
games

Article

Quantum Mean-Field Games with the Observations of
Counting Type

Vassili N. Kolokoltsov 1,2

����������
�������

Citation: Kolokoltsov, V.N. Quantum

Mean-Field Games with the

Observations of Counting Type.

Games 2021, 12, 7. https://doi.org/

10.3390/g12010007

Received: 4 November 2020

Accepted: 6 January 2021

Published: 14 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the author. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Statistics, University of Warwick, Coventry CV4 7AL, UK; v.kolokoltsov@warwick.ac.uk
2 Higher School of Economics, 109028 Moscow, Russia
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uniqueness of the solutions for resulting limiting forward-backward system based on jump-type
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quantum game. The existence of solutions is suggested as an interesting open problem.
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1. Introduction

In [1], two recently developed branches of game theory, quantum games and mean
field games (MFGs), were merged, creating quantum MFGs. MFGs represent a very popular
recent development in game theory. It was initiated in [2,3]. For recent developments one
can consult monographs [4–7] and numerous references therein. Quantum games were
initiated by Meyer [8], Eisert, Wilkens and Lewenstein [9], and Marinatto and Weber [10],
and were dealt with afterwards in numerous publications, see, e.g., surveys [11,12], and
Chapter 13 of textbook [13].

Using approaches from [9,10], one can transform any game to a new quantum version.
This transformation modifies in a systematic way all properties of the games: equilibria,
their stability, etc. For instance, stability of the equilibria of the transformed Replicator
Dynamics for two-player two-action games was analyzed in [14]. ESS (evolutionary stable
strategies) for the transformed Rock-Paper-Scissors game was analyzed in [15], and for
3 player games in [16]. The transformations of the simplest cooperative games were
analyzed in [17]. In [18] the EWL (Eisert, Wilkens and Lewenstein) protocol was applied
to the Battle of Sexes, in [19] to the general prisoner’s dilemma and in [20] to the three
player quantum Prisoner’s dilemma. Peculiar behavior and remarkable phase transitions
were found. The extension of EWL protocol for games with continuous strategy space was
suggested in [21].

For application of related quantum concepts (including quantum probability) to
cognitive sciences we refer to [22,23] and references therein.

The main accent in all these developments was made on stationary or repeated games,
see, e.g., [24,25] for the latter, and [26] for their interpretation in economics. Not only for
games, but generally for quantum control the main stream of quantum control research is
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based on open loop controls, with a rare appearance of a feedback control, see, e.g., [27]
and [28].

The present paper initiates the study of the truly dynamic theory with observations of
counting type and with the strategies chosen by players in real time. Since direct continuous
observations are known to destroy quantum evolutions (so-called quantum Zeno paradox)
the necessary new ingredient for quantum dynamic games must be the theory of non-direct
observations and the corresponding quantum filtering. This theory is usually performed
in two forms: diffusive (or homodyne) type and counting type. In paper [1] the author
developed quantum MFGs based on diffusive type filtering. In the present paper quantum
MFGs are built for counting type quantum observations and filtering.

As a part of the construction we show that the limiting behavior of mean field in-
teracting controlled quantum particles (or N-player quantum game) can be described by
certain classical MFG forward-backward system of jump-type equations on manifolds, the
forward part being given by a new kind of nonlinear jump-type stochastic Schrödinger
equations. One of the objectives of the paper is to draw the attention of game theorists to
this type of games and this type of forward-backward systems, which were not studied
before, and no results even on the existence of solutions are available. These objects are
fully classical, but represent the limit of quantum games.

The main result states that any solution to this forward-backward system represents
an approximate N−1/4-Nash equilibrium for the initial N-player dynamic quantum game.

The content of the paper is as follows. In the next section we recall the basic theory of
quantum continuous measurement and filtering. In Section 3, as a warm-up, we discuss
briefly an example of a two-player quantum dynamic game on a qubit with observation
and feedback control of counting type. In Section 4 the new nonlinear equations are
introduced for the case of controlled counting detection and the convergence of N-particle
observed quantum evolutions to the decoupled system of these equations is obtained,
together with explicit rates of convergence. In Section 5 the MFG limits for quantum N-
player games are introduced and it is proven that solutions for the limiting MFG equations
specify ε-Nash equilibria for N-player quantum game, with ε of order N−1/4. The limiting
MFGs can be also looked at as classical MFGs, though complex-valued and evolving in
infinite-dimensional manifolds. In the final section we state the problem of existence of the
solutions, even in the simplest case of the control problem on a qubit.

2. Quantum Filtering of Counting Type

The general theory of quantum non-demolition observation, filtering and resulting
feedback control was built essentially in papers [29–31]. For alternative simplified deriva-
tions of the main filtering equations given below (by-passing the heavy theory of quantum
filtering) we refer to [32–36] and references therein. For the technical side of organising
feedback quantum control in real time, see, e.g., [37–39].

