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Abstract: We present a tractable generalization of quantal response equilibrium via non-expected
utility preferences. In particular, we introduce concave perturbed utility games in which an individual
has strategy-specific utility indices that depend on the outcome of the game and an additively
separable preference to randomize. The preference to randomize can be viewed as a reduced form of
limited attention. Using concave perturbed utility games, we show how to enrich models based on
logit best response that are common from quantal response equilibrium. First, the desire to randomize
can depend on opponents’ strategies. Second, we show how to derive a nested logit best response
function. Lastly, we present tractable quadratic perturbed utility games that allow complementarity.

Keywords: quantal response equilibrium; non-expected utility; limited attention

1. Introduction

This paper generalizes quantal response equilibrium (QRE) using the standard Nash
equilibrium concept via the class of concave perturbed utility games (PUGs). QRE, as
studied in [1,2], assumes that individuals maximize expected utility, but that there is an
unobserved additive random shock to a base utility index that drives deviations from
Nash equilibrium behavior. In contrast, PUGs specify a deterministic non-expected utility
function with a preference for randomization that is additively separable from a base utility
index. Here, the preference for randomization can be viewed as a reduced form of limited
attention. While these approaches seem different, any QRE can be modeled as a Nash
equilibrium of a concave perturbed utility game.1 PUGs also generalize the control costs
approach of van Damme [6,7].2

Using the Nash equilibrium concept with the more general concave PUGs is useful
compared to QRE since it is often difficult to select a distribution of tractable additive
random shocks. PUGs facilitate estimation of model parameters via standard maximum
likelihood methods (without numerical integration). Moreover, PUGs allows complemen-
tarity between strategies which is not allowed in any QRE. PUGs also can easily incorporate
that the probability an individual chooses a strategy as a best response also depends on
how likely opponents play their strategies. Importantly, any concave PUG has a Nash
equilibrium as an immediate corollary of Debreu [8]. This existence result allows us to
generate different flavors of the logit best response, derive a nested logit best response
function, and discuss quadratic perturbed utility games.

The result that QRE can be represented as Nash equilibria of a non-expected utility
game matters for interpretation and has practical implications. Concerning interpretation,
violations of standard Nash play can be interpreted either as errors of individual perception

1 This can be deduced from the single agent aggregation results of Hofbauer and Sandholm [3] or Allen and Rehbeck [4] (see also [5]).
2 Professor van Damme in fact says the idea originates even earlier from discussions with Professor Selten.
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or as the manifestation of a non-expected utility preference. These two interpretations have
different implications for welfare analysis. For example, one may not want perceptual
errors to enter welfare calculations but may want to include all facets of a non-expected
utility preference in welfare calculations. On the practical side, it may be easier to place
restrictions on perturbation functions than restricting the additive error term of QRE since
analytical results for integrating error distributions are known only in some special cases.
In contrast, rich classes of analytical perturbation functions are studied in [9,10]. These
perturbation functions can be seen as generalizations of the entropy function that is often
used to study limited attention.

We mention a non-extensive summary of related work. A perturbed utility game is
similar to the control costs approach developed in [6,7] whereby there is a cost associated
to the ability to control a “tremble.” Control costs are assumed to be additively separable,
whereas perturbed utility games have costs that are nonseparable and can depend on the
opponents’ strategies. Rosenthal [11] considered a related approach of bounded rationality
where the probability of choosing an action is monotone with utility. Voorneveld [12]
showed that the solution concept in [11] can be represented with quadratic control costs
or a quantal response equilibrium with uniform errors. Stahl [13] looked at a game with
trembles and an entropic cost to control the trembles. Mattsson and Weibull [14] gave
axioms for entropic control functions for individual decisions and deals with a contin-
uum of alternatives. With regards to QRE, the regular quantal response equilibrium of
Goeree et al. [15] places additional assumptions on QRE and a textbook treatment of QRE
is available in [16].3 We also note that recent work by Melo [18] examines uniqueness
properties of quantal response equilibrium while using a perturbed utility game as an
intermediate step.

We also briefly describe some history regarding non-expected utility games and QRE.
Shortly after the study of individual non-expected utility functions in [19], there was some
interest to study non-expected utility in strategic games following those in [20,21]. For
example, equilibrium concepts, existence of equilibria, and dynamic consistency properties
when individuals do not satisfy the independence axiom are studied in [22,23]. However,
there is little applied work that resulted from this research. In contrast, quantal response
equilibria was developed a few years later by the authors of [1,2], and has been extensively
used in applications to account for deviations from Nash equilibrium. By linking these
two approaches, we show applied researchers that Nash equilibrium with non-expected
utility preferences provides a rich and tractable avenue to account for deviations from
Nash equilibrium with expected utility preferences.

Finally, PUGs model individuals with a deterministic preference for randomization
following Machina [24] and relate more broadly to the stochastic choice literature.4 We say
an individual has a preference for randomization when the individual plays the game as if
they randomize their play according to a most-preferred distribution of pure strategies. We
assume throughout that individuals commit to randomize according to their most-preferred
distribution.5 While a preference for randomization may seem foreign, there is growing
experimental evidence that supports this interpretation [34–41]. The most important
finding for our purposes is that of Agranov et al. [41], who found that individuals who
randomize choices in individual decision problems also randomize their choices in strategic
environments. Therefore, it may be important to account for a preference of randomization
in games.

