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Abstract: Multi-agent collaboration is greatly important in order to reduce the frequency of errors
in message communication and enhance the consistency of exchanging information. This study
explores the process of evolutionary decision and stable strategies among multi-agent systems,
including followers, leaders, and loners, involved in collaboration based on evolutionary game
theory (EGT). The main elements that affected the strategies are discussed, and a 3D evolution
model is established. The evolutionary stability strategy (ESS) and stable conditions were analyzed
subsequently. Numerical simulation results were obtained through MATLAB simulation, and they
manifested that leaders play an important role in exchanging information with other agents, accepting
agents’ state information, and sending messages to agents. Then, with the positivity of receiving
and feeding back messages for followers, implementing message communication is profitable for
the system, and the high positivity can accelerate the exchange of information. At the behavior
level, reducing costs can strengthen the punishment of impeding the exchange of information and
improve the positivity of collaboration to facilitate the evolutionary convergence toward the ideal
state. Finally, the EGT results revealed that the possibility of collaboration between loners and others
is improved, and the rewards are increased, thereby promoting the implementation of message
communication that encourages leaders to send all messages, improve the feedback positivity of
followers, and reduce the hindering degree of loners.

Keywords: collaboration; consistency; evolutionary stability strategies; multi-agent; evolutionary
game

1. Introduction

A multi-agent system is an important branch of distributed artificial intelligence,
and several independent agents are adopted to achieve common goals in this system.
These agents have an autonomous ability to coordinate with each other. In multi-agent
systems, the research on the system’s collaboration control has mainly involved track-
ing [1–4], formation [5–7], swarm [8–10], rendezvous [11], distributed filtering [12], and
consistency [13,14]. Collaboration consistency elucidates that the state of all agents tends
toward the same tendency, and it illustrates the rule of interacting and transmitting in-
formation when agents cooperate with other agents; additionally, it describes the process
of information exchange between each agent and other agents. When agents are able
to deal with various unpredictable situations and suddenly variable environments, the
effectiveness of collaboration is reflected in reaching consensus on goals as the environment
changes. Therefore, the agreement of multi-agents to achieve common goals is a primary
condition for collaborative control.

In previous works, collaboration consistency was first applied to solve the problem
of fusion under uncertain information in multi-sensors in 1974 [15]. In the subsequent
few years, Borkar et al. [16,17] studied synchronous asymptotic consistency, which was
adopted to investigate the decision of a distributed system in the field of control theory.
In 1995 [18], Vicsek et al. proposed a classical model, that is, the dispersion system of
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multi-agents moving in a plane to simulate the phenomenon of particles presenting co-
herent behavior. Through the introduction of graph theory and matrix theory in 2003 [19],
Jadbabaie explained the theory of consistency and found that the sets of agents’ neighbors
varied over time in the system. Subsequently, R. Olfati et al. [20–22] described a framework
of theory to figure out a consistency problem for dynamic systems. In 2010 [23], researchers
observed the problem of consistency and synchronization of multi-agent systems in com-
plex networks. Over the last few decades, researchers have explored this collaboration
from different aspects. Some researchers focused on controlling groups of autonomous
mobile vehicles to implement concentrated and decentralized collaboration control [24].
Two basic controllers of leader–follower control were proposed to allow the followers to
maintain a relative position and avoid collisions in front of the obstacles. Different from
other studies on leader–follower approaches, a recent article has suggested that the orien-
tation deviations of leader–followers be explicitly expressed in the model to successfully
solve collaboration controls when the agents move backward [25].

In previous studies, the agents’ consistency has been investigated in simple integra-
tors, whereas agents are complex in practical engineering applications. In addition, it
is not in line with the conditions of actual applications under complex and changeable
environments.

In recent years, with the continuous efforts of researchers, the consistency of static
and dynamic networks has been adopted in various fields to satisfy practical applications.
In terms of the consistency of collaboration in formation control, leadership–follow strat-
egy [26,27] indicates that some agents are leaders and others are followers who track the
position and direction of the leaders at a certain distance. Some researchers [28] investigated
the leader–follower formation control model based on uncertain nonholonomic-wheeled
mobile robots. They also expressed that the leaders’ signal can be smooth, feasible, or
nonfeasible. Adopting the estimated states of a leader, they transform formation errors
into external oscillator states in an augmented system that presents additional control
parameters that overcome actuation difficulties and reduce formation errors. One arti-
cle [29] manifested the problem of formation control based on the leader–follower model
in 3D space, which explores the persistent excitation of the desired formation to achieve
the exponential stabilization of actual formation in terms of shape and scale. In general,
designing these controllers to realize and describe the collaboration of agents is easy. How-
ever, considering the operating capability of different agents is difficult. Ignoring the
perspective of global programming limits the effectiveness of the collaboration, which can
be resolved in a distributed coordination approach. Then, for the consistency of collabora-
tion, researchers [30,31] have investigated swarming motility in various networks. Tanner
and Jadbabaie [32] proved the stability of swarm control and proposed a new protocol of
consistency to analyze the stable properties of mobile agents and stabilize their inter-agent
distances, adopting the rules of decentralized and nearest-neighbor interaction with ex-
changing information. The discontinuities of control laws are introduced via these changes.
Nonsmooth analysis is used to accommodate arbitrary switching based on the network
of interactions. The main result shows that regardless of switching, a common velocity
vector is guaranteed to reach a convergence state when the network remains connected all
along. Moreover, the collaboration based on the evolutionary game is analyzed thoroughly
in small-world and scale-free networks [33–35]. Meanwhile, researchers described the
consistency of fixed and switched topology in a multi-agent system [36–38], where each
agent is a universal linear dynamic system and a linear model of nonlinear networks. Thus,
a unified framework for complex networks is set up.

