential to characterize the
solution orbits. This difference is given by

g(x, z, d) :=py−px = 1+(r−1)zn−1− r
n
(1−zn)

(1−z)
−dr

x
(1−z)

(
1− 1

n
1−zn

(1−z)

)
:=1 + (r− 1)zn−1 − ra− dr

x
(1−z)

(1− a).
(9)
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In order to highlight the effect of the parameter d, Expression (9) is rewritten as

g(x, z, d) := m(z)−dxh(z), (10)

where m(z) = 1+(r−1)zn−1−ra and h(z) = r
1−z (1−a). Observe that, when d = 0, then

g(x, z, d) = m(z), and the free system introduced in [18] is recovered.

3. Results

In this section, we analyze the system (2). To help the reader, and at the risk of
oversimplification, before starting the analysis, we outline the effect of the parameter d on
the phase portrait of the system (2). This is presented in Figure 1 for increasing values of d.
Note that this system has three obvious equilibrium points, which are the vertices of the
simplex: (i) (x̂, ŷ, ẑ) = (1, 0, 0) (ii) (x̂, ŷ, ẑ) = (0, 1, 0), and (iii) (x̂, ŷ, ẑ) = (0, 0, 1). Another
equilibrium point exists when all strategies have the same payoff px = py = pz = p̄, which
is an interior equilibrium point (denoted as q1). Later, we show that another equilibrium
point arises when incrementing the value of d (this point is denoted by q2).

For d = 0 (no punishment), the vertices (x, y, z) are saddle points and the interior
equilibrium (q1) is a center (see Figure 1a), which is proved in [18]. The interesting effect
of the punishment parameter d consists in the fact that the interior equilibrium point
changes its stability (see Figure 1b). Furthermore, when d is large enough (d1), an interior
equilibrium point arises (q2) in the border xy (see Figure 1c). As a consequence, the nature
of the equilibrium in the vertex x also changes. As d increases, the equilibrium point
q1 shifts to the border xy, and for a value d2, both equilibrium points (q1 and q2) merge
into a new equilibrium point denoted by q3 (see Figure 1e). The nature of each of the
aforementioned fixed points is studied in the next subsections.

q1

x

yz

q1

x

yz

q1

q2

x

yz

(a) (b) (c)

q1

q2

x

yz

q3q3

x

yz

q3

x

yz

(d) (e) (f)

Figure 1. Phase diagram of the system when d increases. Parameters N = 5, r = 3, and σ = 1.
For these values, d1 = 0.16667 and d2 = 0.2857. Notice that q1, q2, and q3 are equilibrium points.
(a) d = 0, (b) d = 0.1, (c) d = d1, (d) d = 0.25, (e) d = d2, and (f) d = 0.99.

For the analysis, we use the following sequence. In Section 3.1, the boundary of the
simplex, particularly the border xy, where a new equilibrium point arises for a sufficiently
large d, is analyzed. In Section 3.2, the interior of the simplex is analyzed. First, in
Sections 3.2.1 and 3.2.2, the effect of d in the position of the interior equilibrium point is
considered, while in Section 3.2.3, the stability of the interior equilibrium point is analyzed.
The stability of the equilibrium in the vertex x is analyzed in Section 3.3. A summary is
presented in Section 3.4.
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3.1. Boundary of the Simplex

In the borders, System (2) reduces to two equations. Next, we present the analysis of
System (2) restricted to the boundary of S3.

3.1.1. Border xy

This border represents a system with cooperators and defectors, where the game is
compulsory. Given that, in this border, x + y = 1, the dynamics can be analyzed with the
following equation:

ẋ = −x(1− x)g(x, d) = −x(1− x)(1− (r/n)− drx(1− 1/n)). (11)

The equilibrium points are x̂ = 1 (ŷ = 0), x̂ = 0 (ŷ = 1), and x̂ = (n− r)/(r(n− 1)d). The
qualitative characterization of the aforementioned equilibrium points were studied in [33]
with the following lemma (see the proof in Appendix A.1).

Lemma 1. Let us consider Equation (11) modeling the border xy where x denotes the cooperators,
y the defectors, x ≥ 0, y ≥ 0, and x + y = 1. If the fraction of defectors being sanctioned is
denoted by d, with 0 ≤ d ≤ 1 and defining d1 := (n− r)/(r(n− 1)), then (1) for 0 ≤ d ≤ 1, the
equilibrium point x̂ = 0 is locally asymptotically stable, (2) x̂ = 1 is locally asymptotically stable
for d1 < d ≤ 1, and (3) the point x̂ = (n− r)/(r(n− 1)d), which exists in the interior of the
border for d1 < d, is an unstable equilibrium point.

The possible outcomes of the system presented in Lemma 3.1 are sketched in Figure 2.
It is important to mention the strong dependence of the characterization of the equilibrium
points on the function g(x, d). If 0≤ d < d1, then g(x, d) 6= 0 for all values of x, and the two
equilibrium points are x̂ = 0 and x̂ = 1. In such a case, the x̂ = 1 is globally unstable, and
x̂ = 0 is globally asymptotically stable (see Figure 2a). For d1 < d, an unstable equilibrium
point x̃ arises in the interior of the border (see Figure 2b). If d = (n− r)/r(n− 1)x, then
g(x, d) = 0, the corresponding state x is the equilibrium point x̃.

x̂ = 1 ŷ = 1 x̂ = 1 x̃ ŷ = 1

(a) (b)

Figure 2. Stability of equilibrium points with different values of d: a black dot represents a stable
point, and a white dot represents an unstable point. (a) With d < d1, the x̂ = 1 is unstable and ŷ = 1
is asymptotically stable. (b) If d1 < d ≤ 1, an unstable equilibrium x̂ = (n− r)/r(n− 1)d, denoted
by x̃, appears, changing the stability of x̂ = 1, which becomes an stable equilibrium point.

