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Abstract: There has been much theoretical work aimed at understanding the evolution of social
learning; and in most of it, individual and social learning are treated as distinct processes. A number
of authors have argued that this approach is faulty because the same psychological mechanisms
underpin social and individual learning. In previous work, we analyzed a simple model in which
both individual and social learning are the result of a single learning process. Here, we extend this
approach by showing how payoff and content biases evolve. We show that payoff bias leads to higher
average fitness when environments are noisy and change rapidly. Content bias always evolves when
the expected fitness benefits of alternative traits differ.
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1. Introduction

There has been a substantial amount of theoretical work focused on the evolution
of social learning [1–14]. Investigators asked what conditions favor individuals who
imitate others, rather than learn on their own, and how selection shapes the process of
imitation. In most of this work, individual and social learning are treated as distinct
processes. Individual learning occurs when individuals use environmental cues to adjust
their behavior to local conditions. Social learning is a separate transmission process in
which the determinants of behavior are transmitted socially from one individual to another.
This transmission process may be subject to errors, biases and systematic transformations,
but most work assumes that social learning leads to reasonably accurate copying. Then, to
build models of cultural evolution, investigators modify mathematical models drawn from
population biology to account for the novel structure of social learning. Finally, to model
the long-run evolution of the cultural capacities, researchers assume that the parameters
that govern the cultural transmission process are genetically heritable, and ask how natural
selection shapes the relative importance of social learning. This work has been widely
influential, transforming the idea of cultural evolution from a vague analogy to an vibrant
area of both theoretical and empirical research [15].

This approach has it critics. Some have complained that social and individual learning
are not psychologically distinct processes [16]. Indeed, both individual and social learning
involve cue-based inferences about what is the best behavior in the organism’s environment.
Others point out that this work assumes that social and individual learning are alternatives
competing for determination of phenotype when in fact they are usually complementary
processes that lead individuals in the same direction [17].

To assess the importance of these critiques, Perreault et al. [18] analyzed a model in
which individual and social learning result from a single learning process. They assumed
that individuals attempted to infer current state of a variable environment using two
sources of information, the behavior of the individuals from the previous generation and a
non-social cue that provides information about the current state of the environment, and
that natural selection shaped the learning process over the long run so that it maximized
the expected fitness. This model has qualitatively similar behavior to previous work that
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assumed social and individual learning were distinct processes and so suggests that this
assumption is not crucial. However, the model only treats one kind of directional process,
termed guided variation [2], and does not deal with biased cultural transmission which
occurs when social learning is biased in favor of some cultural models or some trait values.

Here, we demonstrate that this Bayesian framework is flexible and powerful enough
to incorporate other cultural transmission processes in the same single learning process.
More specifically, we extend the model to two forms of biased transmission. First, we
suppose that learners can observe both behavior and the payoffs of a number of individuals
and ask how selection should modify the learning psychology to make use of the payoff
information. We derive the optimal payoff bias rule, and study the conditions under which
it is adaptive. Second, in the original model competing traits had the same expected fitness.
Now, we suppose that one trait has a fitness advantage over the long term and show how
this gives rise to content bias in favor of that trait. In both cases, qualitative results are
similar to those derived assuming individual and social learning are distinct processes.
The current analysis also provides more specific predictions about the form of payoff and
content biases.

2. Methods

To model the evolution of the learning process, we assume individuals belong to
a large population that lives in a environment that switches between two states with a
specified probability. There are two behaviors, labeled state 1 and state 2. One behavior has
higher fitness when the environment is in state 1 and the alternative behavior has higher
fitness when the environment is in state 2. The adaptive problem is to infer the current
state of the variable environment using two kinds of information: the behavior and, in
the payoff bias model, the fitness of a random sample of n individuals from the previous
generation (social cues) and a non-social cue that provides information about the current
state of the environment. We derive an analytical expression for the optimal learning rule
by modeling learning as Bayesian inference, a framework that has been widely used to
study learning and cognitive development [19].