In summary, the existing studies only consider the interactions of leaders–followers.
In reality, environmental factors play an indispensable role in the exchange of information.
Therefore, the interactions of three stakeholders involved in the collaboration should be
investigated.

Hence, in response to this discussion, the process of evolutionary decision and stable
strategies among three stakeholders, such as followers, leaders, and loners, involved in
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the collaboration of a multi-agent system based on evolutionary game theory (EGT) is
demonstrated. The main elements that affected the strategies of the agents are discussed,
and the 3D replicator evolution equation is established to obtain the evolutionary stability
strategy (ESS). Stable conditions are acquired through the theory of Lyapunov stability.
The reasonability of the proposed mechanism is confirmed by simulation experiments.
This research may help the agents to make optimal decisions and may provide theoretical
guidance to agents to implement collaboration and adapt to complex environments. The
contributions of this study are presented as follows:

(1) We establish a tripartite dynamic evolution model of followers, leaders, and loners
for collaboration. Different from the previous game model, which involved only two
stakeholders of leadership–followers, this model investigates the influence of factors and
the exchange of information among the three stakeholders effectively.

(2) The main parameters of the strategies are involved in feedback, sending, and
receiving messages for three parties, namely, the followers, leaders, and loners, respectively;
these parameters are analyzed in the simulation discussion. Moreover, other influential
factors, including the degree of positivity and the possibility of interaction, are discussed
in the game model. We figure out the evolutionary stable strategies (ESS) of agents under
different stability conditions and scenarios.

(3) The simulation results indicate that when the possibility of collaboration between
loners and others is improved and when the rewards are increased, the implementation
of message communication can be promoted to encourage leaders to send all messages,
improve the positivity of feedback for followers, and reduce the hindering degree of loners.

(4) Finally, conclusions are obtained and policy implementation is put forward to offer
suggestive guidance of actual application.

The remainder of this paper is presented as follows: We describe the evolution of the
game model in Section 2. Then, Section 3 illustrates the equilibrium points and stability
analysis. In Section 4, the simulation results and discussion are confirmed. Finally, our
conclusions and policy enlightenment are figured out in Section 5.

2. Model

In this section, the dynamic collaboration model based on evolutionary game theory
is proposed. Then, the payoff matrix of the agents is obtained according to the parameters
of the agents’ behavior. In addition, the tripartite replication dynamic equation is derived.

2.1. Descriptions and Notes of the Parameters in a Multi-Agent System

In a multi-agent system, each agent can work by itself or in an environment and
interact with other agents. Thus, mutually independent agents deal with complex problems
in the coordinated approach to achieve a common goal. However, agents may be disturbed
by external factors in a hostile environment when completing tasks, thereby resulting in the
failure of normal communication. We assume that the interferential factors are described
by the loners’ behavior. As shown in Figure 1, in the multi-agent system model, different
agents perform their own various tasks. Initially, leaders send messages to followers and
loners. Then, the followers decide whether to provide feedback to the leaders after receiving
messages while sending messages to the loners. Subsequently, the loners can select whether
or not to receive messages. If the loners receive messages, then the destructive power of
the loner decreases when they communicate with each other. Otherwise, the destructive
power of the loner increases in the exchange of information in a changing environment.

All agents have the right to select their own decisions in the communication process.
Therefore, the set of strategies for followers is {feedback, not feedback}. Regardless of
sending all or partial messages to the leaders, the followers receive messages and obtain
payoffs. Then, the followers decide whether or not the processed information is fed back to
the leaders. They can obtain rewards when feeding back to the leaders. Otherwise, they
obtain nothing and do not involve cost.
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Figure 1. Multi-agent system model.

For leaders, the set of strategies is {all messages, partial messages}. They obtain payoffs
PL1 with the cost of CL1 when sending all messages. When sending partial messages, they
obtain PL2 payoffs under the cost of CL2. Leaders can gain rewards RL as the feedback
messages are received. We assume that PL1 is greater than PL2 , and CL1 is more than CL2.

In terms of loners, the strategy set is {receive, not receive}. Pz1 represents the payoff
of loners receiving messages from followers with the cost of Cz1. The loners obtain payoffs
Pz2 when messages from the leaders are received under the cost of Cz2. R represents
the payoff of unsuccessfully receiving messages. Interactive rewards I f and IL can be
obtained as loners interact with the followers and leaders, respectively.

Other parameters and notes are described as follows: Pf 1 represents the payoffs of
receiving messages for followers at the cost of C f 1. Pf 2 indicates the payoffs that followers
obtain as they send messages to loners with the cost of C f 2. We adopt parameters α and
β to describe the degree of positivity for feedback and receiving, respectively, to define the
positivity. p represents the probability of successful sending. γ is the interactive possibility
of agents communicating with others. For interactive rewards, we stipulate that the value
of I f is the same as that of IL. Specific parameters and notes can be represented in Table 1.

Table 1. Parameter descriptions and notes.

Parameters Descriptions Notes

Pf 1, C f 1 Profits and costs of followers receiving messages, respectively. Pf 1 > 0, C f 1 > 0
Pf 2, C f 2 Profits and costs of sending messages to loners, respectively. Pf 2 > 0, C f 2 > 0
R f , C f Rewards and costs of followers sending feedback messages to leaders. R f > 0, C f > 0

α Positive degree of feedback to leaders. α > 0
β Positive degree of reception. β > 0

PL1, CL1 Profits and costs of leaders sending all messages, respectively. PL1 > 0, CL1 > 0
PL2, CL2 Profits and costs of leaders sending partial messages, respectively. PL1 > PL2 > 0, CL1 > CL2 > 0
RL, CL Rewards and costs of receiving messages from followers, respectively. RL > 0, CL > 0

p Probability of sending messages successfully. 0 < p < 1
λ λ = 1 indicates all messages, 0 < λ < 1 represents partial messages.