3.1.2. Border zx

This border represents a population of cooperators and loners. When x + z = 1, it is
sufficient to analyze the equation ẋ = ((r− 1)− σ)x(1− x)

(
1− zn−1) to characterize the

system. Since (r− 1) 6= σ, the equilibrium points are x̂ = 1 (ẑ = 0) and x̂ = 0 (ẑ = 1). When
(r− 1) = σ, the system remains constant, and every point in the border is an equilibrium
point, regardless of the value of z. The Jacobian of ẋ has the following form:

J(x, z) = (1− 2x)
(
((r− 1)− σ)(1− zn−1)

)
(12)

Evaluating (12) shows that the equilibrium point x̂ = 1 (x̂ = 0) is stable (unstable) if
(r − 1) > σ. The dynamic of the border goes from only loners in the population to full
cooperation. On the contrary, if (r− 1) < σ, the equilibrium point x̂ = 1 (x̂ = 0) is unstable
(stable) and the system reverses direction; it goes from full cooperation to a population
of loners.
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3.1.3. Border yz

This border represents a population composed of defectors and loners. Since y+ z = 1,
the system can be completely represented by ẏ = y(1− y)σ(zn−1 − 1). When σ 6= 0, the
equilibrium points are ŷ = 1 (ẑ = 0) and ŷ = 0 (ẑ = 1). When σ = 0, the system remains
constant, and every point in the border is an equilibrium point, regardless of the value of z.
The Jacobian of ẏ has the following form:

J(y, z) = (1− 2y)σ(zn−1 − 1) (13)

The equilibrium point ŷ = 1 (ŷ = 0) is unstable (stable) if σ > 0. The dynamic in the border
goes from full defection to a population of loners. Conversely, if σ < 0, ŷ = 1 (ŷ = 0) is
stable (unstable) and the system reverses direction, going from only loners to full defection.

Observe that the parameter d does not affect the borders zx and yz. Furthermore,
since the game setup defines 0 < σ < r− 1, the dynamic of the border yz goes from full
defection to only loners in the population, while the dynamic of the border xz goes from
only loners in the population to full cooperation.

3.2. Interior of the Simplex

To determine and analyze the interior equilibrium point, a new variable f := x/(x+ y)
is defined [18]. This variable represents the fraction of cooperators among the players
in the game and allows one to define a bijection T : (x, y, z) → ( f , z), provided that the
restriction x + y + z = 1 is satisfied. Hence, the system (2) can be rewritten in a more
convenient reduced form [18]:{

ḟ = − f (1− f )g( f , z, d)
ż = z(σ− p̄( f , z))

(14)

where ( f , z) ∈ [0, 1]× [0, 1]. The function g( f , z, d) is obtained replacing x = f (1− z) in
Expression (10), so g( f , z, d) = 1 + (r− 1)zn−1 − ra− dr f (1− a). To obtain a more explicit
expression than (14), consider that y = 1 − x − z, and f = x/(1 − z). The system of
Equation (14) can then be rewritten in the following form:{

ḟ = − f (1− f )g( f , z, d)
ż = z(1− z)

(
σ + f g( f , z, d)− py( f , z, d)

)
.

(15)

For each time t, d parametrizes the solution ( f , z) of the system of Equation (15).
An equilibrium point of System (15) exists in the interior of the simplex if the following
expressions are satisfied:

g( f , z, d) = 0 (16a)

σ− f g( f , z, d)− σzn−1 − (1− d)r f (1− a) = 0, (16b)

and since both equations have to be satisfied simultaneously, Equation (16b) is reduced to
σ(1− zn−1)− (1− d)r f (1− a) = 0, so the value of f can be obtained by

f =
σ

(1− d)r
(1− zn−1)

(1− a)
. (17)

By then introducing f in (16a), an equivalent definition for g(·) that depends only on z
and d is obtained:

g̃(z, d) = m(z) + h̃(z, d) (18)

where h̃(z, d) = − d
1−d σ(1 − zn−1) and m(z) = 1 + (r − 1)zn−1 − ra (as introduced in

Expression (10)). Now, from (18), the value of z in the equilibrium, defined as ẑ, can be
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numerically obtained as a function of d. Recalling that a depends only on z (as defined in
Section 2) and denoting â as the expression of a with ẑ, then (16a) and (16b) become{

1 + (r− 1)ẑn−1 − râ− dr f̂ (1− â) = 0
σẑn−1 + (1− d)r f̂ (1− â) = σ

(19)

where f̂ corresponds to the value of f at the equilibrium point associated with ẑ for a d.
Defining an auxiliary variable as b̃ := râ, the above equations take the form of a system of
two equations with two unknowns ( f̂ and b̂), as follows:{

1 + (r− 1)ẑn−1 − b̃− d f̂
(
r− b̃

)
= 0

σẑn−1 + (1− d) f̂
(
r− b̃

)
= σ

(20)

Extracting f̂ = (σ(1− ẑn−1)/((1− d)(r− b̃)) from the second equation and introducing it
in the first equation, b̃ is obtained. Replacing b̃ in the second equation, a new form of f̂ in
the equilibrium is then obtained:

f̂ =
σ

(r− 1) + d(σ− (r− 1))
. (21)

Notice that the interior equilibrium point ( f̂ , ẑ) corresponds in the system (x̂, ŷ, ẑ) to the
equilibrium point in the interior of the simplex S3 given by

(x̂, ŷ, ẑ) =
(σ

α
(1− ẑ), (1− σ

α
)(1− ẑ), ẑ

)
where α = (r − 1) + d(σ − (r − 1)) and the dependence on the parameter d is given
explicitly. To relate both systems, a summary of the equilibrium points with respect to the
variables (x, y, z) and its corresponding ( f , z) are given in Table 1.