Each individual’s decision depends on her cues. This means that given the frequency
of behaviors and payoffs in the previous generation we can calculate, the distribution
of behaviors and payoffs in the present generation. However, the optimal learning rule
depends on parameters that in turn depend on the long term average state of the population
and accuracy of the non-social cue, facts that individuals do not know. Thus to determine
the optimal reliance on social cues, it is necessary to model the co-evolution of the culturally
transmitted pool of information, and the genes that determine how this information is
transmitted. We accomplish this using numerical simulation.

3. Results
3.1. Payoff Bias

In this section, we extend the model analyzed in [18] to allow for payoff bias, where
payoffs are assumed to be fitnesses. Consider a large population that lives in a environment
which can exist in two states, labeled state 1 and state 2. Each generation, the environment
switches with probability γ and stays the same with probability 1− γ. This means that over
the long run the environment is equally likely to be in each state. Individuals acquire one
of two behaviors, behavior 1 and behavior 2 by either individual or social learning. Behavior
1 has fitness W + d when the environment is in state 1 and fitness W when the environment
is in state 2. Behavior 2 has fitness W + d when the environment is in state 2 and fitness W
when the environment is in state 1.

Each individual observes three cues that are predictive of the state of the environment.
The adaptive problem is to determine the best way to use these cues.

Environmental cue. Individuals observe an environmental cue, y, that can take on
any real value. Let Pr(y|1) and Pr(y|2) be the probability that an individual observes
cue value y in environments 1 and 2 respectively. The environmental cue is a normally
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distributed random variable with mean ξ and variance ω when the environment is in
state 1 and has mean −ξ and ω when the environment is in state 2. This means that
positive values of y indicate that it is more likely that the environment is in state 1
and negative values that it is in state 2. As the variance increases, a given cue value is
a poorer predictor of environmental state.
Behavior. Each individual also observes the n models randomly sampled from the
previous generation. For the jth model, social learners observe their behavior bj and
their payoff, xj. Behaviors take on values 1 or 2, and payoffs are real numbers. The vector
of behaviors is b and the vector of payoff values is x. Let p be the expected frequency
of behavior 1 given that the population is experiencing environment 1. Due to the
symmetry of the model, p is also the expected frequency of behavior 2 given that
the population is experiencing environment 2. Then Pr(b|1) = pj(1 − p)n−j and
Pr(b|2) = pn−j(1− p)j where j is the number of individuals with the favored behavior.
Payoff. The payoff (aka fitness) of an individual with the favored behavior is a
normally distributed random variable with mean µ + d and variance v and the payoff
an individual with the disfavored behavior is a normally distributed variable with
mean µ and variance v. The common mean, µ, is itself a normally distributed random
variable with mean zero and a very large variance, V. This means that the absolute
magnitudes of payoffs provide no information about the state of the environment,
but that the difference between the payoffs is informative.

The information available to a given learner is the value of the non-social cue, y,
and pair of vectors b = (b1, b2, . . . bn) and x = (x1, x2, . . . , xn). Let Pr

(
bj, xj|k

)
be the

joint probability that the jth individual has the favored behavior bj = k and payoff xj in
environment k. The probabilities of payoffs of different models conditioned on behavior
and the state of the environment are independent so Pr(x, b|k) = ∏ Pr

(
xj, bj|k

)
. The learner

uses Bayesian methods to infer Pr(1|y, x, b), the probability that the environment is in
state 1 given that a learner observes an environmental cue y and models with behaviors
b and payoffs x. Then the optimal decision rule is adopt behavior 1 if Pr(1|y, x, b) > 1/2
otherwise adopt behavior 2.

It is shown in Appendix A.1 that this is equivalent to the following inequality.

j− n
2
> G

(
j(n− j)

n

)
(x̄2 − x̄1)− gy

where
G =

d

v ln
(

p
1−p

)
and

g =
ξ

ω ln
(

p
1−p

)
If the learner knew the density of y and frequency of the favored trait in the current

environment, she could compute the values of these parameters. However, she does not
know either of these things, and so cannot compute g and G. Instead we suppose that these
are aspects of individual psychology. The value of g gives propensity to rely on non-social
cues, and G the weight of payoff information both relative to the weight placed on the
behavior of others. When G = 0, the learner ignores payoff information and the learning
rule reverts to that given in [18]. When G > 0, the learner is more likely to adopt the trait
the exhibits the higher mean payoff among its sample of cultural models.