Pz1, Cz1 Profits and costs of loners receiving messages from followers. Pz1 > 0, Cz1 > 0
Pz2, Cz2 Profits and costs of receiving messages from leaders, respectively. Pz2 > 0, Cz2 > 0

R Profits of receiving messages unsuccessfully. R > 0
γ Possibility of interaction when loners receive messages successfully. 0 < γ < 1

I f , IL Rewards of interacting with followers and leaders respectively. I f > 0, IL > 0
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2.2. Payoff Matrix of Agents

The proportion of strategies in the agents’ population can be denoted as follows.
x (0 ≤ x ≤ 1) is the probability of followers feeding back messages. On the contrary, the
probability of nonfeedback is 1− x . For leaders, y (y = 1) represents the proportion of
sending all messages. 0 < y < 1 indicates the proportion of sending partial messages. In
terms of loners, assuming that the probability of receiving messages is z , 1− z denotes
the proportion of nonreceiving messages. The corresponding payoff matrix is shown in
Table 2.

Table 2. Payoff matrix of followers, leaders, and loners.

All (y = 1) Partial (0 < y < 1)

Receive (z) Not receive (1−z) Receive (z) Not receive (1−z)

Feedback (x) (Fop1, Lep1, Lop1) (Fop2, Lep2, Lop2) (Fop3, Lep3, Lop3) (Fop4, Lep4, Lop4)

Not feedback
(1− x) (Fop5, Lep5, Lop5) (Fop6, Lep6, Lop6) (Fop7, Lep7, Lop7) (Fop8, Lep8, Lop8)

In accordance with the different strategies decided by agents, the corresponding
payoffs can be obtained. Fop, Lep, and Lop represent the payoffs of followers, leaders, and
loners, respectively. The specific expression is shown in the following equations:

Fop1 = βPf 1 + βPf 2 − C f 1 − C f 2 + αR f − C f (1)

Lep1 = pPL1 − CL1 + βRL − CL (2)

Lop 1 = βPz1 + βPz2 − Cz1 − Cz2 + γ
(

I f + IL

)
(3)

Lep2 = pPL1 − CL1 + βRL − CL (4)

Lep2 = pPL1 − CL1 + βRL − CL (5)

Lop 2 = R (6)

Fop3 = λ
(

βPf 1 + βPf 2 − C f 1 − C f 2 + αR f − C f

)
(7)

Lep3 = pPL2 − CL2 + λ(βRL − CL) (8)

Lop 3 = λ(βPz1 + βPz2 − Cz1 − Cz2) + γ
(

I f + IL

)
(9)

Fop4 = λ
(

βPf 1 + βPf 2 − C f 1 − C f 2 + αR f − C f

)
(10)

Lep4 = pPL2 − CL2 + λ(βRL − CL) (11)

Lop 4 = R (12)

Fop5 = βPf 1 + βPf 2 − C f 1 − C f 2 (13)

Lep5 = pPL1 − CL1 (14)

Lop 5 = βPz1 + βPz2 − Cz1 − Cz2 + γ
(

I f + IL

)
(15)

Fop6 = βPf 1 + βPf 2 − C f 1 − C f 2 (16)

Lep6 = pPL1 − CL1 (17)

Lop 6 = R (18)

Fop7 = λ
(

βPf 1 + βPf 2 − C f 1 − C f 2

)
(19)

Lep7 = pPL2 − CL2 (20)
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Lop 7 = λ(βPz1 + βPz2 − Cz1 − Cz2) + γ
(

I f + IL

)
(21)

Fop8 = λ
(

βPf 1 + βPf 2 − C f 1 − C f 2

)
(22)

Lep8 = pPL2 − CL2 (23)

Lop 8 = R (24)

2.3. Replication Dynamic Equation of Agents

The expected revenue can be obtained according to the payoff matrix. Let Ex represent
the expected payoffs of followers when they feedback messages. Similarly, E1−x represents
the expected payoffs of nonfeedback, as shown in the equation where Ex is the average of
expected payoffs for followers. Ex , E1−x, and Ex can be shown as follows:

Ex = yzFop1 + y(1− z)Fop2 + (1− y)zFop3 + (1− y)(1− z)Fop4 = [λ + y(1− λ)Fop1] (25)

E1−x = yzFop5 + y(1− z)Fop6 + (1− y)zFop7 + (1− y)(1− z)Fop8 = [λ + y(1− λ)Fop5] (26)

Ex = xEx + (1− x)E1−x (27)

Hence, we can obtain the dynamic equation of followers as follows:

Fx =
dx
dt

= x
(
Ex − Ex

)
= x(1− x)[λ + y(1− λ)]

(
αR f − C f

)
(28)

They obtain the expected payoffs Ey when the leaders send all messages. Similarly,
E1−y is the expected payoffs of sending partial messages, as shown in the equation where
Ey is the average of the expected payoffs.