We shall describe briefly the main result of this theory.
The non-demolition measurement of quantum systems can be organised in two ver-

sions: photon counting and homodyne detection. As was stressed above, here we shall
deal only with counting measurements. In this case the main equation of quantum filtering
takes the form

dγt = −i[H, γt] dt + ∑
j
(−1

2
{L∗j Lj, γt}+ tr(LjγtL∗j )γt) dt + ∑

j

(
LjγtL∗j

tr(LjγtL∗j )
− γt

)
dN j

t , (1)

in terms of the density matrices γt, where H is the Hamiltonian of the free (not observed)
motion of a quantum system, the operators {Lj} define the coupling of the system with the

measurement devices, and the (counting) observed Poisson processes N j
t are independent

and have the position dependent intensities tr(L∗j Ljγt), so that the compensated processes

Mj
t = N j

t −
∫ t

0 tr(L∗j Ljγs) ds are martingales. By {A, B} we denote the anticommutator of
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two operators: {A, B} = AB + BA. In terms of the compensated processes Mj
t Equation (1)

rewrites as

dγt = −i[H, γt] dt + ∑
j
(LjγL∗j −

1
2
{L∗j Lj, γt}) dt + ∑

j

(
LjγtL∗j

tr(LjγtL∗j )
− γt

)
dMj

t. (2)

In this paper we shall deal only with the simplest case when the operators L are
unitary. In this case dMj

t = dN j
t − dt and Equations (1) and (2) become linear and take the

form

dγt = −i[H, γt] dt + ∑
j

(
LjγtL∗j − γt

)
dN j

t = −i[H, γt] dt + ∑
j

(
LjγtL∗j − γt

)
(dMj

t + dt). (3)

This dynamics preserves the set of pure states. Namely, if φ satisfies the equation

dφt = −iHφtdt + ∑
j
(Lj − 1)φtdN j

t = −iHφtdt + ∑
j
(Lj − 1)φt(dMj

t + dt), (4)

then γt = φt ⊗ φ̄t satisfies Equation (3).
The theory of quantum filtering reduces the analysis of quantum dynamic control and

games to the controlled version of evolutions (1). Two types of control can be naturally con-
sidered (see [40]). The players can control the Hamiltonian H, say, by applying appropriate
electric or magnetic fields to the atom, or the coupling operators Lj. Thus (3) extends to the
equation

dγt = −i[H + uĤ, γt] dt + ∑j

(
Lj(v)γtL∗j (v)− γt

)
dN j

t

= −i[H + uĤ, γt] dt + ∑j

(
Lj(v)γtL∗j (v)− γt

)
(dMj

t + dt),
(5)

with some self-adjoint Ĥ, control u and a family of unitary operators L(v) depending on a
control parameter v.

It is seen from Equation (5) that its evolution preserves traces of matrices. One can
also show that these evolutions preserve positivity of matrices γ (see, e.g., [36]).

3. Example of a Quantum Dynamic Two-Player Game

Let us stress again that the whole physics of quantum dynamic games with a feedback
control of a finite number of players is incorporated into the stochastic filtering Equation (1),
so that the quantum dynamic games are reduced to the stochastic games with jumps
governed by this equation with operators H and L that may depend on control. As a
warm-up before the mean-field setting let us consider the simple example of a zero-sum
quantum dynamic two-player game on a qubit, where a complete analytic solution can be
found.

Working with a qubit means that the Hilbert space of the quantum system is two
dimensional. Let L be fixed and the Hamiltonian be the sum of two parts, controlled by the
first and the second player respectively. Stochastic filtering Equation (1) simplifies to the
equation (omitting index t)

dψ = −iHψ dt + (Lψ− ψ) dNt, H = uH1 + vH2, (6)

u, v being control parameters of players I and II. Assume u ∈ [−U, U], v ∈ [−V, V] with
some positive U, V. Moreover, ψ has only two coordinates: ψ = (ψ0, ψ1). Using Ito’s rule
dNtdNt = dNt we find the equation for ψ−1

0 :

dψ−1
0 =

i
ψ2

0
(Hψ)0 dt− (Lψ)0 − ψ0

ψ0(Lψ)0
dNt.
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Consequently, again by Ito’s rule, we find the equation for w = ψ1/ψ0:

dw = i[w(HW)0 − (HW)1] dt + [(LW)1 − w(LW)0] dNt, (7)

where W = (w0, w1) = (1, w).
Let us choose the simplest possible L: L = σ3—the third Pauli matrix (diagonal with

diagonal elements 1 and −1). Then Equation (7) simplifies to

dw = i[w(ĤW)0 − (ĤW)1] dt− 2w dNt. (8)

The payoffs in quantum setting are given by certain operators, that is, they have the
form