Table 1. Equilibrium points relationship between (x̂, ŷ, ẑ) and ( f̂ , ẑ). α = (r− 1) + d(σ− (r− 1)),
β = (N − r)/(r(N − 1)d).

(x̂, ŷ, ẑ) ( f̂ , ẑ)

(x̂, ŷ, ẑ) = (1, 0, 0) ( f̂ , ẑ) = (1, 0)
(x̂, ŷ, ẑ) = (0, 1, 0) ( f̂ , ẑ) = (0, 0)
(x̂, ŷ, ẑ) = (0, 0, 1) ( f̂ , ẑ) = (0, 1)
(x̂, ŷ, ẑ) = ( σ

α (1− ẑ), (1− σ
α )(1− ẑ), ẑ) ( f̂ , ẑ) = ( σ

α , ẑ)
(x̂ = f , ŷ = 1− f , ẑ = 0) ( f̂ , ẑ) = (β, 0)

The first three equilibrium points in Table 1 are the equilibrium points corresponding
to the vertex of S3, the fourth in the interior of the simplex S3, and the fifth in the border
xy. In the next subsections, the effect of d in the equilibrium point will be analyzed. For
that reason, ( f̂ , ẑ) will henceforth be redefined as ( f̂d, ẑd) (for d 6= 0) to distinguish from
the equilibrium when d = 0, which will henceforth be defined as ( f̂0, ẑ0).

Before further analysis, let us define another threshold for the parameter d that will
be used in the following sections. Notice that Expression (18) when z = 0 is reduced to
(1− r/n)− σ(d/1− d), from which d2 = (n− r)/(nσ + n− r) can be obtained.

3.2.1. Effect of d over the Value of z in the Equilibrium

Here, the effect of parameter d on functions g( f , z, d), g̃(z, d), and in ẑ itself is analyzed.
To this end, consider that, for d0 = 0, there is a value of ẑ0 ∈ (0, 1) such that g̃(ẑ0, 0) =
m(ẑ0) = 0 (see Expressions (10) and (18)). We claim that the punishment parameter d, when
d > d0 = 0, displaces the value ẑ0 to another ẑd such that ẑd ≤ ẑ0 with g̃(ẑd, d) = 0. To
corroborate this affirmation about the effect of d, we introduce the following two lemmas.
In all cases, Assumptions 1 and 2 are fulfilled. The prime symbol denotes the derivative of
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the function with respect to its independent variable, for instance, m′(z) = dm(z)
dz . We are

interested in the relationships between g̃(z, d) and g̃(z, 0) = m(z) and between g̃′(z, d) and
m′(z) for a small d > 0 and for a z in the neighborhood of ẑ0 where z > ẑ0.

Lemma 2. Consider ẑ0 ∈ (0, 1) associated to d0 = 0 such that g̃(ẑ0, 0) = m(ẑ0) = 0 . Let
0 < ε << 1 such that µ = ẑ0 + ε, and m(µ), g̃(µ, d), m′(µ), and g̃′(µ, d) are negative. Thus, a)
|g̃(µ, d)| ≥ |m(µ)| and b) |m′(µ)| ≥ |g̃′(µ, d)|.

The effect of the parameter d on the solution ẑd of g̃(z, d) = 0 with respect to the
solution ẑ0 of g̃(ẑ0, d0) = m(ẑ0) = 0 of the free system model is analyzed in the following
lemma (see the proof in Appendix A.3).

Lemma 3. Considering the values of ẑ0 and ẑd associated to d0 = 0 and d > d0 such that
g̃(ẑ0, 0) = m(ẑ0) = 0 and g̃(ẑd, d) = 0; hence, ẑd ≤ ẑ0.

It is important to mention that, due to the value of d considered being small and
the smoothness of m(z) and g̃(z, d), the high order terms in the expansion in (A4) do not
significantly affect the analysis and can be neglected. The results of Lemmas 2 and 3 can be
observed in Figure 3, where the functions m(z) and g̃(z, d) for a d = 0.01 with respect to z
in the interval (0, 1) are presented. The effect of displacing ẑ to the left is observed; i.e., ẑd
with d 6= 0 is smaller than ẑ with d = 0.

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

z

m
g̃

0.4 0.42 0.44 0.46 0.48 0.5

−2

0

2

4

·10−2

z

m
g̃

(a) (b)

Figure 3. (a) m(z) and g̃(z, d) with d = 0.01. In the whole interval z ∈ (0, 1), (b) Zoom in the
neighborhood of m(z) = 0 and g̃(z, d) = 0. It can be observed that d decreases the value of ẑ in the
equilibria. It shows how d shifts the equilibrium point ẑ to the border of z = 0. Parameters: n = 5,
r = 3, and σ = 1.

Figure 4 shows the evolution of ẑd with respect to several values of the parameter d
(increasing values) remaining constant n, r, and σ. It can be observed that the main effect of
the parameter d is precisely to displace ẑ to the left from its initial position. This property
is exploited for the remainder of the article.
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0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

z

g̃

d = 0
d = 0.1

d = 0.1667
d = 0.2857
d = 0.4

Figure 4. Graph of g̃ with several values of d. Observe that, if z = 0, g̃ = 0 when d = d2(0.2857).
Parameters: n = 5, r = 3, and σ = 1.