Ey = xzLep1 + x(1− z)Lep2 + (1− x)zLep5 + (1− x)(1− z)Lep6 = pPL1 − CL1 + x(βRL − CL) (29)

E1−y = xzLep3 + x(1− z)Lep4 + (1− x)zLep7 + (1− x)(1− z)Lep8 = pPL2 − CL2 + xλ(βRL − CL) (30)

Ey = yEy + (1− y)E1−y (31)

Therefore, the dynamic equation of the leaders can be expressed as follows:

Fy =
dy
dt

= y
(
Ey − Ey

)
= y(1− y)[p(PL1 − PL2) + (CL2 − CL1) + x(βRL − CL)(1− λ) ] (32)

As loners receive messages, they obtain the expected payoffs Ez. Similarly, E1−z
indicates the expected payoffs of nonreceiving, as shown in the equation where Ez is the
average of the expected payoffs.

Ez = xyLop1 + y(1− x)Lop5 + (1− y)xLop3 + (1− x)(1− y)Lop7 = Lop3 + y(1− λ)(βPz1 − Cz1 + βPz2 − Cz2) (33)

E1−z = xyLop2 + y(1− x)Lop6 + (1− y)xLop4 + (1− x)(1− y)Lop8 = R (34)

Ez = zEz + (1− z)E1−z (35)

The dynamic equation of loners can be expressed as follows:

Fz =
dz
dt

= z
(
Ez − Ez

)
= z(1− z)

{
[β(Pz1 + Pz2)− (Cz2 + Cz1)][λ + y(1− λ)] + γ

(
I f + IL

)
− R

}
(36)

Finally, the 3D dynamic equations of the system are expressed by the replicated
dynamic equations of the followers, leaders, and loners, as follows:

Fx =
dx
dt

= x(1− x)[λ + y(1− λ)](αRf − Cf) (37)
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Fy =
dy
dt

= y(1− y)[p(PL1 − PL2) + (CL2 −CL1) + x(βRL −CL)(1− λ)] (38)

Fz =
dz
dt

= z(1− z){[β(Pz1 + Pz2)− (Cz2 + Cz1)][λ + y(1− λ)] + γ(If + IL)− R} (39)

3. Equilibrium Point and Stability Analysis

To simplify the calculation, complex formulas of these dynamic equations can be
expressed by simple letters as follows:

a = αRf −Cf, b = βRL −CL, d = p(PL1 − PL2) + (CL2 −CL1), e = β(Pz1 + Pz2)− (Cz2 + Cz1), f = γ(If + IL)− R (40)

Hence, 3D dynamic equations can also be expressed as follows:

Fx =
dx
dt

= x(1− x)[λ + y(1− λ)]a (41)

Fy =
dy
dt

= y(1− y)[d + xb(1− λ))] (42)

Fz =
dz
dt

= z(1− z){e[λ + y(1− λ)] + f} (43)

Theorem 1. To gain equilibrium points, let Fx, Fy , and Fz should be equal to 0 in Equations
(41)–(43). Under the condition of pure strategies, we can obtain eight equilibrium points p1(0,0,0),
p2(0,0,1), p3(1,0,0), p4 (1,1,0), p5 (1,0,1), p6 (0,1,0), p7 (0,1,1), and p8 (1,1,1). According to
dynamic equations, the loners use two equilibrium points for pure strategies, such as p9 ( d

(λ−1)b ,
λ

λ−1 ,0) and p10( d
(λ−1)b , λ

λ−1 ,1). Among them, 0 < d
(λ−1)b < 1, 0 < λ

λ−1 < 1.

Proof of Theorem 1. Substituting the value of x = 0 or 1, y = 0 or 1, z = 0 or 1 into
Equations (41)–(43), equations Fx, Fy , and Fz equal to 0 are satisfied. As a result,
p1, p2, p3, p4, p5 , p6 , p7 , and p8 are equilibrium points of the system model. As
z = 0, 0 < x < 1, 0 < y < 1, if λ + y(1− λ) = 0 and d + xb(1− λ) = 0, that
is, x = d

(λ−1)b , y = λ
λ−1 is plugged into Equations (41)–(43), where Fx = 0, Fy = 0 and

Fz = 0 can be obtained. Therefore, p9 and p10 are also equilibrium points. The multi-agent
system model has no mixed strategy equilibrium point. �

According to the method of Frideman [39,40], x is an evolutionary stable strategy as
F(x) = 0 and F′(x) = 0. Jacobian matrix analyses of the stability of the system should
be adopted for convenient calculation. The Jacobian matrix for the system can be described
as follows:

J =


∂F(x)

∂x
∂F(x)

∂y
∂F(x)

∂z
∂F(y)

∂x
∂F(y)

∂y
∂F(y)

∂z
∂F(z)

∂x
∂F(z)

∂y
∂F(z)

∂z

 (44)

The specific matrix representation is shown in the following equation:

J =

 (1− 2x)a[λ+ y(1− λ)] x(1− x)a(1− λ) 0
y(1− y)b(1− λ) (1− 2y)[d + bx(1− λ)] 0

0 z(1− z)[e(1− λ)] (1− 2z){e[λ+ y(1− λ)] + f}

 (45)

Initially, the equilibrium points are carried out into the Jacobian matrix to obtain the
eigenvalues. Then, whether the equilibrium points are stable or not is judged according to
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the eigenvalues and limiting conditions; the results are shown in Table 3. Specifically, the
eigenvalue A1 of p9 and p10 is shown as follows:

A1 =

{
bλ

λ− 1

(
−da

b

)[
1− d

(λ− 1)b

]} 1
2

(46)

Table 3. Stability analysis of equilibrium points.