P(t, W; u(.), v(.)) =
∫ T

t
(ψs, Jψs) ds + (ψT , FψT), (9)

where J and F are some self-adjoint operators. They may depend on the control parameters,
but we shall look for the case when they do not. In terms of w this payoff rewrites as

P(t, W; u(.), v(.)) =
∫ T

t

(Ws, JWs)

1 + |ws|2
ds +

(WT , FWT)

1 + |wT |2
. (10)

Thus the zero-sum quantum dynamic two-player game (with a feedback control) with
a fixed horizon T in this setting is the stochastic dynamic game with the state space C, with
the evolution described by the jump-type stochastic Equation (8) and payoff (10). The aim
of the first player is to maximise the expectation of (10) using an appropriate feedback
strategies u(.) = u(t, Wt). The second player tries to minimise it using an appropriate
feedback strategies v(.) = v(t, Wt).

The remarkable feature of this game is that the possible jumps are only of type
w→ −w. Consequently, in the coordinates r =

√
x2 + y2 and ξ = y/x (where w = x + iy),

the dynamics is deterministic. Therefore, if the operators J and F of current and terminal
payoffs are invariant under the transformation w → −w, the game can be reduced to a
deterministic differential game. This game is still very complicated.

Let us consider now the most trivial example of commuting operators H1 and H2
controlled by two players. To be concrete, let us chose H1 diagonal with diagonal elements
1 and 0, and H2 diagonal with elements 0 and 1. Then Equation (8) becomes linear in w:

dw = i[(u− v)w] dt− 2w dNt, (11)

and then the modulus ρ = |w|2 becomes the integral of motion: d(|w|2) = 0. Choosing
ρ = 1 for definiteness we get the equation for the angle φ on the circle ρ = 1:

d cos φ = (u− v) sin φ dt− 2 cos φ dNt. (12)

If J and F are invariant under the transformation w → −w, we can identify points
when cos φ differ only by a sign (so that possible jumps cos φ→ − cos φ become irrelevant),
and the evolution on a circle, given by the set φ ∈ [−π/2, π/2] with identified endpoints,
becomes deterministic:

d
dt

cos φ = (u− v) sin φ⇐⇒ φ̇ = −(u− v), (13)

that is a simple rotation. Choosing F = 0 and the simplest nontrivial J with zero diagonal
elements and real numbers j as non-diagonal terms. The payoff (10) for ρ = |w| = 1
simplifies to

P(t, W; u(.), v(.)) = j
∫ T

t
cos φs ds. (14)
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The HJB-Isaacs equation takes the form

∂S
∂t

+ max
u

(
−u

∂S
∂φ

)
+ min

v

(
v

∂S
∂φ

)
+ j cos φ = 0.

Assuming for definiteness that U > V, so that the first player has an edge in this game,
the equation rewrites as

∂S
∂t

+ (U −V)

∣∣∣∣ ∂S
∂φ

∣∣∣∣+ j cos φ = 0. (15)

This is HJB of a pure maximisation problem. It can be solved via the method of
viscosity solutions. For instance, let us find a stationary solution describing the average
winning of the first player per unit of time in a long lasting game. For this one searches for a
solution to (15) in the form S = λ(T− t) + S0(φ) with a constant λ. Then S0(φ) (obviously
defined up to a constant multiplier, so that we can set S0(0) = 0) satisfies the equation

− λ + (U −V)

∣∣∣∣∂S0

∂φ

∣∣∣∣+ j cos φ = 0. (16)

To guess the right solution one can derive from the meaning of this equation that S0
must be an even function of φ with maximum at φ = 0, decreasing on [0, π/2]. Hence
(∂S0/∂φ)(0) = 0 and thus λ = j and Equation (16) on [0, π/2] becomes

− (U −V)
∂S0

∂φ
= j(1− cos φ), (17)

so that
S0(φ) = −

j
U −V

(φ− sin φ).

This function (considered as periodically continued with period π to the whole line)
is smooth outside points (2k + 1)π/2, where it has convex kinks. Hence this is really the
viscosity solution to (16) confirming that our educated guess above was correct and that
λ = j is the income per unit of time to the first player for a long lasting game.

Another example for the case of quantum control (without games) was given in [28].

4. Controlled Limiting Stochastic Equation

Let X be a Borel space with a fixed Borel measure that we denote dx.
For a linear operator O in L2(X) we shall denote by Oj the operator in L2(XN) that

acts on functions f (x1, · · · , xN) as O acting on the variable xj. For a linear operator A in
L2(X2) we shall denote by Aij the operator in L2(XN) that acts as A on the variables xi, xj.

Let H and Ĥ be two self-adjoint operators in L2(X) and A a self-adjoint integral
operator in L2(X2) with the kernel A(x, y; x′, y′) that acts on the functions of two variables
as

Aψ(x, y) =
∫

X2
A(x, y; x′, y′)ψ(x′, y′) dx′dy′.

