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1. Introduction

A feature of the classic alternating offers bargaining game of Rubinstein (1982) [1]
is that at each stage, with some non-zero probability 1− δ, a rejected proposal leads to
termination of the game, and all players receive a zero payoff. This set-up gives a distinct
advantage to the proposing player: the risk of not receiving a payoff at all makes the
responding players more amenable to accepting whatever is put on the table. This note
examines a version of the game without this type of proposer advantage. In particular, we
assume that with probability 1− δ, rejection terminates the game for the proposer, but not
for the responders.

Such a modification to the original game can be motivated on empirical grounds.
In particular, in the realm of political formation, responders do not face punishment for
rejecting a proposal. After an election, it is typically the winner of that election—say, party
A—who has the initiative to form a governing coalition. This party can be thought of as
the proposer. It will make an offer to the parties it wishes to form a government with,
and these parties can in turn accept or reject this proposal. Should party A’s offer be
found unreasonable and accordingly rejected, it is not uncommon for another party to take
the initiative and to build a successful coalition from which party A is excluded. This is
precisely what happened in the Belgian formation of 2019–2020. The Flemish nationalist
party NVA received the highest share of the vote (16%), and was therefore given the
initiative to form a government. However, after their program was found to be unpalatable
by the other parties, a government was eventually formed that excluded them [2].

Removing the cost of rejection has some non-trivial consequences. In the first place,
Shaked’s classic result that any partition of the pie can be sustained in SPE whenever
there are three or more players (see [3] pp. 63–65) no longer holds. In our version of the
game, there exist many SPE—even delay equilibria and equilibria that imply perpetual
disagreement—but the expected payoff that players realize in these SPE is unique. Hence,
given an immediate agreement, only one partition of the pie is feasible in SPE. A further
consequence of our modeling choice is that there exists a proposer disadvantage. Players
get to propose in a rotating order; the further a player is from being the proposer, the higher
his/her expected payoff in the game.
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2. The Game

A set of players N = {1, . . . , n} is tasked with the division of a perfectly divisible
unit good. At each period t = 0, 1, 2, . . ., in a rotating order [1, 2 . . . , n, 1, 2 . . .], a player
becomes the proposer; he/she gets to make a proposal or offer z with zi ≥ 0 for all i = 1, . . . , n
and z1 + . . . + zn = 1. The other players, the responders, simultaneously decide whether to
accept or reject the proposer’s offer. Whenever a time t proposal z is unanimously accepted
by all responders, the proposed partition of the good is implemented, and the game ends;
in such a case, each player i’s resulting time t utility is given by zi. Whenever a player’s
time t proposal is not unanimously accepted, it is rejected. In that case, the game continues
to time t + 1, where the next player in the above-described rotating order becomes the
proposer. With probability δ (0 < δ < 1), all players in N remain in the game as the
game moves to time t + 1, and with probability 1− δ, the time t proposer, say player i, is
eliminated, receiving zero utility at time t + 1. If i is eliminated, the game continues at
t + 1 as described above with the player set N \ i, and player i is henceforth skipped in the
proposer order. An important distinction with the classic version of this game is that the
expected utility of perpetual disagreement is well-defined, and not equal to zero.

2.1. Preliminaries

A time t history, denoted ht, specifies for all periods s up until time t, the pro-
posals that are made, and the coalition of players that survive period s. Specifically,
ht = ((x0, S), . . . , (xt−1, S′)) where ∅ ⊂ S′ ⊆ S ⊆ N. Furthermore, let h0 be the empty
history. The set of all time t histories ht is denoted Ht.

A strategy fi for player i is a set of functions { f t
i }∞

t=0 that specifies player i’s actions at
each subgame, where he/she is still an active player. Let ZS be the set of proposals available
to the players in S ∈ 2N \ ∅—that is, ZS := {(zi)i∈S | zi ≥ 0 and ∑i∈S zi = 1}—and let
Z := {ZS | S ∈ 2N \∅}. When i is the proposer, f t

i : Ht → Z; that is, based on the history
of play up until time t, player i’s strategy prescribes which proposal he/she should make
to the surviving coalition. When i is a responder, f t

i : Ht ∪ Z → {Y,N}; based on the play
of the game up until time t, the current proposal on the table, and the time t coalition of
active players, player i’s strategy specifies whether he/she should accept (Y) or reject (N).
A tuple f = ( f1, . . . , fn) specifying each player’s strategy is called a strategy profile. Given a
strategy profile f , f−i denotes the tuple of strategies played by players in N \ i.