Equilibrium Points Eigenvalues λ1 Eigenvalues λ2 Eigenvalues λ3 Stability Condition

p1(0, 0, 0) aλ. d eλ + f aλ < 0, d < 0, eλ + f < 0
p2(0, 0, 1) aλ d −(eλ + f ) aλ < 0, d< 0, eλ + f >0

p3(1, 0, 0) −aλ d + b(1− λ) eλ + f aλ > 0, d + b(1− λ) <
0, eλ + f < 0

p4(1, 1, 0) −a −[d + b(1− λ)] e + f a > 0, d + b(1− λ) >
0, e + f < 0

p5(1, 0, 1) −aλ d + b(1− λ) −(eλ + f ) aλ >
0, d + b(1− λ)< 0, eλ + f >0

p6(0, 1, 0) a −d e + f a< 0, d >0, e + f < 0
p7(0, 1, 1) a −d −(e + f ) a< 0, d >0, e + f > 0

p8(1, 1, 1) −a −[d + b(1− λ)] −(e + f ) a > 0, d + b(1− λ) >
0, e + f > 0

p9

(
d

(λ−1)b , λ
λ−1 , 0

)
A1 −A1 f unstable

p10

(
d

(λ−1)b , λ
λ−1 , 1

)
A1 −A1 − f unstable

4. Simulation Results and Discussion

The replication dynamic equation (RD) and the evolutionary stable strategy (ESS)
constitute the core concepts of evolutionary game theory. They describe the dynamic
convergence process to the steady-state of the evolutionary game. In RD, the time step of t
represents the derivative of the dynamic system of followers, leaders, and loners as follows:

dx(t)
dt

= x(t)(1− x(t))[λ + y(t)(1− λ)]a (47)

dy(t)
dt

= y(t)(1− y(t)[d + x(t)b(1− λ))] (48)

dz(t)
dt

= z(t)(1− z(t)){e[λ + y(t)(1− λ)] + f} (49)

Simulation experiments are carried out with different parameters to demonstrate the
influence of the parameters on the convergence rate under the restricted condition of ESS.
The length of time is set to 30.

4.1. Scenarios of Different Parameters with Constraint Conditions in the Equilibrium Points
4.1.1. Scenario 1

In point p1(0, 0, 0), we can set the initial values of parameters λ = 0.5, α = 0.2, β = 0.2,
γ = 0.1, p = 0.3, Rf = 20, Cf = 5, PL1 = 15, PL2 = 10, CL1 = 3, CL2 = 1, RL = 20, CL = 5,
Pz1 = 15, Pz2 = 15, Cz1 = 1,Cz2 = 1, If = 15, IL = 15, R = 10. The number of leaders with high
comprehensive ability and loners with weak cooperation ability is in the minority due to
the agents’ different abilities. At the initial time of dynamic evolution, that is, t = 0, we
assume that the proportion of followers x equals 0.5, the proportion of leaders y equals 0.3,
and the proportion of loners z equals 0.2. The evolutionary results are denoted in Figure 2.
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Figure 2. Evolutionary results of p1(0, 0, 0) are shown under a corresponding constraint condition, (a) represents the
convergence of probability with time, and (b) shows the results of dynamic simulation in three dimensions.

For aλ < 0, d < 0, eλ + f < 0, that is, αR f − C f < 0, p(PL1 − PL2 ) + (CL2 − CL1 ) <

0 and λ[β(Pz1 + Pz2)− (Cz1 + Cz2)] < R − γ
(

I f + IL

)
, we find that the cost of tasks

completed together is higher than the payoffs in the multi-agent system, thereby leading to
the probability of feedback, sending, and receiving tending to zero over time. If the leaders
do not send messages, then the followers and loners will not receive and feedback messages.
This phenomenon is not conducive to the collaboration and interaction of the system.

4.1.2. Scenario 2

According to the stability conditions of p2(0, 0, 1), the parameter values are set as
follows: λ = 0.5, α = 0.2, β = 0.2, γ = 0.3, p = 0.3, Rf = 20, Cf = 5, PL1 = 15, PL2 = 10, CL1 = 3,
CL2 = 1, RL = 20, CL = 5, Pz1 = 20, Pz2 = 20, Cz1 = 1,Cz2 = 1, If = 15, IL = 15, R = 10. The
probability of strategies remains unchanged. The simulation results are shown in Figure 3.

Under the condition of αR f − C f < 0, p(PL1 − PL2 ) + (CL2 − CL1 ) < 0 and λ[β(Pz1+ Pz2)− (Cz1 + Cz2)] >
R− γ(I f + IL), the payoffs of receiving Pz and the possibility of interaction γ are improved for loners, compared with
their initial values. Hence, the probability of receiving tends to 1 for loners. Therefore, the willingness to receive messages
is enhanced as the payoffs of receiving and the possibility of interaction are improved. When the loners are willing to
receive messages, their damage is reduced; thus, the ability to collaborate is enhanced in the multi-agent system.
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4.1.3. Scenario 3

In terms of the stability conditions of p3(1, 0, 0), the parameter values are assumed as
follows: λ = 0.5, α = 0.5, β = 0.2, γ = 0.1, p = 0.3, Rf = 20, Cf = 5, PL1 = 15, PL2 = 10, CL1 = 3,
CL2 = 1, RL = 20, CL = 5, Pz1 = 15, Pz2 = 15, Cz1 = 1,Cz2 = 1, If = 15, IL = 15, R = 10. The
probability of strategies remains unchanged. The simulation results are shown in Figure 4.
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For the condition of αR f − C f > 0, p(PL1 − PL2 ) + (CL2 − CL1 ) < [βRL − CL](λ− 1)

and λ[β(Pz1 + Pz2)− (Cz1 + Cz2)] < R − γ
(

I f + IL

)
, the positivity of feedback α is im-

proved for followers, compared with initial values. Hence, the probability of the strategies
of feedback tends to 1 for followers. That is, the followers can track leaders and share
information with each other in real-time, strengthening their ability to cooperate with each
other in the multi-agent system. The possibility that agents are influenced by others with
the power to destroy collaboration is reduced; thus, the ability to collaborate is enhanced
in the system.