It is assumed that A is symmetric in the sense that it takes symmetric functions ψ(x, y)
(symmetric with respect to permutation of x and y) to symmetric functions.

Let us consider the quantum evolution of N particles driven by the interaction Hamil-
tonian

Hu(N) f (x1, · · · , xN) =
N

∑
j=1

(Hj + uj(t, Γ(j)
N )Ĥj) f (x1, · · · , xN) +

1
N ∑

i<j≤N
Aij f (x1, · · · , xN). (18)

Here continuous functions uj(t, γ) describe the controls of jth agent, who is supposed

to have access to the jth subsystem, namely to the partial trace Γ(j)
N,t (with respect to all

other variables but j) of the state ΓN,t. All uj are taken from a bounded interval [−U, U].
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In order to be able to carry out a feedback control we assume further that this quantum
system is observed via coupling with the collection of (possibly controlled) identical one-
particle unitary families L(v). That is, we consider the filtering Equation (3) of the type

dΨN,t = −iHu(N)ΨN,t dt +
N

∑
j=1

(Lj(vj(t, Γ(j)
N ))− 1)ΨN,t dN j

t . (19)

The corresponding density matrix ΓN,t = ΨN,t ⊗ΨN,t satisfies the equation of type (5):

dΓN,t = −i[Hu(N), ΓN,t]dt + ∑
j
(Lj(vj(t, Γ(j)

N ))ΓN,tL∗j (vj(t, Γ(j)
N ))− ΓN,t)dN j

t . (20)

The main ingredient in the construction of quantum MFG theory is the quantum
law of large numbers that states that as N → ∞, the limiting evolution of each particle
(precise conditions are given in the theorem below) is described by the nonlinear stochastic
equation

dψj,t = −i[H + u(t, γj,t)Ĥ + Aη̄t ]ψj,t dt + (L(vj(t, γj,t))ψj,t − ψj,t) dN j
t , (21)

where Aη̄t is the integral operator in L2(X) with the integral kernel

Aη̄t(x; y) =
∫

X2
A(x, y; x′, y′)ηt(y, y′) dydy′

and
ηt(y, z) = E(ψj,t(y)ψ̄j,t(z)).

The equation for the corresponding density matrix γj,t = ψj,t ⊗ ψ̄j,t writes down as

dγj,t = −i[H + u(t, γj,t)Ĥ, γj,t] dt− i[Aη̄t , γj,t]dt
+(L(vj(t, γj,t))γj,tL∗ − γj,t)dN j

t ,
ηt(y, z) = E(ψj,t(y)ψ̄j,t(z)) = Eγj,t(y, z).

(22)

For the analysis of the limiting behavior we use an approach from [41,42], where
the main measures of the deviation of the solutions ΨN,t to N-particle systems from the
product of the solutions ψt to the Hartree equations are the following positive numbers
from the interval [0, 1]:

αN(t) = 1− (ψt, ΓN,tψt).

In the present stochastic case, these quantities depend not just on the number of
particles in the product, but on the concrete choice of these particles. The proper stochastic
analog of the quantity αN(t) is the collection of random variables

αN,j(t) = 1− (ψj,t, ΓN,tψj,t) = 1− tr(γj,tΓN,t) = 1− tr(γj,tΓ
(j)
N,t), (23)

where the latter equation holds by the definition of the partial trace. Here γj,t is identified

with the operator in L2(XN) acting on the jth variable and Γ(j)
N,t denotes the partial trace of

ΓN,t with respect to all variables except for the jth.
Since evolutions (20) preserve the set of operators with the unit trace, (23) rewrites as

αN,j(t) = tr((1− γj,t)ΓN,t) = tr((1− γj,t)Γ
(j)
N,t). (24)

Assuming that all controls uj and vj are given by identical feedback functions u(t, γ),
v(t, γ) and that the initial conditions for Equation (19) is the tensor product of i.i.d. random
vectors, the expectations EαN(t) = EαN,j(t) are well defined (they do not depend on a
particular choice of particles).
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Expressions αN,j can be linked with the traces by the following inequalities, due to
Knowles and Pickl:

αN,j(t) ≤ tr|Γ(j)
N,t − γj,t| ≤ 2

√
2αN,j(t), (25)

see Lemma 2.3 from [42].