The rest of this paper is organized as follows. Section 2 describes the structure of
a concave perturbed utility game and shows existence of equilibria for all such games.
Section 3 derives the logit best response function from a concave perturbed utility game

3 Goeree et al. [16] also linked the development of QRE to games with decision errors that dates back to the work by Selten [17].
4 Perturbed utility preferences are tractable and have been studied general for individual stochastic choice [25–27], population games [28], consumer

choice [25,29], and general equilibrium [30].
5 We do not concern ourselves with issues of dynamic consistency as studied in [23]. An interested reader can follow the discussion in [31–33], and

the following literature.
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with entropy costs and discusses various flavors of the logit best response. Section 4
examines other forms of concave perturbed utility games. In particular, we examine nested
logit equilibria and discusses quadratic perturbed utility games. Section 5 provides an
example game and graphs best responses for various perturbed utility functions. We give
our final remarks in Section 6. The proofs are mathematically simple, but included in the
Appendix A for completeness.

2. Concave Perturbed Utility Games and Existence

Consider a finite N-player game with a set {1, . . . , N} of players. Each player n ∈
{1, . . . , N} has a set of pure strategies given by Sn = {sn,1, . . . , sn,Jn} where Jn is the
number of pure strategies for the nth player. Let a pure strategy profile be defined by
s = (s1, . . . , sn) ∈ S = ∏N

n=1 Sn where S is the set of all pure strategy profiles. Occasionally,
it is useful to represent a strategy profile by s = (sn, s−n) where sn is the strategy of
the nth player while s−n contains the pure strategies taken by all other players where
s−n ∈ S−n = ∏m 6=n Sm.

Let ∆n be the set of probability measures on Sn. We represent elements of ∆n by
pn ∈ ∆n = {pn ∈ RJn | for all j ∈ Jn, pn,j ≥ 0 and ∑Jn

j=1 pn,j = 1}. The element pn ∈ ∆n is
a mixed strategy for the nth player. Here, pn,j is the probability the nth agent plays their jth
strategy sn,j. Further, let all mixed strategy profiles be given by ∆ = ∏N

n=1 ∆n where a mixed
strategy profile is given by p = (p1, . . . , pN) ∈ ∆. We use the shorthand p = (pn, p−n) to
denote a mixed strategy profile where the nth player plays the mixed strategy pn and all
other agents play their corresponding mixed strategy in p−n ∈ ∆−n = ∏m 6=n ∆m.

We assume there are observed outcomes for each player n ∈ {1, . . . , N} that depend
on the strategy profile s ∈ S denoted by xn,s ∈ Xn. For example, Xn could be monetary
outcomes that depend on the strategies of all players. If an individual has social prefer-
ences and cares about other individuals, then Xn could be the monetary allocations to all
individuals. This means that a motive for cooperation can be modeled in this framework.
Finally, Xn could be a consumption bundle. For example, if each pure strategy is to bring
an item to a picnic, then Xn could be the space of ordered tuples of consumption goods.
Thus, we view the outcome of a game as covariates similar to in [42–44].

We let xn = (xn,s)s∈S denote the vector of the nth player’s outcomes for all strategy
profiles. Let x = (x1, . . . , xN) denote the collection of all individual observable outcomes.
We use the notation xj

n = (xn,(sn,j ,s−n))s−n∈S−n to denote the vector of outcomes the nth
player can obtain for all other combinations of opponent pure strategies when their jth
strategy is played. The different values of the outcomes are mapped into a utility index
that depends on opponent mixed strategies.

We consider non-expected utility preferences for each player n ∈ {1, . . . , N} given by
the class of concave perturbed utility preferences. In particular, the nth player has preferences
represented by the non-expected utility function given by

Jn

∑
j=1

pn,jUn,j(p−n, xj
n) + Dn(pn, p−n).

Here, Un,j : ∆−n × X|S−n |
n → R is a utility index that captures the attractiveness

of the nth player’s jth strategy that is assumed continuous in p−n and depends on the
outcomes associated with the nth player’s jth strategy. The function Dn : ∆n × ∆−n → R
is assumed concave in pn for every p−n and jointly continuous in (pn, p−n). We call Dn
the nth individual’s perturbation function. The perturbed utility approach differs from the
control function approach of van Damme [7] since the attractiveness of a pure strategy can
depend on the play of opponents and the preference for randomization can also depend on
the play of opponents.