3.2.2. Effect of d over the Value of f in the Equilibrium

Here, the effect of the parameter d on the value of f in the equilibrium is analyzed.
Recall that, at the interior equilibrium point, f̂d = σ

(r−1)+d(σ−(r−1)) . Furthermore, due to
game setup, σ < (r− 1) (see [18]). As a consequence, we have the expression

(r− 1) + d(σ− (r− 1)) < (r− 1) (22)

for all 0 < d < 1. This means that, for a 0 ≤ d < d̃ and its corresponding f̂0, f̂d, and f̂d̃,
respectively, the following relationship holds:

f̂0 =
σ

(r− 1)
≤ f̂d =

σ

(r− 1) + d(σ− (r− 1))
< f̂d̃ =

σ

(r− 1) + d̃(σ− (r− 1))
. (23)

Therefore, the parameter d increments the equilibrium value f̂ or, equivalently, improves
the level of cooperation. Figure 5 shows the changes in the value of f̂ and ẑ when d
increases its value from 0 to d2. It can be seen how f̂ increases while ẑ decreases.

0.5 0.52 0.54 0.56 0.58

0

0.1

0.2

0.3

0.4

0.5 d = 0

d = d2

f̂

ẑ

Figure 5. Interior equilibrium point ( f̂ and ẑ) for increasing values of d. Observe that, when d
increases, the value of f̂ increases, and the value of ẑ decreases. Parameters: n = 5, r = 3, σ = 1, and
d2 = (n− r)/(nσ + n− r).

3.2.3. Effect of d in the Interior Equilibrium Point

Using the definition for a (introduced in (7)), Equation (14) (or equivalently Equation (15))
can be rewritten as follows:

ḟ = − f (1− f ) g( f , z, d)

ż = z(1− z)
((

1− zn−1
)(

σ− f (r− 1)
)
− d f r(1− a)( f − 1)

)
.

(24)
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For simplicity, we will drop the arguments in g( f , z, d) and write simply g. To characterize
the equilibrium point at the interior of the simplex, we consider the Jacobian of System (24),
which has the following form:

J =
(

J11 J12
J21 J22

)
where

J11 = d ḟ /d f = −((1− 2 f )g− f (1− f )dr(1− n)), (25)

J12 = d ḟ /dz = − f (1− f )((n− 1)(r− 1)zn−2 − rn′ + dr f n′), (26)

J21 = dż/d f = z(1− z)((1− r)(1− zn−1)− (1− a)dr(2 f − 1)) (27)

J22 = dż/dz = (1− 2z)((1− zn−1)b− e(1− a)) + z(1− z)(−(n−1)zn−2b− e(−a′)) (28)

with a′ =
(
1− zn − nzn−1(1− z)

)
/
(
n(1− z)2), b = σ− f (r− 1) and e = dr f ( f − 1).

In the interior equilibrium equilibrium point, g = 0 and (1− zn−1)b− e(1− a) = 0.
Evaluating the Jacobian then yields

J =


f (1− f )dr(1− a) − f (1− f )

(
(n− 1)(r− 1)zn−2

−ra′ + dr f a′
)

z(1− z)
(
(1− r)(1− zn−1) z(1− z)

(
−(n− 1)zn−2b

−(1− a)(2dr f − dr)
)

−e(−a′)
)

. (29)

To simplify the analysis, considering the influence of the parameter d, we separate the
Jacobian in two matrices JR and JT of dimension 2× 2 as J = JR + d JT with

JR =

 0 − f (1− f )
(
(n− 1)(r− 1)zn−2 − ra′

)
z(1− z)

(
(1− r)(1− zn−1) −z(1− z)(n− 1)zn−2(σ− f (r− 1))

 (30)

and

JT =

 f (1− f )r(1− a)
)

− f (1− f )
(
r f a′

)
−z(1− z)

(
(1− a)r(2 f − 1)

)
z(1− z)r f (1− a)( f − 1)a′

. (31)

It is important to mention that all the entries of the matrices JR and JT have bounded
derivatives. If d = 0, the Jacobian matrix is reduced to JR. When (30) is evaluated at ( f̂0, ẑ0),
it becomes

JR =

 0 JR12

JR21 0

. (32)

Since f̂0 = σ/(r − 1) (see (21)), JR22 = 0. The term JR21 is negative because r > 1. In
addition, the term JR12 is positive, for ẑ0 ∈ (0, 1) and for the parameters n, σ, and r with
values normally used in the literature. Figure 6a shows the value of JR12 for 0 ≤ z0 ≤ 1 and
particularly the value in the equilibrium ( f̂0, ẑ0).
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ẑ
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1
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′
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Figure 6. (a) Values of JR12 for 0 ≤ z0 ≤ 1 and f̂0 = σ/(r− 1); for ẑ0, the term is positive. (b) Values
of a for 0 ≤ z < 1. (c) Values of a′ for 0 ≤ z < 1. Parameters: n = 5, r = 3, and σ = 1.

The eigenvalues of JR are given by λ2 = JR21 JR12 , observing that JR21 is negative and
JR12 is positive. The eigenvalues of JR are then pure imaginary. This result is important
for the rest of the analysis of the interior equilibrium point when d 6= 0. The fact of the
eigenvalues of J being pure imaginary is not conclusive when the interior equilibrium
point is a center. However, we are assuming here that d = 0, so the system is reduced to the
model in [18], which proves, using a Hamiltonian technique, that the interior equilibrium
point is a center.

Next, we analyze the case of the Jacobian matrix J perturbed by the parameter d. To
this end, we consider that d ≈ 0. It is important to remark the implicit dependence of the
matrices JR and JT on the parameter d.

Theorem 1. Suppose a Jacobian matrix of System (24) denoted by J and decomposed as J = JR + dJT
with entries JRij and JTij for i, j ∈ {1, 2} with bounded derivatives. Suppose also an initial equilib-
rium point ( f̂0, ẑ0) of System (24) that corresponds to the parameter d = 0, and another equilibrium
point for 0 < d denoted by ( f̂d, ẑd). Thus, the Jacobian J, evaluated at ( f̂d, ẑd) with d ≈ 0, has
complex eigenvalues with positive real parts.