The (expected) payoff a player i ∈ N realizes when the strategy profile f is played is
denoted as Ui( f ). The payoff he/she realizes in the subgame that results from history ht is
denoted Ui( f |ht).

A Nash equilibrium is a strategy profile f such that for all i ∈ N, Ui( f ) ≥ U1( f ′i , f−i)
for all strategies f ′i . A subgame perfect equilibrium (SPE) is a strategy profile f that is a Nash
equilibrium in each subgame. More precisely, Ui( f |ht) ≥ Ui( f ′i |ht, f−i|ht) for all strategies
f ′i and histories ht.

2.2. The One-Shot Deviation Principle

Since payoffs are not discounted, it is not immediate that the one-shot deviation
principle applies. To see that it does, let f and f ′ be two strategy profiles that coincide for
periods 0 to t− 1. Then, for all i ∈ N and for all ht ∈ Ht, the following holds:

|Ui( f )−Ui( f ′)| = δt|Ui( f |ht)−Ui( f ′|ht)| ≤ δt · 1. (1)

If under the strategy profile f , with some probability, a terminal node is reached prior
to time t, then since f ′ coincides with f prior to time t, this same terminal node is reached
under f ′ with the same probability, and players realize the same physical payoffs. Hence,
the expected payoff a player i realizes from all terminal nodes prior to t is the same under
f as it is under f ′, and in Equation (1), the two cancel each other out. Furthermore, the
difference between the continuation values implied by two different strategy profiles is
bounded from above by 1 at each subgame. From (1), it follows that for any ε > 0, there is a
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t such that for all strategy profiles f , f ′ coinciding for the first t periods, |Ui( f )−Ui( f ′)| < ε.
This condition, called continuity at infinity, is sufficient for the one-shot deviation principle
to apply. That is, in verifying whether a strategy profile f is SPE, we may restrict attention
to one-period deviations from these strategies.

3. The Two-Player Case

In order to construct an SPE, assume that player 1 always proposes x and 2 always
proposes y, and that there is immediate agreement. If player 2 were to reject player 1’s
proposal x, then in the next round, he/she obtains y2 in case player 1 is not eliminated from
the game (an event that occurs with probability δ) and the entire pie if player 1 is eliminated
from the game (an event that occurs with probability (1− δ)). Similarly, if player 1 were to
reject player 2’s proposal y, then he/she realizes x1 in case player 2 survives this rejection,
and the entire pie otherwise.

x2 ≥ δy2 + (1− δ) · 1
y1 ≥ δx1 + (1− δ) · 1 (2)

x1 + x2 = y1 + y2 = 1

Solving with equality yields the following:

x =

(
δ

1 + δ
,

1
1 + δ

)
and y =

(
1

1 + δ
,

δ

1 + δ

)
This allows for the construction of an SPE. Consider the strategy profile f̂ = ( f̂1, f̂2),

defined as follows:

f̂1: As proposer, propose x; as responder, accept v iff v1 ≥ y1.
f̂2: As proposer, propose y; as responder, accept v iff v2 ≥ x2.

Note that in this strategy profile, it is better to be a responder than a proposer.

Proposition 1. The strategy pair f̂ is an SPE.

Proof. It is sufficient to show that f̂1 is optimal against f̂2 since the other case is analogous.
Suppose, thus, that player 2 plays strategy f̂2. If player 1 is the proposer, following f̂1
yields x1. If player 1 deviates by offering player 2 less than x2, player 2 rejects and player
1’s payoff is δy1 + (1− δ) · 0 = x1. If player 1 deviates by offering player 2 more than x2,
player 2 accepts, and player 1’s payoff is strictly below x1. Hence, at even t, player 1 cannot
profitably deviate from f̂1.

Consider an odd time t at which player 1 is responding to a proposal v by player 2.
By accepting, player 1 obtains v1, while rejecting yields a payoff of δx1 + (1− δ) · 1 = y1.
Hence, it is optimal for player 1 to accept player 2’s proposal v if v1 ≥ y1, and to reject it
otherwise, as prescribed by f̂1.