4.1.4. Scenario 4

On the basis of the stability conditions of p4(1, 1, 0), the parameters values are λ = 0.5,
α = 0.5, β = 0.2, γ = 0.1, p = 0.5, Rf = 20, Cf = 5, PL1 = 25, PL2 = 15, CL1 = 3, CL2 = 1, RL = 20,
CL = 5, Pz1 = 15, Pz2 = 15, Cz1 = 1,Cz2 = 1, If = 15, IL = 15, R = 10. The probability of the
strategies remains unchanged. The simulation results are shown in Figure 5.
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For the condition of αR f − C f > 0, p(PL1 − PL2 ) + (CL2 − CL1 ) > [βRL − CL](λ− 1)

and λ[β(Pz1 + Pz2)− (Cz1 + Cz2)] < R− γ
(

I f + IL

)
, the probability of successful sending

p and payoffs PL1, PL2 is improved for leaders, compared with the parameter values at
point p4(1, 0, 0). Hence, the probability of the strategies to send also tends to 1; that is,
sending accurate messages is a prerequisite of successful communication in the multi-agent
system.

4.1.5. Scenario 5

According to the stability conditions of p5(1, 0, 1), the parameter values are set to
λ = 0.5, α = 0.5, β = 0.2, γ = 0.3, p = 0.3, Rf = 20, Cf = 5, PL1 = 15, PL2 = 10, CL1 = 5, CL2 = 1,
RL = 15, CL = 1, Pz1 = 20, Pz2 = 20, Cz1 = 1,Cz2 = 1, If = 15, IL = 15, R = 5. The probability of
strategies remains unchanged. The simulation results are shown in Figure 6.
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Figure 6. Evolutionary results of p5(1, 0, 1) shown under a corresponding constraint condition, (a) represents the conver-
gence of probability with time, and (b) shows the results of dynamic simulation in three dimensions.

For the condition of αR f − C f > 0, p(PL1 − PL2 ) + (CL2 − CL1 ) < [βRL − CL](λ− 1)

and λ[β(Pz1 + Pz2)− (Cz1 + Cz2)] > R − γ
(

I f + IL

)
, the positivity of feedback α is im-

proved for followers, and the payoffs of unreceiving R decreases, compared with the
parameters’ values in p2(0, 0, 1). Hence, the probability of the strategies of feedback also
tends to 1 for the followers; that is, the followers can track leaders and share information
with each other in real time, strengthening the ability of agents to cooperate with each other.
The damage of loners is reduced due to the decrease in R; thus, the ability to collaborate is
enhanced in the multi-agent system. Figure 6 shows the difference in graphs.

4.1.6. Scenario 6

On the basis of the stability conditions of p6(0, 1, 0), the parameter values are λ = 0.5,
α = 0.2, β = 0.2, γ = 0.1, p = 0.5, Rf = 10, Cf = 5, PL1 = 20, PL2 = 20, CL1 = 3, CL2 = 1, RL = 20,
CL = 5, Pz1 = 15, Pz2 = 15, Cz1 = 1, Cz2 = 1, If = 15, IL = 15, R = 10. The probability of strategies
remains unchanged. The simulation results are shown in Figure 7.

For the condition of αR f −C f< 0, p(PL1 − PL2 ) + (CL2 − CL1 ) <0 and λ[β(Pz1 + Pz2)

− (Cz1 + Cz2)] < R− γ
(

I f + IL

)
, the positivity of feedback α and rewards R f decreased

for the followers, compared with the parameter values in point p5(1, 1, 0). Meanwhile, the
payoffs of sending PL1 , PL2 reduce for leaders. Hence, the probability of the strategies of
feedback tends to 0. The convergence speed of the strategy of receiving declines. In this
scenario, loners do not send messages on time, and the followers are inactive to feedback,
resulting in delayed collaboration and tracking errors in the multi-agent system.
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Figure 7. Evolutionary results of p6(0, 1, 0) shown under a corresponding constraint condition, (a) represents the conver-
gence of probability with time, and (b) shows the results of dynamic simulation in three dimensions.

4.1.7. Scenario 7

For the stability conditions of p7(0, 1, 1), the parameter values are λ = 0.5, α = 0.2,
β = 0.2, γ = 0.1, p = 0.5, Rf = 10, Cf = 5, PL1 = 20, PL2 = 10, CL1 = 3, CL2 = 1, RL = 20, CL = 5,
Pz1 = 20, Pz2 = 20, Cz1 = 1, Cz2 = 1, If = 15, IL = 15, R = 10. The probability of strategies
remains unchanged. The simulation results are shown in Figure 8.
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Figure 8. Evolutionary results of p7(0, 1, 1) shown a corresponding under a constraint condition, (a) represents the
convergence of probability with time, and (b) shows the results of dynamic simulation in three dimensions.

For the condition of αR f −C f< 0, p(PL1 − PL2 ) + (CL2 − CL1 ) <0 and β(Pz1 + Pz2)−
(Cz1 + Cz2) > R− γ

(
I f + IL

)
, the payoffs of receiving Pz1 , Pz2 are improved for the lon-

ers, compared with the parameter values at point p6(0, 1, 0). Hence, the probability of the
strategies of receiving also tends to 1. In this scenario, the loners can receive messages and
promote the probability of interaction, reducing the destructive possibility of tracking to
cooperate in the multi-agent system.