Theorem 1 (see the proof in Appendix A.4) shows that, for a small parameter d
(considered positive), the eigenvalues of the Jacobian J of System (24) are complex with
positive real parts when evaluated at the interior equilibrium point ( f̂d, ẑd). This means that
this equilibrium point is an unstable focus; i.e., all solution orbits of System (24) are repelled
from the equilibrium point to the boundaries. This can be observed in Table 2, where some
values of d, the corresponding equilibrium points ( f̂d, ẑd), the entries of the Jacobian J, and
its eigenvalues are shown. For d = 0, the eigenvalues of J are pure imaginary corresponding
to the equilibrium point being a center. This result is consistent with the literature [18].
With small positive values of the parameter d (d = 0.001 and d = 0.01), the eigenvalues
have positive real parts, implying that the corresponding equilibrium point is an unstable
focus in accordance with Theorem 1 (see also Figure 7a). It is important to mention that, for
larger values of the parameter d ( 0 ≤ d < d2), the equilibrium point remains an unstable
focus. Moreover, it is observed that JR22 is positive for 0 < d and JT22 < JT11 , as mentioned
in Theorem 1.

As d increases, the equilibrium point ( f̂d, ẑd) changes its position from the equilibrium
point ( f̂0, ẑ0) with d = 0 in the interior of the simplex towards the border xy by decreasing
ẑd and increasing f̂d (see Sections 3.2.1 and 3.2.2).
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Table 2. Effect of the parameter d on the entries of the Jacobian J evaluated at equilibrium point ( f̂d, ẑd) and its corresponding
eigenvalues. For d = 0, ( f̂d, ẑd) = ( f̂0, ẑ0). Parameters N = 5, r = 3, and σ = 1; ψ = JR22 − ε22 + ε11 and ∆ =

(JR22 − ε22 + ε11)
2 − 4 (JR21 ± ε21)(JR12 + ε12).

d J = JR + d JT ( f̂d, ẑd) λ = 0.5 (ψ)± 0.5
√

∆

d = 0.01
[

0 0.24831
−0.47471 0.00046

]
+ d
[

0.48162 −0.21732
−0.00437 −0.06878

]
(0.5025, 0.4516) λ1 = 0.00210− 0.34182i

λ2 = 0.00210 + 0.34182i

d = 0.001
[

0 0.24688
−0.47454 0.00005

]
+ d
[

0.47778 −0.22112
−0.00044 −0.06996

]
(0.5003, 0.4604) λ1 = 0.00021− 0.34213i

λ2 = 0.00021 + 0.34213i

d = 0
[

0 0.24671
−0.47450 0

]
+ d
[

0.47735 −0.22155
0 −0.07008

]
(0.5, 0.4613) λ1 = −0.34215i

λ2 = +0.34215i

x

yz

x

yz

(a) (b)

Figure 7. Effect of d on the interior equilibrium point. Parameters n = 5, r = 3, and σ = 1, and values
of d as (a) d = 0.1 and (b) d = 0.2. The white dot represents an unstable point.

3.3. The Equilibrium Point (x, y, z) = (1, 0, 0)

This equilibrium represents a homogeneous population composed exclusively of co-
operators. When d = 0, this equilibrium point is a saddle point [19]. Now, we characterize
this equilibrium point for 0 < d and particularly for d1 < d. For simplicity, the system ( f , z)
(see (14)) will be used. As can be seen in Table 1, the equilibrium point (x̂, ŷ, ẑ) = (1, 0, 0)
corresponds to ( f̂ , ẑ) = (1, 0). Evaluating the Jacobian at this equilibrium point is obtained:

J =
[

1− r/n− dr(1− 1/n) 0
0 σ− (r− 1)

]
. (33)

The eigenvalues of (33) are as follows: λ1 = 1− r/n− dr(1− 1/n) and λ2 = (σ− (r −
1)). Notice that λ2 is negative given the condition in the game that 0 < σ < (r − 1)
(Assumption 2) and the choice of d determines the sign of λ1. Recall that d1 = (n −
r)/r(n− 1). Thus, for d < d1, λ1 is positive, and the equilibrium point is unstable (a saddle);
however, if d1 < d, λ1 is negative and the equilibrium point is locally asymptotically stable.

To better understand this equilibrium point and its basin of attraction, let us consider
the relative-entropy function used in [10,34] as a candidate Lyapunov function.
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Theorem 2. Suppose that ( f̂ , ẑ) = (1, 0) and the candidate Lyapunov function V( f̂ ,0) = f̂ ln
(

f̂ / f
)

such that V( f̂ ,0) > 0 for all ( f , z) 6= ( f̂ , 0) and V( f̂ ,0) = 0 for all ( f , z) = ( f̂ , 0). If

d f >
n(1− z)(1 + (r− 1)zn−1)− r(1− zn)

n(1− z)r− r(1− zn)
(34)

then V̇( f̂ ,0) < 0, and the equilibrium point is locally asymptotically stable (see proof in Appendix A.5).

In Figure 8, the condition (34) is analyzed for increasing values of d, with the restriction
d > d1, since this is a requisite for the equilibrium point to be stable. There are two main
regions in the simplex. The region colored in orange contains all the states where V̇f̂ < 0,

while the region colored in purple contains all the states where V̇f̂ > 0. Both regions are
separated by a red line that divides the simplex from a point in the border xy (where z = 0)
defined as p1 to another in the border yz (where x = 0) defined as p2 (see Figure 8). This
division corresponds to the set of points where V̇f̂ changes sign.

p1

p2

x

yz

p1

p2

x

yz

(a) (b)

Figure 8. Values of V̇f̂ for each possible state of the system. The orange area represent states V̇f̂ < 0;

the purple area represent states V̇f̂ > 0. The red line between both regions represent the set of points

where V̇f̂ changes sign. The black lines are trajectories from several initial values in the simplex.
Parameters n = 5, r = 3, and σ = 1, and increasing values of d: (a) d = 0.25 and (b) d = 0.5.