The usual expected utility conditions are expressed when the nth individual evaluates
the value of the jth strategy when the utility index is given by conditional expected
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utility (CEU) UCEU
n,j (p−n, xj

n) = ∑s−n∈S−n p−n(s−n)un(xn,(sn,j ,s−n)) where un : Xn → R is
a sub-utility index that maps outcomes directly to utility numbers for the nth player.
Here, p−n(s−n) is the probability of the pure strategy of all players except the nth player
for a strategy s−n = (s1,j1 . . . , sn−1,jn−1 , sn+1,jn+1 , . . . , sN,jN ) ∈ S−n in the mixed strategy
p−n, so p−n(s−n) = ∏m 6=n pm,jm . However, the utility indexes can be more general. For
example, the utility index can depend on actions and outcomes of other players as in [45].
When there are monetary outcomes so Xn = R, an individual can have a probability
weighting function [46] or use rank-dependent utility as studied in [47]. Here, an individual
weights probabilities of receiving monetary outcomes by a function π : [0, 1] → [0, 1].
For example, a probability weighting (PW) utility index is expressed UPW

n,j (p−n, xj
n) =

∑x∈R π
(

∑s−n∈S−n p(s−n)1{xn,(sn,j ,s−n) = x}
)

u(x) where u : R → R is a utility function
over money and 1{xn,(sn,j ,s−n) = x} is one when xn,(sn,j ,s−n) = x and zero otherwise.

For the nth player, let Un = (Un,1, . . . , Un,Jn) be the vector of the utility index functions
for all Jn pure strategies. Let U = (U1, . . . , UN) be the vector of all utility indices for all play-
ers. We also let the collection of all perturbation functions be given by D = (D1, . . . , DN).
When all individuals have concave perturbed utility preferences, we call this a concave
perturbed utility game.

Definition 1. A concave perturbed utility game is the tuple (N, S, x, U, D) of players with per-
turbed utility preferences where pure strategies are in S, outcomes are defined by x, utility indices
are defined by U, and concave perturbation functions are defined by D.

This setup nests expected utility when for every player n ∈ {1, . . . , N} the perturbation
function satisfies Dn(pn, p−n) = 0 and the utility index for every pure strategy is given by
the conditional expected utility (CEU) UCEU

n,j (p−n, xj
n) = ∑s−n∈S−n p−n(s−n)un(xn,(sn,j ,s−n))

where un : Xn → R is a sub-utility index that maps outcomes directly to utility numbers
for the nth individual. We later show that Nash equilibria exist for any continuous utility
indices. Recall, utility indices can depend on mixed strategies of other opponents. Thus,
concave perturbed utility games can apply the Nash equilibrium concept beyond the
common conditional expected utility restriction that has been common following Nash [20]
and Von Neumann and Morgenstern [21].

We focus on the standard definition of Nash equilibrium when studying concave
perturbed utility games.

Definition 2. A mixed strategy profile p∗ ∈ ∆ is a Nash equilibrium of a concave perturbed
utility game if for all n ∈ {1, . . . , N} it holds that

Jn

∑
j=1

p∗n,jUn,j(p∗−n, xj
n) + Dn(p∗n, p∗−n) ≥

Jn

∑
j=1

pn,jUn,j(p∗−n, xj
n) + Dn(pn, p∗−n)

for all pn ∈ ∆n.

The definition of Nash equilibrium requires that mixed strategies be a best response.
The above definition is exactly this condition translated to a concave perturbed utility game.
We now state that Nash equilibria exist for every concave perturbed utility game.

Corollary 1 (Existence). For every concave perturbed utility game (N, S, x, U, D) there exists a
Nash equilibrium.

The above result is an immediate corollary of the main theorem in [8].6 The result
of Debreu [8] was also used by Crawford [22] to show a Nash Equilibrium exists for any

6 One could also use the fixed point theorem in [48] to develop a constructive function that updates a given set of choices to a fixed point.
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concave and jointly continuous non-expected utility function. We view the contribution of
this paper as providing a tractable model that can be taken to data. In addition, the model
can separate how an individual values outcomes from playing a particular pure strategy
and the preference for randomization. As we show in the next section, this class of models
can produce the logit best response function that is popular in applied work following
quantal response equilibria of McKelvey and Palfrey [1]. Thus, it is a natural springboard
to explore other forms of strategic behavior.

We note that Nash equilibria may not exist when Dn is not concave in pn for every
p−n ∈ ∆−n. Crawford [22] provided one example of a game with non-expected utility
preferences that are quasi-convex that has no Nash equilibrium. While we focus on concave
perturbed utility games, there are equilibrium concepts which can be used for non-concave
perturbed utility games and more generally any non-expected utility preference. In partic-
ular, Crawford [22] defined a notion of equilibrium in beliefs for any non-expected utility
game and shows existence of equilibrium without requiring the concavity assumption.

3. Entropy Perturbations and Logit Best Response

We now consider a concave perturbed utility game when each player has entropy
perturbation functions. For this game, every player n ∈ {1, . . . , N} has a perturbation
function of Shannon entropy so that

DE
n(pn, p−n) = −λn

Jn

∑
j=1

pn,j ln(pn,j)

with λn > 0. Here, pn,j ln(pn,j) is 0 when pn,j = 0. Stahl [13] used Shannon entropy in
a control function approach with trembles. Cominetti et al. [49] studied how the limit
of certain learning procedures can be represented with entropy costs. Outside of game
theory, the Shannon entropy function is used extensively in discrete choice analysis [50],
information economics [51], to motivate games with learning [52], and for route choice [53].
The function DE

n is concave and continuous, and thus Nash equilibria exist. When all
individuals have entropy perturbations in a concave perturbed utility game, we call it an
entropy perturbed utility game. Below, we characterize the best response function of individu-
als for entropy perturbed utility games. This result is mathematically straightforward and
similar computations are found in [13,50,52].