It is clear that the value from perpetual disagreement in this model is not zero, like
in the classical model. As it turns out, the players’ expected payoffs from perpetual
disagreement are given by the solution to system (2).

Lemma 1. Player i’s (i = 1, 2) time-t expected payoff from perpetual disagreement is xi if t is even,
and yi if t is odd.

Proof. Note first that the values of perpetual disagreement in two identical subgames are
the same. Thus, let v = (v1, v2) be the players’ values of perpetual disagreement at even
t, and w = (w1, w2) players’ values of perpetual disagreement at odd t. Observe that for
player 2, the expected payoff from perpetual disagreement when he/she is the responder is
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equal to the expected payoff of his/her value of perpetual disagreement in the next round
when he/she is the proposer. That is,

v2 = δw2 + (1− δ)

Similarly, w1 = δv1 + (1− δ). Further note that the players’ payoffs at every terminal
node are either given by (1, 0) or (0, 1). Thus, (v1, v2) = p(1, 0) + (1− p)(0, 1) for some
probability p, which implies that v1 + v2 = 1. Similarly, w1 + w2 = 1. Thus, v = x and
w = y, as desired.

An immediate implication of Lemma 1 is that f̂ is not the only SPE in this game. It
even implies that perpetual disagreement can be supported in SPE. To see this, consider
the profile f̃ = ( f̃1, f̃2), defined as follows:

f̃1: As proposer, propose x; as responder, accept v iff v1 > y1.
f̃2: As proposer, propose y; as responder, accept v iff v2 > x2.

Evidently, this strategy profile induces perpetual disagreement, but even so, it is
an SPE.

Proposition 2. The strategy pair ( f̃1, f̃2) is an SPE.

Proof. Again, it is sufficient to show that f̃1 is optimal against f̃2. Suppose that player
1 is the proposer. If he/she follows f̃1, the result is perpetual disagreement, which by
Lemma 1 yields x1. If player 1 offers player 2 strictly less than x2, player 2 rejects, leading
to perpetual disagreement, and player 1’s expected payoff continues to be x1. If he/she
offers player 2 strictly more than x2, player 2 will accept, and player 1’s payoff is strictly
below x1. Thus, as proposer, player 1 cannot profitably deviate from f̃1.

Suppose on the other hand that player 2 is the proposer, and that he/she offers v.
Rejecting v again leads to perpetual disagreement. By Lemma 1, player 1’s corresponding
payoff is y1. Thus, it is optimal for player 1 to accept v if v1 exceeds y1, and to reject it
otherwise, as prescribed by f̃1.

Remark 1. It can be verified that ( f̂1, f̃2) and ( f̃1, f̂2) are SPE as well. We may even consider
more intricate SPE ( f1, f̃2), where player 1 starts out by playing f̃1, and at some time t switches to
f̂1 so that the game concludes with an acceptance after several rounds of delay.

Remark 2. To see where the multiplicity of equilibria comes from, observe that when player 1
proposes x, player 2 is indifferent between accepting and rejecting. More precisely, accepting yields
x2 = 1/(1+ δ), while rejecting yields δy2 + (1− δ) = 1/(1+ δ). So what if, instead of accepting
x, player 2 rejects? This can still be supported in SPE since player 1 has zero scope to make player 2
accept. Specifically, suppose that player 1 deviates by offering player 2 an ε > 0 over and above x2;
player 2 will then certainly accept, but player 1’s corresponding payoff is δ/(1 + δ)− ε, which is
strictly below the δ · 1/(1 + δ) + (1− δ) · 0 = δ/(1 + δ) he/she receives when player 2 rejects.

Fortunately, we can say something about the payoffs that players realize in SPE, which
for our purposes is sufficient.

Proposition 3. In SPE, player i’s (i = 1, 2) expected time-t payoff is xi if t is even, and yi if t
is odd.