Theorem 1. Let H, Ĥ be self-adjoint operators in L2(X), with Ĥ bounded, and L(v) be a family
of unitary operators depending Lipschitz continuously on v:

‖L(v1)− L(v2)‖ ≤ κL|v1 − v2|. (26)

Let A be a symmetric self-adjoint integral operator A in L2(X2) with a Hilbert-Schmidt kernel,
that is a kernel A(x, y; x′, y′) such that

‖A‖2
HS =

∫
X4
|A(x, y; x′, y′)|2 dxdydx′dy′ < ∞, (27)

A(x, y; x′y′) = A(y, x; y′, x′), A(x, y; x′, y′) = A(x′, y′; x, y). (28)

Let the functions u(t, γ) and v(t, γ) with values in bounded intervals [−U, U] and [−V, V]
respectively be Lipschitz in the sense that

|u(t, γ)− u(t, γ̃)| ≤ κ tr|γ− γ̃|, |v(t, γ)− v(t, γ̃)| ≤ κ tr|γ− γ̃|. (29)

Let ψj,t be solutions to Equation (21) with i.i.d. initial conditions ψj,0, ‖ψj,0‖ = 1. Let ΨN,t
be the solution to the N-particle Equation (19) with Hu(N) given by (18) and with the initial
condition

ΨN,0(x1, · · · , xN) = ∏ ψj,0(xj).

Then

EαN(t) ≤ (exp{(7‖A‖HS + 12κ(‖Ĥ‖+κL +κ2
Lκ))t} − 1)

1√
N

. (30)

Proof. By Ito’s product rule for counting processes,

dαN,j(t) = −tr(dΓN,tγj,t)− tr(ΓN,t dγj,t)− tr(dΓN,t dγj,t), (31)

with the Ito product rule being dN j
t dNi

t = δ
j
i dN j

t .
Let us denote by I and II the parts of the differential dαN,j(t) that contain Lj and,

respectively, not.
Starting with II we obtain, denoting Aη̄t

j the operator Aη̄t acting on the jth variable,
that

I I = i tr([Hj + uj(t, γj,t)Ĥj + Aη̄t
j , γj,t]ΓN,t) dt + i tr(γj,t[H(N), ΓN,t]) dt

= i tr([Hj + uj(t, γj,t)Ĥj + Aη̄t
j , γj,t]ΓN,t) dt + i tr([γj,t, H(N)]ΓN,t) dt

= −i tr([Hj + uj(t, γj,t)Ĥj + Aη̄t
j , qj,t]ΓN,t) dt + i tr([H(N), qj,t]ΓN,t) dt

= i tr([H(N)− Hj − uj(t, γj,t)Ĥj − Aη̄t
j , qj,t]ΓN,t) dt = I I1 + I I2,

with
I I1 = i tr([

1
N ∑

m 6=j
Amj − Aη̄t

j , qj,t]ΓN,t) dt

and
I I2 = i tr([(uj(t, Γ(j)

N,t)− uj(t, γj,t))Ĥj, qj,t]ΓN,t) dt = Bj,t dt,

with
|Bj,t| ≤ 2|uj(t, Γ(j)

N,t)− uj(t, γj,t)| ‖Ĥ‖ ‖qj,tΨN,t‖
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≤ 2κ tr |Γ(j)
N,t − γj,t| ‖Ĥ‖

√
αN,j(t)

≤ 4κ
√

2αN,j(t)‖Ĥ‖
√

αN,j(t) = 4
√

2κ‖Ĥ‖αN,j(t),

where for the last inequality we used (25).
The term I I1 was dealt with in [1] (proof of Theorems 3.1) yielding the estimate

E|I I1| ≤ 7‖A‖HS

(
E αN(t) +

1√
N

)
. (32)

Let us turn to I. We have

I = −tr [(L(vj(t, γj,t))γj,tL∗(vj(t, γj,t))− γj,t)ΓN,t]dN j
t ,

−tr ∑k[(Lk(vk(t, Γ(k)
N,t))ΓN,tL∗k (vk(t, Γ(k)

N,t))− ΓN,t)γj,t]dNk
t

−tr[(Lj(vj(t, Γ(j)
N,t))ΓN,tL∗j (vj(t, Γ(j)

N,t))− ΓN,t)(Lj(vj(t, γj,t))γj,tL∗j (vj(t, γj,t))− γj,t)]dN j
t .

Since γj,t and Lk with k 6= j commute, it follows that all terms with k 6= j cancel.
Taking into account other cancelation (arising from the unitarity of Lj) we obtain

I = tr[ΓN,tγj,t − Lj(vj(t, Γ(j)
N,t))ΓN,tL∗j (vj(t, Γ(j)

N,t))Lj(vj(t, γj,t))γj,tL∗j (vj(t, γj,t))]dN j
t .

If Lj would be constant, this expression would vanish. In the present controlled
version, some work is required. First of all, writing γj,t = 1− qj,t we obtain

I = Cj,tdN j
t = Cj,t(dMj

t + dt)

with

Cj,t = tr[ΓN,tqj,t − Lj(vj(t, Γ(j)
N,t))ΓN,tL∗j (vj(t, Γ(j)

N,t))Lj(vj(t, γj,t))qj,tL∗j (vj(t, γj,t))].