As d increases the region where V̇f̂ < 0 also increases. This happens because the

point p1 moves to the vertex y = 1. Notice that the value of p1 obtained from V̇f̂ = 0 is
x = (n− r)/r(n− 1)d. This is the position of the unstable equilibrium in the border xy
analyzed in Section 3.1.1. The point p2, however, does not depend on d. When x = 0, the
expression is reduced to 1 + (r− 1)zn−1 − ra = 0 (see (10)). Therefore, the value of z in the
point p2 is fixed and corresponds to the value of ẑ when d = 0 as in [18].

Additionally, in Figure 8, some paths with initial value points from both regions—
V̇f̂ < 0 and V̇f̂ > 0—are shown. Due to the structure of the solution, even trajectories
with initial values outside the basin of attraction are drawn inside and eventually end in
the equilibrium point. In such a case, the equilibrium point (1, 0, 0) is globally asymptoti-
cally stable.

Notice in Figure 8a that some trajectories oscillate before reaching the equilibrium.
This is caused by the unstable equilibrium point in the interior of the simplex analyzed
in Section 3.2. Recall that the interior equilibrium shifts to the border xy as d increases,
reaching it when d = d2, which, for the parameter in Figure 8, is d2 = 0.2857.

From a practical point of view, we are interested in trajectories where the frequency
of cooperators does not decrease and, as a consequence, in the set of initial values from
which the number of cooperators increases along all the trajectory to the equilibrium point.
To observe this behavior, two regions are defined in the simplex S3; we denote by Ω a
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set of initial values where the frequency of the cooperator strategy in the solution orbits
continuously grows until full cooperation is reached, i.e.,

Ω := {(x(t0), y(t0), z(t0)) : x(t̃) ≤ x(t) ∀t0 ≤ t̃ ≤ t. (35)

In Figure 9, the region Ω is in green. It can also be observed (and this is an important
consideration) that Ω is enlarged as the parameter d increases. In addition, the set of initial
values in the simplex S3, where the frequency of cooperators decreases before reaching the
equilibrium point, i.e., S3 −Ω, is colored in blue.

x

yz

x

yz

(a) (b)

Figure 9. The behavior of x in the trajectories for each possible initial value. The green area represents
initial values where the frequency of cooperators x increases along the orbit; the blue area represents
initial values where at some point of the trajectories x decreases. The black lines are trajectories from
several initial values in the simplex. n = 5, r = 3, and σ = 1, and values of d are (a) d = 0.22 and
(b) d = 0.5.

3.4. Summary of the Fractional Punishment Effect in the System

In this section, we complete the outline presented in Figure 1 in Section 3. Notice that
the whole effect of the parameter d in the dynamic and the equilibrium points of System (2)
can be described using the thresholds d1 and d2 as introduced in Section 3.1.1 (Lemma 1)
and Section 3.2, respectively.

Recall that, when d = 0, the interior equilibrium point q1 is a center, and the vertices
are saddle points [18]. Figure 1a shows the periodic orbits around the equilibrium.

Positive values of d cause two transformations in the system. First, the equilibrium
point q1 becomes unstable; second, the position of the equilibrium changes. It moves
towards the border xy. Figure 1b shows how, with small values of d, d < d1, the trajectories
approaching the border of the simplex oscillate.

As d increases, i.e., d1 < d < d2, a new equilibrium point q2 arises in the border xy.
This is an unstable equilibrium point that moves to the vertex y as d increments its value.
Furthermore, when q2 appears, the vertex x changes its nature from unstable (saddle point)
to stable (see Figure 1c,d). Notice that the number of oscillations needed to reach the vertex
x decreases as d grows.

When d = d2, the equilibrium point q1 reaches the border xy and merges with
the equilibrium point q2 in the border. This new equilibrium q3 remains unstable (see
Figure 1e).

From d2 < d to d = 1, there is no equilibrium in the interior of the simplex. The point
q3 continues to move toward the vertex y, but it does not reach the vertex; when d = 1, the
equilibrium point on the xy border takes the value x̂ = (n− r)/r(n− 1).

4. Discussion

In this work, we present a mathematical model in which a fractional punishment is
incorporated in an optional public good game under the replicator dynamic. To design the
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model, we consider two common situations regarding the administration of institutions:
(1) not all those who did not pay their fees can be punished due to a lack of resources; (2)
both the service provided and the cost of the sanctioning system come from the fee paid by
the users (fee pool).

Our proposal seeks to handle this situation by limiting the sanction to a random
set of defectors, warranting at the same time both the economic feasibility and effective
punishment to at least a reduced number of free riders.

To this end, we assume in the game that a randomly selected portion of free riders
would be penalized, but we do not include a separate pool to be used to sanction defectors.
With these assumptions, we eliminate the possibility of second-order free-riding and the
cost of second-order punishment, since cooperators, when paying the fee, are also unin-
tentionally contributing to penalizing free riders. Furthermore, the cost of the sanctioning
system is mainly dependent on the size of the portion punished, and it may be adapted in
accordance with the resources available to the institution.

Small values of d produce solutions that oscillate approaching the border. The effect
of the parameter d on the trajectory towards the equilibrium point is an important issue. A
wide excursion could jeopardize the survival of any institution because of the increment of
the loners and the possibility that this triggers the disappearance of the active population.