Proposition 1. The best response function of the nth agent in an entropy perturbed utility game is
given by pE

n(p−n) = (pE
n,1(p−n), . . . , pE

n,Jn
(p−n)) where

pE
n,j(p−n) =

exp
(

Un,j(p−n ,xj
n)

λn

)
∑Jn

k=1 exp
(

Un,k(p−n ,xk
n)

λn

) .

When the utility index takes the conditional expected utility form UCEU
n,j (p−n, xj

n) =

∑s−n∈S−n p−n(s−n)un(xn,(sn,j ,s−n)), the best response function in Proposition 1 is the same
as that from logit equilibrium in [1] when all λn take the same value. The Nash equilibria
thus have the same comparative statics as quantal response equilibria with respect to the
λn term. For example, as λn → ∞, an individual will uniformly randomize among all of
their pure strategies. When λn = 0 for all individuals, we return to the standard Nash
equilibria for a normal form game with expected utility preferences when utility indices
follow UCEU

n,j . A convenient feature of representing the logit equilibrium in this format
is that it by-passes integrating over a distribution of random shocks. Instead, this best
response is found by solving a constrained optimization problem.
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Variations of Entropy Perturbation

There are several variations of the logit best response function that are similar to logit
quantal response equilibria. First, one could consider different utility indices Un,j(p−n, xj

n).
For example, when the utility is over money, one could use rank dependent preferences [47].
Alternatively, one could use the geometric mean rather than the arithmetic mean to aggre-
gate probabilities and the outcome into a utility index.

Variations of logit best response can also occur by introducing unique weighting
terms for each pure strategy. For example, one can consider the class of weighted entropy
(WE) perturbed utility games where each individual has a continuous weighting function
wn,j : ∆−n → R+ and the perturbation function takes the form

DWE
n (pn, p−n) = −

Jn

∑
j=1

wn,j(p−n)pn,j ln(pn,j).

Here, wn,j(p−n) weights how desirable it is for the nth player to play strategy j when
opponents play p−n. Note that−wn,j(p−n)pn,j ln(pn,j) ≥ 0 since pn,j ∈ [0, 1]. Thus, a higher
weight means the player can potentially obtain more utility by choosing this strategy with
a probability close to 1

e , i.e., the value that maximizes pn,j ln pn,j. Since the weights are all
nonnegative, the perturbation is concave and equilibria exist by Corollary 1.

We consider some examples of weighting functions. Suppose an individual has ex-
ante beliefs about opponent play given by µn ∈ ∆S−n. One example of a continuous
weighting function that is everywhere nonnegative is

wn,j(p−n) = αn,jdn,j(p−n, µn) (1)

where dn,j : ∆S−n × ∆S−n is a jointly continuous distance function for the nth player and
jth strategy and αn,j ∈ R+ describes the weight of the discrepancy. This means that an
individual only has a preference to randomize when opponents play strategies that differ
from the player’s beliefs. Another natural weighting function is wn,j(p−n) = λn,j ≥ 0. In
this case, the weighting function on the randomization term for the nth player’s jth strategy
does not depend on what others are playing.

Lastly, we can specialize so that wn,j(p−n) = wn(p−n) for every n ∈ {1, . . . , N}
and for all j ∈ {1, . . . , Jn}. This makes the preference for randomization symmetric in
own-probabilities. One example is

wn(p−n) = − ∑
s−n∈S−n

p−n(s−n) ln(p−n(s−n)).

When wn does not depend on j, the best response has a sample analytic form following
the logit equilibra except the desire to randomize depends on the probability opponents
play various strategies.

Proposition 2. Suppose for every n ∈ {1, . . . , N} and for all j ∈ {1, . . . , Jn} that wn,j(p−n) =
wn(p−n) and wn : ∆−n → R++. The best response function of the nth agent in a weighted entropy
perturbed utility game is given by pWE

n (p−n) = (pWE
n,1 (p−n), . . . , pWE

n,Jn
(p−n)) where

pWE
n,j (p−n) =

exp
(

Un,j(p−n ,xj
n)

wn(p−n)

)
∑Jn

k=1 exp
(

Un,k(p−n ,xk
n)

wn(p−n)

) .

As mentioned above, related mathematical results are well-known. We highlight
this as a proposition due to its conceptual novelty; to the best of our knowledge, a logit
best response where weights depend on opponents’ mixed strategies has not been studied.
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However, it seems intuitively sensible. For example, an individual may have a higher desire
to randomize when other individuals choose disparate pure strategies with low probability.