4.1.8. Scenario 8

In terms of the stability conditions of p8(1, 1, 1), the parameter values are λ = 0.5,
α = 0.5, β = 0.2, γ = 0.1, p = 0.5, Rf = 20, Cf = 5, PL1 = 20, PL2 = 10, CL1 = 3, CL2 = 1, RL = 20,
CL = 5, Pz1 = 20, Pz2 = 20, Cz1 = 1, Cz2 = 1, If = 15, IL = 15, R = 10. The probability of strategies
remains unchanged. The simulation results are shown in Figure 9.
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Under the conditions of αR f −C f > 0, p(PL1− PL2 )+ (CL2−CL1 ) > [βRL −CL](λ− 1)

and β(Pz1 + Pz2) − (Cz1 + Cz2) > R − γ
(

I f + IL

)
, the payoffs of feedback R f and the

positivity of feedback α are improved for the followers, compared with the parameter
values at point p8(1, 1, 1). Hence, the probability of the strategies of feedback also tends to
1. In this scenario, the convergence speed of the loners decreases and that of the followers
and leaders increases, enhancing the communication and cooperation capabilities of target
tracking in the multi-agent system.

4.2. Impacts of Different Parameters on the Evolutionary Results

This analysis indicates that point p8(1, 1, 1) is an ideal ESS at eight equilibrium points.
Though the initial values of the parameters do not affect the evolutionary results, they can
affect the speed of convergence. Subsequently, we investigate the effect of parameters, such
as the proportion of messages λ, the positivity of feedback α and receiving β, the possibility
of interaction γ , and the probability of successful sending p on mutual cooperation. The
evolutionary results of λ, α, β, γ , and p are shown in the following section.

4.2.1. Influence of Parameter λ on Dynamic Evolution

Leaders send messages with a certain proportion, which can affect the accuracy of
communication throughout the system. Sending all messages provides the basic guarantee
for target tracking. On the contrary, lack of information leads to the deviation in tracking
and affects the feedback of followers. Hence, exploring the effect of parameter λ on
followers, leaders, and loners is necessary. The other parameters are set as follows: α = 0.5,
β = 0.2, γ = 0.1, p = 0.5, Rf = 20, Cf = 5, PL1 = 20, PL2 = 10, CL1 = 3, CL2 = 1, RL = 20, CL = 5,
Pz1 = 20, Pz2 = 20, Cz1 = 1, Cz2 = 1, If = 15, IL = 15, R = 10. When λ is 0.2, 0.5, and 0.8, the
simulation results are as shown in Figure 10.

For the followers, as λ increases, the probability of feedback remains unchanged,
but the convergence speed increases with different proportions of feedback. Sending all
messages can enhance leaders’ performance to motivate the effectiveness of followers’
feedback. With the increase in λ, the probability and convergence speed of sending are
unchanged. λ does not affect the probability and convergence speed of receiving of
the loners.
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Figure 10. Evolutionary results of λ shown under different probabilities of strategy. λ is 0.2, 0.5, and 0.8, from left to right.
(a–c) show that the probability of strategy x changes when time t is under the different conditions of λ = 0.2, 0.5, and 0.8.
(d–f) show that the probability of strategy y changes when time t is under the different conditions of λ = 0.2, 0.5, and 0.8.
(g–i) show that the probability of strategy z changes when time t is under the different conditions of λ = 0.2, 0.5, and 0.8.

4.2.2. Influence of Parameter α on Dynamic Evolution

Figure 11 elucidates the impact of parameter α on evolutionary results under different
agents in the multi-agent system. The other parameters are assumed as follows: λ = 0.5,
β = 0.2, γ = 0.1, p = 0.5, Rf = 20, Cf = 5, PL1 = 20, PL2 = 10, CL1 = 3, CL2 = 1, RL = 20, CL = 5,
Pz1 = 20, Pz2 = 20, Cz1 = 1, Cz2 = 1, If = 15, IL = 15, R = 10. The values of α are set to 0.2, 0.5,
and 0.8, and the simulation results are shown in the following section.
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Figure 11. Evolutionary results of α shown under different probabilities of strategies x, y, and z in (a), (b), and (c),
respectively.

When the positivity of feedback α of the followers increases, the probability of feedback
builds up from 0 to 1; thus, α can affect the selection of strategy of the followers. However,
the probability of sending is not affected by the increase in α as it approaches 0. The
convergence speed of sending is improved when the value of α increases. For the loners,
with the increase in α, the probability of receiving z remains unchanged, and z tends to 0
under different α. Thus, the feedback’s positivity evidently affects dynamic evolution.

4.2.3. Influence of Parameter β on Dynamic Evolution

The positivity of receiving messages of a certain proportion can affect the accuracy of
communication throughout the system. In fact, if messages are received by the leaders and
loners, then this provides the basic guarantee for target tracking. On the contrary, lack of
receiving information leads to deviation in tracking and affects the feedback for followers.
Hence, exploring the effect of parameter β on followers, leaders, and loners is necessary.
Other parameters are λ = 0.5, α = 0.2, γ = 0.1, p = 0.5, Rf = 20, Cf = 5, PL1 = 20, PL2 = 10,
CL1 = 3, CL2 = 1, RL = 20, CL = 5, Pz1 = 20, Pz2 = 20, Cz1 = 1, Cz2 = 1, If = 15, IL = 15, R = 10.
When β is 0.2, 0.5, and 0.8, the simulation results are as shown in Figure 12.
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respectively.