Proof. For i = 1, 2, let vi and vi, respectively, be the supremum and the infimum over all
SPE of player i’s continuation value in subgames where both players are in the game and i
is the proposer. Similarly, for i = 1, 2 let wi and wi respectively be the supremum and the
infimum over all SPE of player i’s continuation value in subgames where both players are
in the game and i is the responder.
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First note that at any time t, player 1 can commit to rejecting all of player 2’s proposals
when she is responding, and demanding x1 when she is proposing. Thus, by Lemma 1, she
can unilaterally secure an (expected) payoff of x1 when she is the proposer, and of y1 when
she is the responder. Therefore, v1 ≥ x1 and w1 ≥ y1. Similarly, v2 ≥ y2 and w2 ≥ x2.

In SPE, player 1 is never offered more than δv1 + (1 − δ) when 2 is the proposer.
Whether player 2’s proposal is accepted or rejected, player 1’s payoff in SPE is, thus, at
most δv1 + (1− δ), that is, w1 ≤ δv1 + (1− δ).

If player 1 is the proposer, player 2’s payoff is bounded from below by w2. Hence,
player 1 can receive at most 1− w2 ≤ 1− x2 = x1 from an accepted offer. He/she can
secure at most δw1 if his/her offer is rejected. Thus,

v1 ≤ max{x1, δw1} ≤ max{x1, δ2v1 + δ(1− δ)}.

Then, either v1 ≤ x1, or v1 ≤ δ2v1 + δ(1− δ), which also implies v1 ≤ δ/(1 + δ) = x1.
Thus, in either case, v1 = v1 = x1. Then w1 ≤ δv1 + (1− δ) = δx1 + (1− δ) = y1. Thus,
w1 = w1 = y1. By similar reasoning, v2 = v2 = y2 and w2 = w2 = x2.

The question is whether these results carry over to the multilateral case. Consider for
a moment the classic model, where δ is interpreted as a discount factor so that a payoff z
realized at time t yields utility δtz. Shaked showed that if 1/2 ≤ δ < 1, then any partition
of the good can be sustained in SPE in the three-player game. Let ei be the vector that gives
one to player i, and zero to both j 6= i. Then the game is as follows.

In state y = (y1, y2, y3), each player i proposes y, and accepts a proposal x if and only
if xi ≥ δyi. If a player i proposes x with xi > yi, then the game moves immediately, prior to
the responses of the other players, to the state ej, where j 6= i is the player with the lowest
index for whom xj < 1/2. Note that there is at least one such player. To see that this is an
SPE, consider first a player i who responds to an offer y; rejecting yields δyi, so accepting a
proposal x if and only if xi ≥ δyi is optimal. Consider next a player i who proposes. The
correct offer yields yi. If i proposes x with xi > yi, the game switches to state ej. Since
xj < 1/2 ≤ δ · 1, player j rejects, and player i obtains a zero payoff.

To see that in our version of the game, this strategy profile is not an SPE, assume
that the game is in state e1 and that player 2 is the proposer. Then, player 3 is correctly
offered 0, and receives zero payoff if he/she accepts. Rejecting, on the other hand, yields
δ · 0 + (1− δ) δ

(1+δ)
, which is strictly positive. Hence, for player 3, in this subgame, the

above-described strategy is not optimal, and as such, the profile is not an SPE.

4. The n-Player Case (n ≥ 3)

In order to derive an SPE in the general game, note first that by symmetry, a player’s
(expected) payoff in the game is fully determined by his/her position, i.e., how many
rounds it would take to become the proposer. The payoff is further completely independent
from his/her identity. Let wk, k = 0, 1, . . . , n− 2 be the (expected) payoff a player realizes
in the game with n− 1 players when he/she is k rounds away from being the proposer. We
assume that these are known quantities. Let v0, . . . , vn−1 be the corresponding payoffs in
the n-person game.

If a player is one period away from being the proposer, the (expected) payoff he/she
realizes is v1, which should be at least as good as going to the next round. With probability
δ, he/she becomes the proposer in the n-person game in this next period, in which case the
(expected) payoff is v0, while with probability (1− δ), he/she becomes the proposer in the
(n− 1)-person game that results from the proposer being eliminated from the game. In
that case, the (expected) payoff is known and given by w0. Hence, v1 ≥ δv0 + (1− δ)w0.
By similar reasoning, vk ≥ δvk−1 + (1− δ)wk−1 for k > 0, and v0 ≥ δvn−1. Evaluating with
equality, we obtain the following system:
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v1 = δv0 + (1− δ)w0

... (3)

vn−1 = δvn−2 + (1− δ)wn−2

v0 = δvn−1

We next show that this system has a unique solution, its components sum up to one,
and if δ tends to one, the equal split is implemented. We further show that, even in the
n-person game, there is proposer disadvantage. Specifically, the further a player is from
being the proposer in the rotating order, the higher a payoff he/she realizes.