4. Other Perturbed Utility Games

While the analysis above shows how entropy perturbation functions are related to
logit quantal response equilibria, there are other games of interest. In particular, one of
the features of concave perturbed utility games is that the desirability of mixing with one
strategy can depend on opponents’ probabilistic play. We consider two types of games that
have this feature.

4.1. Mixed Entropy Perturbations and Nested Logit Best Response

Here, we derive a nested logit best response using a mixed entropy perturbation
function. The nested logit model of discrete choice is treated at a textbook level in [54].7

The main idea of nested logit models in discrete choice is that there are alternatives that
share similar qualities. For example, when choosing among a car, a red bus, and a blue
bus, one might group the two buses together into a nest. This kind of similarity is also
plausible for strategies in games. For example, consider a prisoner dilemma game with two
players where each player can say nothing, deny involvement, or accuse the other player
of the crime. Here, a natural partition of actions is to treat saying nothing and denying
involvement as having the feature of loyalty with the co-conspirator, while accusing the
other player of the crime has the feature of disloyalty.

To formalize the mixed entropy perturbation function, we require a partition of the
pure strategies of each agent. For every nth agent with Jn > 2, we partition the pure
strategies into into Ln sets given by Rn,1, Rn,2, . . . , Rn,Ln . Thus, for ` ∈ {1, . . . , Ln}, this
means Rn,` ⊆ Sn, for all ` 6= ˜̀ it follows that Rn,` ∩ Rn, ˜̀ = ∅, and

⋃Ln
`=1 Rn,` = Sn. We

refer to the sets which define the partitions as nests. Each nest Rn,` is assigned a weight
ηn,` ∈ [0, 1].

We consider the mixed entropy (ME) perturbation function for each player given by

DME
n (p) = −

Ln

∑
`=1

ηn,` ∑
j∈Rn,`

pn,j ln(pn,j) + (1− ηn,`) ∑
j∈Rn,`

pn,j ln

 ∑
k∈Rn,`

pn,k

.

The first summation term is a weighted entropy function while the second summation
term is an entropy-like cost function that now depends on the probability that all items in a
nest are chosen. Note that the above is a sum of functions that are all concave in pn since
ηn,` ∈ [0, 1].8 Thus, existence of equilibria is immediate from Corollary 1. We characterize
the nested logit best response function below.

Proposition 3. For the nth player, let `(j) be the nest associated to the jth strategy so that Rn,`(j)
is the nest that contains the strategy sn,j and ηn,`(j) is the corresponding nesting parameter. The
best response function of the nth agent in a mixed entropy perturbed utility game is given by
pME

n (p−n) = (pME
n,1 (p−n), . . . , pME

n,Jn
(p−n)) where

pME
n,j (p−n) =

exp
(

Un,j(p−n ,xj
n)

ηn,`(j)

)
∑k∈Rn,`(j)

exp
(

Un,k(p−n ,xk
n)

ηn,`(j)

)
(

∑k∈Rn,`(j)
exp

(
Un,k(p−n ,xk

n)
ηn,`(j)

))ηn,`(j)

∑LN
`=1

(
∑k∈Rn,`

(
Un,k(p−n ,xk

n)
ηn,`

))ηn,`
.

7 For a behavioral characterization of nested logit discrete choice with menu variation, see [55].
8 We also mention that even when ηn,` > 0 but not in [0,1] the best response function conditional on p−n is a singleton as shown

by Allen and Rehbeck [27] so a Nash equilibrium exists by Debreu [8]. When ηn,` > 1, this allows complementarity following Allen and Re-
hbeck [29] within a nest and cannot be imitated by any additive random error used to generate quantal response equilibria.
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To the best of our knowledge, nested logit equilibria have not been considered in the
literature. The result above can also be further generalized to allow weighting functions
that depend on the opponents’ mixed strategies. For example, consider the weighted mixed
entropy (WME) perturbation function of

DWME
n (p) = −

Ln

∑
`=1

 ∑
j∈Rn,`

wn,j(p−n)pn,j ln(pn,j) + ∑
j∈Rn,`

wn,`,j(p−n)pn,j ln

 ∑
k∈Rn,`

pn,k


where wn,j : ∆−n → R+ is a continuous weighting function for the jth strategy that does
not depend on the nest and wn,`,j : ∆−n → R+ is a continuous weighting function for the
jth strategy that depends on its nest. This is a concave perturbation function so equilibria
exist by Corollary 1.

Now, consider the restrictions that the weights for every player n ∈ {1, . . . , N} satisfy
that wn,j : ∆−n → [0, 1], for all j, k ∈ R` that wn,j = wn,k = wn,`, and for all ` ∈ {1, . . . , Ln}
and j ∈ R` that wn,`,j = 1− wn,j = 1− wn,`. Under these conditions, the best response
function takes the same form as the nested logit best response except with weights that
depend on opponents’ mixed strategies.