To make the calculations more transparent, let us omit indices at v, γ, q, Γ. Thus

Cj,t = tr[Γq− L(v(t, Γ(j)
N,t))ΓL∗(v(t, Γ(j)

N,t))L(v(t, γ))qL∗(v(t, γ))]

= tr[L(v(t, γ))ΓL∗(v(t, γ))L(v(t, γ))qL∗(v(t, γ))]

−tr[L(v(t, Γ(j)
N,t))ΓL∗(v(t, Γ(j)

N,t))L(v(t, γ))qL∗(v(t, γ))]

= tr[
(

L(v(t, γ))ΓL∗(v(t, γ))− L(v(t, Γ(j)
N,t))ΓL∗(v(t, Γ(j)

N,t))
)

L(v(t, γ))qL∗(v(t, γ))]

= C1
j,t + C2

j,t,

where

C1
j,t = tr [(L(v(t, γ))− L(v(t, Γ(j)

N,t)))ΓL∗(v(t, γ))L(v(t, γ))qL∗(v(t, γ))]

= tr[(L(v(t, γ))− L(v(t, Γ(j)
N,t)))ΓqL∗(v(t, γ))]

= tr[ΓqL∗(v(t, γ))(L(v(t, γ))− L(v(t, Γ(j)
N,t)))],

C2
j,t = tr [L(v(t, Γ(j)

N,t)Γ(L∗(v(t, γ))− L∗(v(t, Γ(j)
N,t))L(v(t, γ))qL∗(v(t, γ))].

We can now estimate C1
j,t as I I2 above yielding

|C1
j,t| ≤ |

(
ΨN,tq, L∗(v(t, γ))(L(v(t, γ))− L(v(t, Γ(j)

N,t)))ΨN,t
)
|

≤ ‖qΨN,t‖ ‖L(v(t, γ))− L(v(t, Γ(j)
N,t))‖ ≤

√
αN,j(t)κLκ tr |γ− Γ(j)

N,t|
≤ 2
√

2κLκαN,j(t).
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With C2
j,t yet another add-and-subtract manipulation is required. Namely,

C2
j,t = tr [(L∗(v(t, γ))− L∗(v(t, Γ(j)

N,t))L(v(t, γ))qL∗(v(t, γ))L(v(t, Γ(j)
N,t)Γ] = C21

j,t + C22
j,t

with

C21
j,t = tr [(L∗(v(t, γ))− L∗(v(t, Γ(j)

N,t))L(v(t, γ))qL∗(v(t, γ))L(v(t, γ)Γ]

= tr [(L∗(v(t, γ))− L∗(v(t, Γ(j)
N,t))L(v(t, γ))qΓ],

C22
j,t = tr [(L∗(v(t, γ))− L∗(v(t, Γ(j)

N,t))L(v(t, γ))qL∗(v(t, γ))(L(v(t, Γ(j)
N,t)− L(v(t, γ)))Γ].

The first term is estimated as above yielding

|C21
j,t | ≤ 2

√
2κLκαN,j(t).

And the second one is estimated as

|C22
j,t | ≤ κ2

L|v(t, Γ(j)
N,t)− v(t, γ)|2 ≤ 8κ2

Lκ2αN,j(t).

Thus
dαN,j(t) = I I1 + (Bj,t + Cj,t) dt + Cj,tdMj

t.

Therefore, since Mj
t is a martingale and its differential does not contribute to the

expectation, it follows that

d EαN(t) ≤ 7‖A‖HS

(
E αN(t) +

1√
N

)
dt + (4

√
2κ‖Ĥ‖+ 8

√
2κLκ + 8κ2

Lκ2)E αN(t) dt.

Applying Gronwall’s inequality yields (30).

5. Quantum MFG

Let us consider the quantum dynamic game of N players, where the dynamics of the
density matrix ΓN,t is given by the controlled dynamics of type (20):

dΓN,t = −i ∑j[Hj + uj(t, Γ(j)
N,t)Ĥj, ΓN,t]− i

N ∑l<j≤N [Al j, ΓN,t]

+∑j(Lj(vj(t, Γ(j)
N,t))ΓN,tL∗j (vj(t, Γ(j)

N,t))− ΓN,t)dN j
t .

(33)

Assume as above that controls uj and vj of each jth player can be chosen from some
bounded closed intervals [−U, U] and [−V, V] respectively, that the initial matrix is the
product of iid states,

ΓN,0(x1, · · · , xn; y1, · · · , yN) =
N

∏
j=1

ψj(xj)ψj(yj),

and that the payoff of each player on the interval [t, T] is given by the expression

Pj(t, W; u(.)) =
∫ T

t

(
tr(JjΓN,s)−

c
2

u2
j (s)

)
ds + tr(FjΓN,T), (34)

where J and F are some operators in L2(X) expressing the current and the terminal costs of
the agent, Jj and Fj denote their actions on the jth variable, constants c ≥ 0 measure the
cost of applying control u.