This rule indicates that importance of payoff differences between traits should be
scaled by the term j(n− j). This means that payoff bias should be more important when
cultural models exhibit a mixture of behaviors than when most cultural models behave in
the same way. As a result, rare beneficial innovations will be less likely to be adopted than
beneficial innovations that have become established. Notice that this is not the same as the
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usual mass action effect which results from the probability that social learners observe an
innovation. Instead, social learners are less likely to adopt even when they have observed
the payoff advantage of the novel behavior. As far we know, no previous formulation of
payoff bias incorporates this phenomenon.

Finally, this rule encourages a different view of payoff bias than given in other work
(e.g., [2]) where payoff bias is often conceptualized as a mechanism that determines who are
the most attractive models. Here, individual payoffs are just data about the effects of alter-
native behaviors, and the rule simply weights the observed mean payoff of each behavior.

We assume that g and G are heritable attributes of the organism’s psychology that
are shaped by natural selection. To model their evolution, we assume that the values of
g and G are affected by a large number of alleles at a two haploid loci. Individuals first
acquire their genotype through genetic transmission. Then, they observe members of the
previous generation and an environmental cue, and determine whether they should adopt
behavior 1 or behavior 2. Finally, viability selection adjusts the genotypic frequencies.

We used an agent-based simulation to investigate how natural selection shapes indi-
vidual’s learning psychology, G and g, under different sets of environmental conditions.
We are particularly interested in the benefits of payoff information when individual learn-
ing is hard, that is, when the environmental cues are noisy. This assumption captures the
edge case that we think makes culture so adaptive: when the solution to an ecological
challenge is difficult to discover through individual learning alone, but once discovered,
has benefits that are easy to observe.

We also want to test the hypothesis that payoff biased transmission is helpful when
the environment changes rapidly. Rapid environmental change makes social learning
less adaptive because the social information acquired from previous generations become
outdated. We suspect that payoff-biased transmission may help shield social learners from
the deleterious impact of environmental change by providing them with another source of
information that is less frequency dependent. This is important because it would mean
that payoff-biased transmission can increase the range of environmental conditions under
which social learning can evolve.

The agent-based simulation keeps track of the evolution of alleles that affect the values
of G and g in a population of organisms. We assume haploid, asexual genetic transmission.
An individual with the ith G allele and the kth g allele has a learning rule characterized by
the parameters Gi and gk that can take any real value. Individuals observe the behavior
of the members of the previous generation, an environmental cue and a payoff cue and
determine whether they should adopt behavior 1 or 2 using the optimal decision rule
presented above. Then, viability selection adjusts the genotypic frequencies. Every time
steps corresponds to a generation. Each generation, the following happens:

1. The state of the environment switches from state 1 and 2 with probability γ.
2. The individuals get a social cue, an environmental cue, and a payoff cue:

• The social cue is the number j of individuals with behavior 1 among n social
models drawn randomly from the previous generation. As there are two behav-
ioral variants, the social cue is binomial with parameters p and n, where p is the
frequency of behavior 1 in the population at previous generation.

• The environmental cue y is drawn from a normal distribution with mean ξ in
environment 1 and −ξ in environment 2, and standard deviation esd.

• The payoff cue, (x̄2 − x̄1), is drawn from a normal distributed with mean d in
environment 1 and −d in environment 2, and standard deviation

√
v.

3. Individuals combine those three cues using the optimal decision rule analytically
derived above to chose a behavior.

4. Viability selection occurs. The baseline fitness is W. Individuals with the favored
behavior, given the current state of the environment, get a fitness benefit d. Reproduc-
tion is based on relative fitness, which is calculated by dividing individual fitness by
the maximum fitness in the population. The fitness of individuals relative to the max-
imum fitness in the population is used as a vector of weights in the sample function in
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the R language base package in order to sample the individuals that reproduce and
transmit their alleles to the next generation.

5. Mutations in G and g alleles in the next generation occur with probability M. The values
of the mutant alleles are drawn from a normal distribution with mean equal the allele of
the parent and standard deviation msd. G and g are unlinked and mutate independently.