Proposition 4. In a weighted mixed entropy game, let the weights for every player n ∈ {1, . . . , N}
satisfy that wn,j : ∆−n → [0, 1], for all j, k ∈ R` that wn,j = wn,k = wn,`, and for all ` ∈
{1, . . . , Ln} and j ∈ R` that wn,`,j = 1− wn,j = 1− wn,`. For the nth player, let `(j) be the nest
associated to the jth strategy so that Rn,`(j) is the nest that contains the strategy sn,j and wn,`(j) is
the corresponding weighting function. The best response function of the nth agent in a weighted
mixed entropy perturbed utility game is given by pWME

n (p−n) = (pWME
n,1 (p−n), . . . , pWME

n,Jn
(p−n))

where

pWME
n,j (p−n) =

exp
(

Un,j(p−n ,xj
n)

wn,`(j)(p−n)

)
∑k∈Rn,`(j)

exp
(

Un,k(p−n ,xk
n)

wn,`(j)(p−n)

)
(

∑k∈Rn,`(j)
exp

(
Un,k(p−n ,xk

n)
wn,`(j)(p−n)

))wn,`(j)(p−n)

∑LN
`=1

(
∑k∈Rn,`

(
Un,k(p−n ,xk

n)
wn,`(p−n)

))wn,`(p−n)
.

4.2. Quadratic Perturbations

Finally, we consider concave quadratic perturbed utility games where the perturbation
function takes the form

Dn(pn, p−n) = −(pn − rn)
′An(p−n)(pn − rn)

where An : ∆−n → RJn×Jn is continuous, An(p−n) is positive semidefinite for every p−n,
and rn ∈ ∆Sn is a reference probability. This specification makes the utility obtained from
the perturbation lower for probabilities further away from the reference probability. We
know that equilibria of concave quadratic perturbed utility games exist from Corollary 1.
While these games do not yield analytical solutions in general, one can quickly compute
the best response with quadratic programming for each p−n. One example of a quadratic
perturbation function is the diagonal weighting (DW) perturbation function, where for all
j ∈ {1, . . . , Jn} entries on the diagonal are given by

ADW
n (p−n)j,j = wn,j(p−n)

where wn,j : ∆−n → R+ is a continuous weighting function and ADW
n (p−n)j,k = 0 for

j 6= k. Thus, one can model best response functions that are linear in the utility index, but
non-linear in their opponents’ strategies. We also note that quadratic perturbations are
flexible enough to allow individuals to express complementarities between strategies when
Jn > 2 following Allen and Rehbeck [29].
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5. Example Game

In this section, we apply the use of perturbation functions in a simple game. The
example shows how the perturbed utility approach can allow complementarities that are
not present for QRE or control costs. We consider the 2× 3 game in Table 1. This is the
minimal setup to permit complementarity.

Table 1. A 2× 3 example. We denote the row player by 1 and the column player by 2. We treat the
outcomes as monetary payoffs.

` m h

H (xH,`
1 , xH,`

2 ) (xH,m
1 , xH,m

2 ) (xH,h
1 , xH,h

2 )

L (xL,`
1 , xL,`

2 ) (xL,m
1 , xL,m

2 ) (xL,h
1 , xL,h

2 )

We consider when the row player is an expected utility maximizer and the column
player is a perturbed utility player. We plot the best response probabilities for the column
player in Figure 1, for four types of perturbation functions and two values of payoffs.
Specific details on payoffs and perturbation functions are detailed in the code, available on
the authors’ websites.

The left column corresponds to low payoffs for the high action of the column player
and the right column corresponds to higher payoffs. The top row of Figure 1 is a quadratic
perturbation function. Importantly, it allows complementarity between the medium and
high strategies as the payoff to the high action increases. Here, as payoffs to the high
action increase, the probability of playing the high action as a best response increases
as expected, but the probability of playing the medium action also increases, indicating
complementarity.

The next three rows do not allow complementarity. Figure 1c,d in the second row
correspond to (quadratic) control costs, Figure 1e,f are logit perturbations, and Figure 1g,h
are nested logit perturbations.

In this paper, we focus on best responses because a detailed theoretical analysis of
equilibrium is beyond the scope of the paper. With that said, a simple equilibrium analysis
is possible by supposing the row player has the high action as a dominant strategy. Then
complementarity shows up for equilibrium comparative statics in Figure 1a,b by analogous
reasoning as before. Specifically, the payoff of the high action increased, and both the
medium and high probabilities increased in response.
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Figure 1. Best responses of the column player for a low payoff of the high action (left) and a higher payoff of the high action (right):
(a,b) quadratic perturbations; (c,d) control perturbations; (e,f) logit perturbations; and (g,h) nested logit perturbations.

6. Discussion

This paper shows existence of Nash equilibria in concave perturbed utility games,
relates the approach to quantal response equilibria, develops the nested logit equilibrium,
and introduces quadratic perturbed utility games. Thus, we link the literature on Nash
equilibrium without expected utility which has not been used in applications to quantal
response equilibrium (QRE) that has been extensively used in applications. We also provide
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the reader with several classes of perturbations that allow flexibility in best responses and
can be used in the study of games. Other perturbations that may be useful are developed
for discrete choice analysis in [9,10]. Although many of the models presented have many
parameters, one can simplify estimation by making homogeneity assumptions across
individuals.9 By presenting a tractable class of games, we hope this paper is able to re-
introduce games of non-expected utility preferences to those unfamiliar with the earlier
work in [22,23] in light of the new experimental evidence that supports a preference
for randomization.
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Appendix A

Proof of Corollary 1. For every individual n ∈ {1, . . . , N}, continuity of the utility indices
and perturbation function ensures that the value function is continuous in p−n. Moreover,
continuity and concavity of the perturbation function guarantees the set of best responses
is convex and nonempty, and hence contractible. The corollary now follows from the main
theorem in [8].