As d increases, the participation in the game is improved by reducing the share of
loners within the population. This can be understood by the convergence of the equilibrium
point to the xy axis. For an appropriate minimum value of d, a population composed
exclusively of cooperators can be achieved. If d surpasses a first threshold value d1, a
new unstable equilibrium point arises in the border xy while the equilibrium point in
the vertex x becomes stable. Then, when d achieves a second threshold value d2, the
interior equilibrium point reaches the border, and both equilibria merge. Notice that, with
fractional punishment, the equilibrium reaches the border with r < n, whereas in the
model introduced in [18], it occurs when r = n.

Even with a value of d adequate to achieve full cooperation, the trajectories can
oscillate depending on the initial composition of the population. In this context, the set
of initial values from which full cooperation is attained through trajectories with an ever-
increasing frequency of cooperators is of special interest. This set of points (denoted by Ω
in the results) increases as d increases.

The fractional punishment is a useful mechanism when resources are scarce; it can
improve cooperation at a lower cost. However, with this approach, the pressure on
the correct use of the contribution (fee pool) is higher, reaching a balance between the
expenditure dedicated to the operation with the expenditure on sanction free-riding is
more important. Sanctioning free riders improves cooperation but decreases the profit
from the game. We consider that an adequate balance between both expenses is perhaps
one of the characteristics of a successful institution.

5. Conclusions

We have analyzed the effect of randomly punishing a percentage of defectors in an
optional public good game modeled using replicator dynamics. To this end, the payoff
of the strategies is redefined to introduce a punishment parameter. This parametrizes
the simplex phase diagram, modifying the trajectories of the strategies in the population
as well as the nature of some important equilibrium points. A description of the main
characteristics variations of the trajectories in the simplex due to the punishment parameter
parametrization was presented, and for the equilibrium point that represents full coop-
eration, the basin of attraction was described. Future works include modeling how the
institution decides to set the value of the parameter d (probably adaptive) and its optimal
choice, as well as the redistribution to cooperators of the benefits taken from the punished
free riders.
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Appendix A

Appendix A.1. Proof of the Lemma 1

Proof. The Jacobian of the Equation (11), defined by J(x, d) = dẋ/dx has the following form:

J(x, d) = −(1− 2x)(1− (r/n)− drx(1− 1/n)) + x(1− x)dr(1− 1/n). (A1)

When Expression (A1) is evaluated at equilibrium point x̂ = 0, it takes the form
J(0, d) = −(1− r/N). As a consequence, since r < n, the eigenvalue is negative, and
the equilibrium point is locally asymptotically stable. This also means that the reciprocal
equilibrium point ŷ = 1 is locally asymptotically stable, since x + y = 1.

If Expression (A1) is evaluated at equilibrium point x̂ = 1, the Jacobian depends on
the value of the parameter d, i.e., J(1, d) = (1− r/n)− dr(1− 1/n). The eigenvalue is
negative for d > d1, and x̂ = 1 is consequently locally asymptotically stable; however, if
d < d1, then the eigenvalue is positive and x̂ = 1 is locally unstable.

In order to analyze the equilibrium point x̂ = (n− r)/(r(n− 1)d), it should be noticed
that d and x are bounded between 0 and 1. If d = 1, then x̂ = (n− r)/(r(n− 1)), which
is the minimum value of x for which the equilibrium point exists. Notice also that the
maximum value of x is 1, so d = (n− r)/(r(n− 1)), which is d1, the minimum value of d
for which the equilibrium point exists. For x̂ = (n− r)/(r(n− 1)d), Expression (A1) takes
the following form:

J(x̂, d) = x̂(x̂− 1)(−dr(1− 1/n)). (A2)

Given that 0 < (1− 1/n) and considering (n− r)/r(n− 1) ≤ x̂ < 1, the eigenvalue of (A2)
is positive for positive values of d; therefore, for d1 < d, the equilibrium point is unstable.

Appendix A.2. Proof of the Lemma 2

Proof. Part 1. Consider µ = ẑ0 + ε with ε << 1 and compare the expression g̃(z, d)
(introduced in (18)) in two situations: (1) z = µ and d0 = 0 and (2) z = µ and d 6= 0. Notice
that m(µ) is negative by the hypothesis. In addition, h̃(µ) := −dσ(1 − µn−1)/(1 − d)
is negative since µ ∈ (0, 1) and d is positive. Hence, |m(µ)| < |g̃(µ, d)| for d 6= 0 and
|m(µ)| = |g̃(µ, d)| for d = 0.

Part 2. Consider µ ∈ (0, 1) with m(µ) < 0 and m′(µ) < 0. Thus,

g̃′(µ, d) = m′(µ) +
d

1− d
σµn−2 (A3)

Notice that − d
1−d σ(1− µn−1)′|µ = + d

1−d σµn−2 is positive, and since m′(µ) and g′(µ, d) are
negative, then |g̃′(µ, d)| ≤ |m′(µ)|.

Appendix A.3. Proof of the Lemma 3

Proof. Consider η = ẑ0 + ε with 0 < ε << 1. Thus, η ≈ ẑ0. Considering the Taylor series
expansion truncated at the first order for m(η) as follows, i.e., high-order terms of the series
are neglected, we have

m(η − ε) = m(η)−m′(η)ε. (A4)
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Since ẑ0 = η − ε and m(ẑ0) = 0 (because ẑ0 satisfies g̃(ẑ0, 0) = m(ẑ0) and g̃(ẑ0, 0) = 0),
ε = m(η)/m′(η).

Consider η = ẑd + ζ, performing a similar analysis for m(η− ε) but now for g̃(η− ζ, d).
Thus,

g̃(ẑd, d) = g̃(η, d)− g̃′(η, d)ζ = 0 (A5)

and ζ = g̃(η, d)/g̃′(η, d).
Using the results of Lemma 2, we obtain

|ε| = |m(η)|
|m′(η)| ≤

|g̃(η, d)|
|m′(η)| ≤

|g̃(η, d)|
|g̃′(η, d)| = |ζ| (A6)

Since ẑ0 = η − ε and ẑd = η − ζ, it is possible to conclude that ẑd ≤ ẑ.