Several parameters of the simulation were kept constant throughout all the runs
examined in this paper: number of agents = 10,000, esd = 1, W = 0.5, d = 1, M = 0.05, and
msd = 0.5.

At the start of every run, the state of the environment, the behavior of each agent, as
well as the values of the G and g alleles, are all set to 1. Each simulation ran for at least
5000 environmental shifts. After 5000 environmental shifts, the simulation continued until
the distribution of G and g alleles became stationary. Stationary conditions were met when,
for both G and g, the slope of a linear regression models fitted to the median allele value in
the population, over the last 2000 generations, was smaller than 0.001.

In order to measure the fitness benefits associated with payoff information, we also ran
simulations with the decision rule that includes only social and environmental cue [18]:

j− n
2
> −gy

The simulation results suggest that payoff bias is most adaptive when learning from
the environment is hard and when the environment is unstable. Figure 1 shows the average
fitness in the population for high- and low-quality environmental information as a function
of the quality of the payoff information. The fitness values plotted are relative to the
average fitness in population that evolved in the same conditions but without payoff
information. Thus, relative fitness greater than one mean payoff bias increases fitness,
above and beyond the fitness provided by social and environmental cues alone. In the
“high” regime of quality of environmental information, ξ = 0.1 (circles). In this regime, the
chance of adopting the favored behavior via individual learning alone is 0.54. In the “low”
regime, ξ = 0.1 (squares), i.e., the probability of adopting the favored behavior is 0.504 — a
hair better than flipping a coin to make a decision.
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Figure 1. The effect of quality of the environmental cue on relative fitness gain associated with payoff
bias. The squares represent cases where the quality of the environmental cue is low (ξ = 0.01) and the
circles the cases where it is high (ξ = 0.1). The x-axis represents the quality of the payoff information,
i.e.,
√

v on a log10 scale. Other parameters are as follow: n = 3, γ = 0.01.
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Within each regime of environmental information quality, the relative fitness benefits
of payoff biased transmission decrease with the standard deviation of the payoff cue
distribution,

√
v (x-axis). These results plotted in Figure 1 suggest that, unless it is very

noisy, payoff information generally leads to higher fitness. More interestingly, the relative
fitness benefits are highest in the low-quality of environmental information regime. As the
quality of the environmental cue decreases from ξ = 0.1 to ξ = 0.01, relative fitness increase
by approximately 0.33. Notice that the evolutionary stable cultural transmission rule may
reduce average fitness because selection does not maximize average fitness. Selection
favors more social learning that is optimal for the population.

We also found that payoff bias leads to higher relative fitness in fast changing envi-
ronments. Figure 2 shows relative fitness in fast changing environments (γ = 0.1, circles)
and a slow changing environments (γ = 0.01, squares). Given the same quality of payoff
cue (x-axis), organisms in the fast changing environment condition enjoyed relative fitness
benefits that were, on average, greater by 0.09 units. Payoff biases are most beneficial in
rapidly changing environments because unstable environments lead to higher behavioral
variation in the population. For instance, a population in a rapidly changing environment
will spend more time in intermediate values of p than a population in stable environment,
in which the frequency of the favored behavior can remain high for several generations in
a row. Since the value of payoffs depends in part on the variance in behavior among the
social models observed, payoffs are more useful in rapidly changing environments.
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Figure 2. The effect of rates of change in the environment on relative fitness gain associated with
payoff biases. The squares represent cases where rate of change is low (γ = 0.01, squares) and the
circles the cases where it is high (γ = 0.1), circles The x-axis represents the quality of the payoff
information, i.e.,

√
v on a log10 scale. Other parameters are as follow: n = 3, ξ = 0.1.

Overall, our results suggests that selection will favor payoff-biased social transmission
under a wide range of conditions. In particular, ecological problems that are hard to solve indi-
vidually, as well as fast changing environments, will strongly favor using payoff information.