Proof of Proposition 1. This follows from Proposition 2 with each wn(p−n) = λ` ∈
R++.

Proof of Proposition 2. We consider perturbed utility functions with mixed entropy per-
turbations. The utility function is given by

Jn

∑
j=1

pn,jUn,j(p−n, xj
n)− wn(p−n)

Jn

∑
j=1

pn,j ln(pn,j).

One can find the best response conditional on p−n by solving

max
pn∈RJn

+

Jn

∑
j=1

pn,jUn,j(p−n, xj
n)− wn(p−n)

Jn

∑
j=1

pn,j ln(pn,j)

s.t.
Jn

∑
j=1

pn,j = 1, pn,j ≥ 0 for every j ∈ {1, . . . , Jn}.

Setting up the Lagrangian for this problem, we have that

L(pn, θ) =
Jn

∑
j=1

pn,jUn,j(p−n, xj
n)− wn(p−n)

Jn

∑
j=1

pn,j ln(pn,j) + θ

(
1−

Jn

∑
j=1

pn,j

)

where θ ∈ R is the Lagrange multiplier on the constraint. Note that we do not need to
consider Lagrange multipliers on the non-negativity constraints of the mixed strategies
since the marginal utility of placing positive probability on a pure strategy goes to infinity
as pn,j → 0. More formally, the nonnegative constraints will automatically be satisfied as
we show below.

9 For example, letting αn,j = α for each individual and strategy in Equation (1) creates a one-parameter model when Un,j and dn,j are pre-specified.
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Examining the first-order conditions on pn,j, we have that

∂L
∂pn,j

: Un,j(p−n, xj
n)− wn(p−n) ln(pn,j)− wn(p−n)− θ = 0.

We also have the following complementary slackness condition that

θ

(
1−

Jn

∑
j=1

pn,j

)
= 0.

Note that setting the first-order conditions with respect to pn,j and pn,k equal to one
another we obtain that

Un,j(p−n, xj
n)− wn(p−n) ln(pn,j) = Un,k(p−n, xk

n)− wn(p−n) ln(pn,k).

Rearranging the above function gives

ln(pn,j)− ln(pn,k) =
Un,j(p−n, xj

n)

wn(p−n)
−

Un,k(p−n, xk
n)

wn(p−n)
.

Finally, applying exponentiation to both sides of the quality yields

pn,j

pn,k
=

exp
(

Un,j(p−n ,xj
n)

λn

)
exp

(
Un,k(p−n ,xk

n)
λn

) . (A1)

Choosing a j̃ ∈ {1, . . . , Jn}, we can use Equation (A1) and the fact that probabilities
sum to one to obtain that

Jn

∑
j=1

pn,j = pn, j̃ + pn, j̃ ∑
k 6= j̃

exp
(

Un,k(p−n ,xk
n)

wn(p−n)

)
exp

(
Un, j̃(p−n ,xn, j̃)

wn(p−n)

) = 1.

However, this simplifies to the best response function

pWE
n,j (p−n) =

exp
(

Un,j(p−n ,xj
n)

wn(p−n)

)
∑Jn

k=1 exp
(

Un,k(p−n ,xk
n)

wn(p−n)

) .

The above holds for any j̃ ∈ {1, . . . , Jn} and does not depend on the individual since
all individuals have weighted entropy functions that satisfy the conditions in the statement
of the proof of Proposition 2.

Proof of Proposition 3. This follows from Proposition 4 with each wn,`(p−n) = η` ∈ (0, 1).

Proof of Proposition 4. The proof is similar to the related derivation in discrete choice of
Allen and Rehbeck [27]. Note that wn,` > 0 for ` = 1, . . . , Ln ensures we have an interior
solution. To see this, we show that the marginal utility for the nth player associated with
the probability of playing any jth strategy increases to +∞ as pn,j → 0.
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One can find the best response conditional on p−n by solving

max
pn∈RJn

+

Jn

∑
j=1

pn,jUn,j(p−n, xj
n)

−
Ln

∑
`=1

 ∑
j∈Rn,`

wn,`(p−n)pn,j ln(pn,j) + (1− wn,`(p−n)) ∑
j∈Rn,`

pn,j ln

 ∑
k∈Rn,`

pn,k


s.t.