Proposition 4. The system (3) has a unique solution v0, . . . , vn−1, for which v0 + . . .+ vn−1 = 1,
v0 < . . . < vn−1, and limδ→1 vk = 1/n for all k.

Proof. Note that for the two-person case v0 + v1 = 1, v0 < v1, v0 = δv1, and limδ→1(v0, v1)
= (1/2, 1/2). Assume that w0, . . . , wn−2 satisfies the same properties:

A1. w0 + . . . + wn−2 = 1.

A2. w0 < . . . < wn−2.

A3. w0 = δwn−2.

A4. For all k = 0, . . . , n− 2, limδ→1 wk = 1/(n− 1).

Note that any solution to the system (3) trivially satisfies A3. Let v0, . . . , vn−1 be a
possible solution to system (3), and let ∑n−1

k=0 vk = q. By A1, summing up the equations
yields q = δq + (1− δ) · 1, and thus q = 1. Hence, any solution to the system (3) satisfies
A1. By A1 and the first n− 1 equations of the system, we can uniquely determine v0:

v0 =
1− (1− δ)∑n−2

k=0 ∑n−k−2
t=0 δtwk

∑n−1
t=0 δt

Hence, system (3) has a solution, and this solution is unique. Since w0, . . . , wn−2

satisfies A4, the wk terms converge to finite values so that limδ→1 v0 = 1/n. From this and,
again, the fact that the wk terms converge to finite values, limδ→1 vk = 1/n for all k.

To see that A2 is satisfied, assume, contrary to what we want, that vn−1 ≤ vn−2.
Observe that

vn−1 − vn−2 = δ(vn−2 − vn−3) + (1− δ)(wn−2 − wn−3).

Since w0, . . . , wn−2 satisfies A2, wn−2 − wn−3 > 0. Then by the initial assumption
that vn−1 − vn−2 ≤ 0, vn−2 − vn−3 ≤ 0. By continuing this reasoning, vn−3 − vn−4 ≤ 0,
vn−4 − vn−5 ≤ 0, . . . , v1 − v0 ≤ 0 so that

vn−1 − v0 = vn−1 − vn−2 + vn−2 − vn−3 + . . . + v1 − v0 ≤ 0.

Since v0 = δvn−1, we arrive at a contradiction. Thus, vn−1 > vn−2. Then since vn−1 =
δvn−2 + (1− δ)wn−2, vn−1 < wn−2, and thus by A3, v0 < w0. Since v1 = δv0 + (1− δ)w0,
this implies v0 < v1. Since

v2 − v1 = δ(v1 − v0) + (1− δ)(w1 − w0),

it follows that v1 < v2. Continuing this logic, v0 < . . . < vn−1, as desired.

Based on the solution to (3), construct the following strategy profile f̂ :
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• A proposer claims v0 for himself/herself, and offers vk to the player that is k periods
away from becoming the proposer.

• A responder i, k periods away from becoming the proposer, accepts a proposal x if
and only if xi ≥ vk.

Note that the proposals are feasible and efficient.

Proposition 5. The profile f̂ is an SPE.

Proof. To see that the proposer rule is optimal, note that a rejected offer yields δvn−1 = v0,
and that the best a proposer can do from an accepted proposal is v0.

Consider a responder who is k periods from being the proposer. If all other players
accept the proposer’s offer, then rejecting yields δvk−1 + (1 − δ)wk−1 = vk. Then, the
responder rule is optimal.

Lemma 2. If at time t a player is k periods away from being the proposer, then their expected time t
payoff from perpetual disagreement is vk.

Proof. Note first that a player’s continuation values of perpetual disagreement in two
identical subgames are the same. In addition, by symmetry of the players, a player’s
value of perpetual disagreement is fully determined by how many periods away they
are from being the proposer. Thus, for k = 0, . . . , n− 1, let pk be the value of perpetual
disagreement of a player k rounds from being the proposer. Note that the expected value
of perpetual disagreement in the current round must be equal to the expected value of
perpetual disagreement in the next round, i.e., p0 = δpn−1 and pk = δpk−1 + (1− δ)wk−1

if k > 0. Then, pk = vk for all k, as desired.