As β increases, the probability of feedback remains unchanged, but the probability
of sending y and receiving z increases from 0 to 1. Receiving feedback messages and
transmitting messages can enhance the system’s performance to motivate the effectiveness
of feedback, sending, and receiving. With the increase in β, the probability and the
convergence speed of sending of the followers are unchanged. In terms of loners and
leaders, β does not affect the convergence and the speed of receiving and sending.
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4.2.4. Influence of Parameter γ on Dynamic Evolution

Figure 13 illustrates the impact of parameter γ on the evolutionary results under
different agents in the multi-agent system. Other parameters are assumed as follows:
λ = 0.5, α = 0.5, β = 0.2, p = 0.5, Rf = 20, Cf = 5, PL1 = 20, PL2 = 10, CL1 = 3, CL2 = 1, RL = 20,
CL = 5, Pz1 = 20, Pz2 = 20, Cz1 = 1, Cz2 = 1, If = 15, IL = 15, R = 10. The values of γ are set to
0.2, 0.5, and 0.8, and the simulation results are shown in the following section.
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respectively.

When the possibility of interaction γ increases, the probability of feedback and send-
ing remains unchanged. We found that γ can affect the selection of strategy for loners. The
probability of receiving increases from 0 to 1 with the increase in γ, and its convergence
speed also increases. The dynamic evolution of collaboration is enhanced with the increase
in interactive possibilities in multi-agent systems. In summary, the possibility of interac-
tion γ increases, thereby enhancing the positivity of receiving messages. Therefore, this
condition is favorable when communicating with each other.

4.2.5. Influence of Parameter p on Dynamic Evolution

The probability of successful sending with different proportions can affect the accuracy
of communication throughout the system. Hence, exploring the effect of parameter p on
the system is necessary. Other parameters are λ = 0.5, α = 0.5, β = 0.2, γ = 0.1, Rf = 20, Cf = 5,
PL1 = 20, PL2 = 10, CL1 = 3, CL2 = 1, RL = 20, CL = 5, Pz1 = 20, Pz2 = 20, Cz1 = 1, Cz2 = 1, If = 15,
IL = 15, R = 10. When p is 0.2, 0.5, and 0.8, the simulation results are shown in Figure 14.
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With the increase in p, the probability of receiving z remains unchanged, but the
probability of sending y increases from 0 to 1. The convergence speed of feedback and
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sending is improved. In fact, if the messages are sent by leaders successfully, then the basic
guarantee for target tracking is provided. On the contrary, lack of sending information leads
to deviation in tracking and affects the feedback. As p increases, the convergence speed of
feedback increases for the followers. In terms of loners, p does not affect the convergence
speed of receiving. In summary, the probability of successful sending p increases, thereby
enhancing the positivity of feedback and sending messages to communicate with each other.

5. Conclusions and Policy Enlightenment

In summary, we have demonstrated the evolution of collaboration based on evolu-
tionary games. This study initially develops the model of different strategies, different
parameters, and interaction in a multi-agent system of followers, leaders, and loners. Sub-
sequently, after setting up the replication dynamic equation of different roles, equilibrium
points are obtained to confirm the constraint conditions of the evolutionary stable strategy.
Then, the research focuses on the influence of strategies and parameters on the dynamic
evolutionary results of collaboration in different scenarios. The simulation results indicate
that to gain the optimal results, followers should feedback messages to leaders positively
while receiving messages from the leaders and transmitting messages to the loners. The
leaders send all messages to the followers and loners; the loners receive the messages
from the followers and leaders. In fact, the results have shown that the leaders played
an important role in the collaboration. If all messages are sent by the leaders successfully,
then they provide a basic guarantee for the accurate exchange of information. On the
contrary, the lack of sending all information leads to a deviation in tracking and an impact
on feedback. In terms of a multi-agent system, collaboration is key to ensure that all agents
harmoniously form a unified entirety in an expectant approach.

In addition, according to the simulation results, we found that the consistency of
collaboration is in an optimal state when the stakeholders agree to achieve a common goal
of exchanging information. That is, leaders send all messages, followers feedback messages
to leaders on time, and loners receive messages positively, as shown in Figure 9. This result
demonstrates that the effectiveness of our proposed model is reasonable.

This study elucidates some policy implementations of the model realized by the
followers, leaders, and loners for collaboration in evolutionary games. The probability of
strategies is affected by their obtained payoffs and costs in the system. Therefore, promoting
their payoffs is necessary to enhance the positivity of interaction while decreasing costs of
communication with each other. For the followers, the payoffs of receiving and transmitting
are increased to motivate the positivity of feedback messages. Then, improving the rewards
of feedback in the communication process between followers and leaders is reasonable. For
the leaders, sending all messages is necessary to provide the basis of mutual communication.
On the contrary, if partial messages are sent, then integral communication is affected in
the multi-agent system. Meanwhile, reducing the costs of sending can enhance interaction
with agents. The probability of the successful sending of messages should be improved
to provide a basic guarantee for collaboration, which can ensure that all agents receive
messages. For the loners, increasing the possibility of interaction with followers and leaders
is the most important to reduce hindrance to the system. That is, as much interaction as
possible between loners and others is a good decision, thereby ensuring that all agents
harmoniously form a unified entirety in an expectant approach. Then, through cooperation
between agents, the basic capabilities of each agent are improved, and their social behavior
can be further understood from the interaction of the agents. In summary, in a dynamic and
open environment, agents with different goals must coordinate their goals and resources.
During conflicts between resources and goals, if the coordination of agents fails to reach
a better situation, then a deadlock occurs. This condition causes the agents to be unable
to carry out their next step of work. On the contrary, if all agents can reach an agreement
of collaboration in a multi-agent system, then the exchange of information is enhanced to
improve cooperation.
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