Jn

∑
j=1

pn,j = 1

For the nth player, let `(j) denote the nest of the sn,jth strategy. The first derivative of
weighted mixed entropy perturbed utility (the objective function in the above optimization
problem) is given by

Un,j(p−n, xj
n)− wn,`(j)(p−n) ln(pn,j)− (1− wn,`(j)(p−n)) ln

 ∑
k∈Rn,`(j)

pk

− 1. (A2)

We must consider two cases. First, suppose that for all k ∈ Rn,`(j) with k 6= j that

pn,k = 0. In this case, Equation (A2) simplifies to Un,j(p−n, xj
n)− ln(pn,j)− 1 whose limit

approaches +∞ as pn,j approaches zero. Second, consider when there exists some k ∈ Rn,`(j)

with k 6= j such that pn,k > 0. In this case, the term −(1− wn,`(j)(p−n)) ln
(

∑k∈Rn,`(j)
pk

)
in

Equation (A2) converges to some finite number since there exists a pn,k > 0. Moreover, the
term wn,`(j)(p−n) ln(pn,j) converges to +∞ as pa approaches zero since wn,`(j)(p−n) > 0.
Since the other terms are finite, Equation (A2) converges to +∞ as pn,j approaches zero.
This argument holds for any pn,j, so the solution is interior.

Now, we consider the derivative of the Lagrangian of the strict PUM when imposing
the probability simplex as a constraint where

Un,j(p−n, xj
n)− wn,`(j)(p−n) ln(pn,j)− (1− wn,`(j)(p−n)) ln

 ∑
k∈Rn,`(j)

pk

 = θ + 1

and θ ∈ R is the Lagrange multiplier on the probability simplex constraint. Recall, non-
negativity does not need to be imposed since each alternative will be chosen with positive
probability.

Now, when j, k ∈ Rn,`(j) so both alternatives are in the same nest, we conclude

pn,k = pn,j

exp
(

Un,k(p−n ,xk
n)

wn,`(j)(p−n)

)
exp

(
Un,j(p−n ,xj

n)

wn,`(j)(p−n)

)
by setting the first-order conditions equal for the jth and kth strategies and simplifying.
Hence, summing over all strategies k ∈ Rn,`(j) gives

∑
k∈Rn,`(j)

pn,k =
pn,j

exp
(

Un,j(p−n ,xj
n)

wn,`(j)(p−n)

)
 ∑

k∈Rn,`(j)

exp

(
Un,k(p−n, xk

n)

wn,`(j)(p−n)

).

Now, substituting in the expression for ∑j∈Rn,`(j)
pn,j from above into the first-order

condition for the jth strategy gives



Games 2021, 12, 20 14 of 16

Un,j(p−n, xj
n)

wn,`(j)(p−n)
− ln(pn,j)− (1− wn,`(j)(p−n)) ln

 ∑
k∈Rn,`(j)

exp

(
Un,k(p−n, xk

n)

wn,`(j)(p−n)

) = θ + 1.

This expression holds for any strategy for its specific nest. Now, we can set the first-
order conditions equal for probabilities over strategies sn,j, sn,k ∈ Sn not necessarily in the
same nest and re-arrange terms to obtain

ln(pn,j)− ln(pn,k) =

Un,j(p−n, xj
n)

wn,`(j)(p−n)
− (1− wn,`(j)(p−n)) ln

 ∑
j̃∈Rn,`(j)

exp

(
Un, j̃(p−n, xn, j̃)

wn,`(j)(p−n)

)
−

Un,k(p−n, xk
n)

wn,`(k)(p−n)
− (1− wn,`(k)(p−n)) ln

 ∑
k̃∈Rn,`(k)

exp

(
Un,k̃(p−n, xn,k̃)

wn,`(k)(p−n)

),

where the second line of the right hand side is subtracted from the first line of the right
hand side. By exponentiation, we see that the ratio of pn,j/pn,k gives

pn,j

pn,k
=

exp
(

Un,j(p−n ,xj
n)

wn,`(j)(p−n)

)
/
(
(1− wn,`(j)(p−n)) ln

(
∑ j̃∈Rn,`(j)

exp
(

Un, j̃(p−n ,xn, j̃)

wn,`(j)(p−n)

)))
exp

(
Un,k(p−n ,xk

n)
wn,`(k)(p−n)

)
/
(
(1− wn,`(k)(p−n)) ln

(
∑k̃∈Rn,`(k)

exp
(

Un,k̃(p−n ,xn,k̃)

wn,`(k)(p−n)

))) . (A3)

Similar to solving the weighted entropy problem, since all choice probabilities sum to
one, one gets that

pn,j + ∑
k 6=j

pn,k = 1.

Using Equation (A3) to write each pn,k as a function of pn,j and substituting in terms
one arrives at

pWME
n,j (p−n) =

exp
(

Un,`(j)(p−n ,xj
n)

wn,j(p−n)

)
∑k∈Rn,j

exp
(

Un,`(j)(p−n ,xk
n)

wn,`(j)(p−n)

)
(

∑k∈Rn,`(j)
exp

(
Un,k(p−n ,xk

n)
wn,`(j)(p−n)

))wn,`(j)(p−n)

∑LN
`=1

(
∑k̃∈Rn,`

(
Un,k̃(p−n ,xn,k̃)

wn,`(p−n)

))wn,`(p−n)
.
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