This result again implies that perpetual disagreement can be sustained in SPE. Let f̃
be the same as f̂ , except that the inequality in the accept/reject rule is strict. Such a profile
leads to perpetual disagreement but is still an SPE.

Proposition 6. The profile f̃ is an SPE.

Proof. Trivial.

As before, this has the undesirable implication that there are a great many different
SPEs. Not only is f̃i optimal against f̂−i, and vice versa, there are also more intricate SPEs
where each player i switches back and forth between f̂i and f̃i. However, using similar
techniques as before, it is still the case that the payoffs that players realize in SPE are always
the same.

Theorem 1. If a player is k periods from being the proposer, their (expected) payoff in SPE is given
by vk.

Proof. Let vk and vk respectively be the supremum and the infimum over all SPE of a
player’s payoff when they are k periods from becoming the proposer, and all players are in
the game. Let wk be the (expected) payoff a player realizes in the subgame where he/she is
k periods from becoming the proposer, and one player has been eliminated from the game.
By induction, we know that the equilibrium payoffs w are unique in the game with n− 1
players. Based on this assumption, we will argue that the equilibrium payoffs in the game
with n players are unique as well. In other words, vk = vk for all k = 0, . . . , n− 1.

Suppose that at time t a player is k periods from being the proposer, and all players
are in the game. Since this player can commit to henceforth rejecting all proposals from
his/her opponents and always demanding v0 when they themselves are the proposer, a
strategy that yields vk by Lemma 2 is vk ≥ vk.
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Since the payoffs of all responders are bounded from below by vk, an accepted proposal
cannot give a proposer more than 1−∑n−1

k=1 vk. Furthermore, ∑n−1
k=0 vk = 1. Hence,

v0 ≤ 1−
n−1

∑
k=1

vk ≤ 1−
n−1

∑
k=1

vk = v0.

If the proposal is rejected, the proposer’s expected payoff is bounded from above by
the expected payoff of receiving vn−1 in the next round. That is, v0 ≤ δvn−1. Thus, the
following holds:

v0 ≤ max{v0, δvn−1}. (4)

Suppose a player is k periods from being a proposer. The expected payoff from moving
to the next round is δvk−1 + (1− δ)wk−1, so he/she will never be offered more than that in
the current round. Thus, whether the current proposal is accepted or rejected, this is an
upperbound on the payoff that they realize in SPE in the current round. In other words,

vk ≤ δvk−1 + (1− δ)wk−1 for all k = 1, . . . , n− 1 (5)

Since v0, . . . , vn−1 is the unique solution to the system (3), it follows from (4) and (5)
that v0 ≤ v0. Then since v0 ≥ v0 ≥ v0, v0 = v0 = v0.

Let k = 1, . . . , n− 1, and assume that vk−1 = vk−1. Then, by (5), vk ≤ δvk−1 + (1−
δ)wk−1 = vk. Since vk ≥ vk ≥ vk, vk = vk = vk.

5. Concluding Remarks

In this paper, we departed from the classic alternating offers bargaining game of
Rubinstein (1982) [1] by assuming that rejection is only costly to the proposer who made
the rejected offer, and not to the responders who chose to reject. The implication of this
modeling choice is that the (expected) payoffs in SPE are unique, even when the game
features three or more players. This is in stark contrast with the classic version of the game,
where every partition of the pie can be sustained in SPE (see [3] pp. 63–65). A further
implication of our modeling choice is that we have a proposer disadvantage: the further a
player is from being the proposer, the higher his/her expected payoff in the game.

These results depend crucially on the assumption that players have linear utility
functions. When we assume that utility functions are concave, then the expected payoffs of
perpetual disagreement are no longer efficient. Then, we are in more familiar waters—for
two players, there is a unique SPE that entails immediate agreement; its corresponding
payoffs converge to the Nash bargaining solution as δ tends to one. For three players, there
may be other SPEs besides the stationary one. Specifically, we conjecture that there are
SPEs that give the two responders their disagreement utility (i.e., the expected utility from
perpetual disagreement) and the proposer the remainder of the pie.
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