Appendix A.4. Proof of the Theorem 1

Proof. Consider

J =

 0 JR12

JR21 JR22

+ d

 JT11 JT12

JT21 JT22

 (A7)

Thus, for a positive d and d = ε ≈ 0, we obtain

J =

 ε11 JR12 − ε12

JR21 ± ε21 JR22 − ε22

 (A8)

where the sign of εij is explicitly specified due to the structure of the entries of the matrix
JT . It can be observed that ε11 > 0, ε12 and ε22 are both negative (see Expression (31), and
the values of a and a′ in Figure 6b,c) and ε21 can be positive or negative depending on the
value of f on the trajectory of the solution of System (24).

The eigenvalues of (A8) are obtained by

(λ− ε11)(λ− JR22 + ε22)−
(
(JR21 ± ε21)(JR12 − ε12)

)
= 0. (A9)

Rearranging the expression above, we can obtain the second-order equation in λ

λ2 + (−JR22 + ε22 − ε11)λ−
(
ε11(ε22 − JR22) + (JR21 ± ε21)(JR12 − ε12)

)
= 0 (A10)

with a solution

λ =
1
2
(JR22 − ε22 + ε11)±

1
2

√
∆ (A11)

where the discriminant ∆ = (JR22 − ε22 + ε11)
2 − 4 (JR21 ± ε21)(JR12 − ε12) + 4ε11(ε22 −

JR22).
Analysis of ψ = JR22 − ε22 + ε11. First observe that, from Expression (23), f̂0 < f̂d.

By Assumptions 1 and 2, and recalling that JR22 = −z(1− z)(n− 1)zn−2(σ − f (r − 1)),
JR22 is positive. In addition, comparing ε11 and ε22 (see that z(1− z)r f (1− a)( f − 1)a′ <
f (1− f )r(1− a) in Expression (31)), and considering d = ε, then it is possible to observe
that ε22 < ε11, which is controlled by d = ε ≈ 0. Hence, the term JR22 − ε22 + ε11 is positive.

Analysis of discriminant ∆. Observe that JR22 is an analytic function with respect to d
(since it depends on ẑd), and JR22 = 0 for d = 0. Considering the Taylor series expansion of
JR22 = JR22(0 + d) with respect to the parameter d, JR22 is given by the expansion

JR22(0 + d) = dJ′R22
|d=0 +O(d2)
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where J′R22
denotes the derivative with respect to the parameter d. Observe that d controls

J′R22
|d=0, since choosing arbitrarily d can make the term dJ′R22

|d=0 as small as is necessary.
In addition, the expression (JR22 − ε22 + ε11)

2 inside the discriminant takes the form

(JR22 − ε22 + ε11)
2 =

(
(dJ′R22

|d=0 +O(d2)− ε22 + ε11

)2

with all terms controlled arbitrarily by d. As a consequence, (JR22 − ε22 + ε11)
2 = O(d2).

In this case, the discriminant ∆ is

4JR21 JR12 ± 4ε21 JR12 − 4ε12 JR21 ± 4ε21ε12 + 4ε11ε22 − 4ε11 JR22 +O(d2)

where the dominant term is 4JR21 JR12 ,since the remaining terms are arbitrarily small. Re-
calling that JR21 and JR12 have opposite signs and for a sufficiently small d, the discriminant
∆ is negative. As a consequence, the eigenvalues of (A8) are complex with a positive
real part.

Appendix A.5. Proof of the Theorem 2

For the proof of Theorem 2, and following [10], we consider the carrier of a given state
as the set of pure strategies with the positive probability in that state. Similarly, we consider
the domain of a given state as the set of states in the simplex where the pure strategies that
are present in the carrier of the given state have positive probabilities.

Proof. In the equilibrium point ( f̂ , ẑ) = (1, 0), only f has a positive probability; therefore,
by using the concept of a carrier introduced above, the candidate Lyapunov function takes
the following form:

Vf̂ ( f ) = f̂ ln

(
f̂
f

)
, (A12)

with Vf̂ ( f ) > 0 for all ( f , z) 6= ( f̂ , ẑ) and Vf̂ ( f ) = 0 for ( f , z) = ( f̂ , ẑ).
The derivative with respect of time of this candidate Lyapunov function is given by

V̇f̂ ( f ) =− 1
f

ḟ . (A13)

Substituting ḟ given by Expression (15) in Expression (A13), we obtain

V̇f̂ ( f ) =(1− f )g( f , z, d), (A14)

where V̇f̂ ( f ) = 0 in the equilibrium point ( f̂ , ẑ) = (1, 0) and is negative when g( f , z, d) < 0.
To obtain a condition for the parameter d, the explicit form of g( f , z, d) (see Equation (14) )
is replaced in Equation (A14). Thus,

V̇f̂ ( f ) =(1− f )
(

1 + (r− 1)zn−1 − ra− dr f (1− a)
)

. (A15)

Observe that V̇f̂ ( f ) is negative if d >
(
1 + (r− 1)zn−1 − ra

)
/(r(1− a) f ), or, equiva-

lently,

d f >
n(1− z)(1 + (r− 1)zn−1)− r(1− zn)

n(1− z)r− r(1− zn)
(A16)

In addition V̇f̂ ( f ) is negative along the trajectories specified by System (15). When (A16)

holds, the equilibrium point ( f̂ , ẑ) = (1, 0) is locally asymptotically stable. This means that
( f̂ , ẑ) = (1, 0), and the equivalent point in S3, (x̂, ŷ, ẑ) = (1, 0, 0) is locally asymptotically
stable.
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