Remark 1. (i) We choose the simplest payoff function. Of course more general dependence on
u, v is possible. As long as payoff is convex in u and v the results below are still valid. (ii) Also
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everything remains in force if only H or only L is controlled, that is either u or v is not present in
all formulas.

Notice that by the property of the partial trace, the payoff (34) rewrites as

Pj(t, W; u(.)) =
∫ T

t

(
tr(JjΓ

(j)
N,s)−

c
2

u2
j (s)

)
ds + tr(FjΓ

(j)
N,T), (35)

so that it really depends explicitly only on the individual partial traces Γ(j)
N,t, which can be

considered as quantum analogs of the positions of classical particles.
Let us stress again that, after all equations arising from physics are written, our

quantum dynamic N-player game can be formulated in fully classical terms. Namely, the
goal of each jth player is to maximise the expectation of payoff (35) under the evolution (33)
depending on all controls u = (uj). The information available to the jth player is the

‘position’ of jth player, which is the partial trace Γ(j)
N,t, and thus the actions of jth player

are chosen among the feedback strategies uj that are measurable functions uj(t, Γ(j)
N,t). An

additional technical assumption that we are using in the analysis below is that the class of
feedback strategies is reduced to Lipschitz continuous functions of partial traces. Therefore
both the information setting and technical assumptions are slightly different from the
simpler setting of two-player game of Section 3, where players were assumed to define
their strategies on the basis of the whole state (not a partial trace). The restriction to partial
traces is necessary to uncouple the dynamics in the limit of N → ∞.

The limiting evolution of each player can be expected to be described by the equations

dγj,t = −i[H + uj(t, γj,t)Ĥ, γj,t] dt− i[Aηt , γj,t] dt
+(L(vj(t, γj,t))γj,tL∗(vj(t, γj,t))− γj,t) dN j

t ,
(36)

with

ηt(x, y) = lim
N→∞

1
N

N

∑
j=1

γj,t(x, y),

and with payoffs given by

Pj(t, W; u(.)) =
∫ T

t

(
tr(Jγj,s)−

c
2

u2
j (s)

)
ds + tr(Fγj,T). (37)

For pure states γj,t = ψj,t ⊗ ψ̄j,t this payoff turns to

Pj(t, W; u(.)) =
∫ T

t

(
(ψj,t, Jψj,t)−

c
2

u2
j (s)

)
ds + (ψj,T , Fψj,T). (38)

Let us say that the pair of functions (u, v)MFG
t (γ) = (u, v)MFG(t, γ) with t ∈ [0, T] and

γ from the set of density matrices in L2(X), and ηMFG
t (x, y) with x, y ∈ X, t ∈ [0, T], solve

the limiting MFG problem if (i) (u, v)t(γ) is an optimal feedback strategy for the stochastic
control problem (36), (37) under the fixed function ηt = ηMFG

t and (ii) ηMFG
t arises from the

solution of (36) under fixed (u, v)t = (u, v)MFG
t .

Theorem 2. Let the conditions on H, L, A from Theorem 1 hold. Assume that the pair (u, v)MFG
t (γ)

and ηMFG
t (x, y) solves the limiting MFG problem and moreover uMFG

t is Lipschitz in the sense of
inequality (29). Then the strategies

(u, v)j(t, ΓNt) = (u, v)MFG
t (Γ(j)

N,t),

form a symmetric ε-Nash equilibrium for the N-agent quantum game described by (33) and (34),
where strategies of all players are sought among measurable controls (u, v)(t, γ) that depend
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Lipschitz in γ in the sense of inequality (29), with ε = C(T)N−1/4, C(T) depending on ‖A‖HS,
‖Ĥ‖, κ, κL.

Proof. Assume that all players, except for one of them, say the first one, are playing
according to the MFG strategy (u, v)MFG(t, Γ(j)

N,t), j > 1, and the first player is following

some other strategy (ũ, ṽ)(t, Γ(1)
N,t). By the law of large numbers (which is not affected by

a single deviation), all η
j
t are equal and are given by the formula ηt = Eγj,t for all j > 1.

Moreover, EαN,j(t) = EαN(t) are the same for all j > 1.
Following the proof of Theorem 1 we obtain

α̇N,j(t) = I + I I1 + I I2 (39)

with the same I, I I1, I I2, as in the proof of Theorem 1, though (u, v) being (u, v)MFG(t, Γ(j)
N,t),

j > 1, and (ũ, ṽ)(t, Γ(1)
N,t) for j = 1. Looking first at j > 1 we note that up to an additive

correction of magnitude not exceeding 4‖A‖HS/N expression I I1 can be substituted by the
expression

i tr([
1
N ∑

m 6=j,1
Amj − Aη̄t

j , qj,t]γN,t),

which is then dealt with exactly as in the proof of Theorem 1 (with N − 1 instead of N)
yielding the same estimate (30) (with a corrected multiplier) for EαN(t) = EαN,j(t), j > 1,
that is

EαN(t) ≤ (exp{(7‖A‖HS + 12κ(‖Ĥ‖+κL +κ2
Lκ))t} − 1)

1√
N
(1 + 4‖A‖HS). (40)

The same estimate is obtained for EαN,1(t) (even without the correcting term 4‖A‖HS)
yielding

EαN,j(t) ≤ C(T)N−1/2

for all j and a constant C(T) depending on ‖A‖HS,κ,κL, ‖Ĥ‖.
We can now compare the expected payoffs (35) received by the players in the N-player

quantum game with the expected payoff (37) received in the limiting game. For each jth
player the difference is bounded by

E
∫ T

t
|tr(J(Γ(j)

N,s − γj,s))| ds + E|tr(F(Γ(j)
N,T − γj,T))|.

Since,
|tr(J(Γ(j)

N,s − γj,s))| ≤ ‖J‖tr|Γ(j)
N,s − γj,s|,

and by (25),

tr|Γ(j)
N,s − γj,s| ≤ 2

√
2αN,j(s),

it follows that the expectation of the difference of the payoffs is bounded by

2
√

2(‖J‖T + ‖F‖) sup
t

E
√

αN,j(t)

≤ 2
√

2(‖J‖T + ‖F‖) sup
t

√
EαN,j(t) ≤ (‖J‖T + ‖F‖)C(T)N−1/4,

with a constant C(T) depending on ‖A‖HS,κ,κL, ‖Ĥ‖.
But by the assumption of the Theorem, (u, v)MFG

t is the optimal choice for the limiting
optimization problem. Hence the claim of the theorem follows.
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6. Discussion

The problem of proving existence or uniqueness for the solution of the limiting MFG
on manifold seems to be nontrivial. We suggest it as an interesting open problem.

Let us give a bit more detail for the simplest case of two-dimensional Hilbert space (a
qubit), as in Section 3.

When there is no control v (that is, operator L is constant) and there is no free (un-
controlled) part of the Hamiltonian, the limiting Equation (21) simplify to the equation
(omitting indices j and t for simplicity)

dψ = −i[uĤ + Aη̄ ]ψ dt + (Lψ− ψ) dNt. (41)

Moreover, ψ has only two coordinates: ψ = (ψ0, ψ1). Using Ito’s rule as in Section 3,
we find the equation for w = ψ1/ψ0:

dw = i[u(w(ĤW)0 − (ĤW)1) + w(Aη̄W)0 − (Aη̄W)1] dt + ((LW)1 − w(LW)0) dNt, (42)

where W = (w0, w1) = (1, w).
The most common interaction operator between qubits is the operator describing

the possible exchange of photons, A = a∗1 a2 + a∗2 a1, with the annihilation operators a1
and a2 of the two atoms. This interaction is given by the tensor A(j, k; m, n) such that
A(1, 0; 0, 1) = A(0, 1; 1, 0) = 1 with other elements vanishing. Hence Aη

10 = η01, Aη
01 = η10,

with other elements vanishing. Let us take also the simplest possible L: L = σ3—the third
Pauli matrix. Then Equation (42) simplifies to

dw = i[u(w(ĤW)0 − (ĤW)1) + η̄10w2 − η̄01] dt− 2w dNt. (43)

If Ĥ is diagonal with diagonal elements h0, h1, this turns to

dw = i[uw(h0 − h1) + η̄10w2 − η̄01] dt− 2w dNt. (44)

In this simplest case, choosing h0 − h1 = 1 and c = 0 in payoff (38), we obtain the HJB
equation for the individual control in the form

∂S
∂t + maxu

(
ux ∂S

∂y − uy ∂S
∂x

)
+ (W,JW)

1+|w|2

+ ∂S
∂y Re (η̄10w2 − η̄01)]− ∂S

∂x Im (η̄10w2 − η̄01)] + (S(−x,−y)− S(x, y)) = 0.
(45)

Already this equation on the complex plane C, describing optimal control for the
individual quantum feedback control in a qubit, is quite nonstandard. And to deal with
the corresponding forward-backward system one needs not only its well-posedness in a
certain generalized sense, but some continuous dependence on parameters. May be some
method from [43] or [28] can be used to get insight into this problem.

As a future research direction it is worth mentioning the general development of
the theory of the limiting classical mean-field games, which are mean-field games on
infinite dimensional curvilinear manifolds based on Markov processes with jumps, highly
fascinating and nontrivial objects. Of course usual questions of classical mean-field games
on the connection between stationary and time dependent solutions are fully open here,
as well as the theory of the corresponding master equation. On the other hand, quantum
dynamic games of finite number of players (touched upon in Section 3) lead to new
nonlinear functional-differential equations on manifolds of Hamilton-Jacobi or Isaacs type,
which are also worthy of proper analysis.
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