3.2. Content Bias

In both [18] and the payoff bias model analyzed above, we assumed that the variable
environment was symmetric. Each environment was equally likely, and the two behaviors
had the same advantage in the environment in which they were favored. Here, we show
when these assumptions are relaxed, selection favors a decision rule which is biased in
favor of the behavior favored in the more common environment and the behavior which
has a larger fitness advantage.
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Consider a large population that lives in a environment which can exist in two states,
imaginatively labeled state 1 and state 2. Each generation, the environment switches from
state 1 to state 2 with probability γ2 and switches from state 2 to state 1 with probability γ1.
The means that over the long run the environment will be in state 1 with probability

π =
γ1

γ1 + γ2

Individuals acquire one of two behaviors, behavior 1 and behavior 2 by either individual
or social learning. Behavior 1 has fitness 1 + d1 in environment 1 and 1 in environment 2.
Behavior 2 has fitness 1 + d2 in environment 2 and 1 in environment 1. Each individual
observes an environmental cue, x, that can takes on a range of values. Let Pr(y|k) be the
probability that an individual observes cue value y in environment k. We assume that this
probability is normal with mean µ and variance v in environment 1 and mean−µ and variance
v in environment 2. Each individual also observes n models sampled at random from the
previous generation. We ignore differences in prestige, age, etc., and assume that all models
are identical, so the only thing that matters is the number of models exhibits trait one or two.
Let j be the number of models who exhibit the favored behavior the current environment. Let
the probability of j conditioned on the environment being in state k is Pr(j|k).

Let Pr(j|k) be the probability that the j individuals exhibit the favored behavior
in environment k = (1, 2). The learner uses Bayesian methods to infer Pr(k|y, j), the
probability that the environment is in state k given that a learner observes an environmental
cue y and j models with behavior k. Then the optimal decision rule is adopt behavior 1 if it
has higher expected fitness.

Pr(1|y, j)(1 + d1) + Pr(2|y, j) > Pr(1|y, j) + Pr(2|y, j)(1 + d2)

or
Pr(1|y, j) >

d1

d1 + d2

It is shown in the Appendix A.2 that this is equivalent to the following inequality.

j− a
n
2
> −gx + b

where

g =
µ
v

ln
(

p1 p2
(1−p1)(1−p2)

)
This is the same parameter as in the symmetric, unbiased case, except now modified

to account for the asymmetric transition probabilities.

b =
ln
(

1−π
π

)
+ ln

(
d1
d2

)
ln
(

p1 p2
(1−p1)(1−p2)

)
and

a =
ln
(

p2
1−p1

)
ln
(

p2
1−p1

)
+ ln

(
p1

1−p2

)
This learning rule indicates that nature of content bias in favor of a behavior depends

on whether that behavior has relatively (1) higher fitness in environments in which it is
favored, or (2) has higher frequency environments in which it is favored. In the first case,
learners are more likely to adopt that behavior independent of the number of cultural mod-
els who display that behavior, while in the second case, the number of models displaying
a behavior necessary to motivate the learner to adopt that behavior is reduced. To see
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this, set d1 = d2 so that the advantage of behavior 1 in environment one is the same as
the advantage of behavior 2 in environment 2 and π = 0.5 so that both environments are
equally likely. Then b = 0, and the right-hand side of the decision rule is then same as in
the unbiased case studied by [18]. If π > 0.5 and d1 > d2, environment 1 is more likely and
behavior one has a bigger relative payoff, then both terms in the numerator are negative
and b < 0. This means that other things being equal, learners are more likely to adopt
behavior 1. Similarly, if π < 0.5 and d1 < d2, learners are more likely to adopt behavior 2.
If the terms have opposite sign then the effect on the decision depends on their relative
magnitude. Finally, if p1 = p2, then a = 1/2, and the left-hand side reduces to the same
expression as in the unbiased case. Since p1, p2 > 0.5.

ln
(

p1

1− p2

)
> ln

(
p2

1− p1

)
> 0

and therefore 1 > a > 0. This means when behavior 1 is more common in environment
1 than behavior 2 is in environment 2, the rule favors behavior 1 when j > an

2 . Even if
fewer than half of the models exhibit behavior one, the social cue may favor the choice of
behavior 1.

4. Discussion

The human species is unusual because people make much more use of social learning
than other species, and this fact has important implications for understanding our evo-
lutionary history and our current behavior [20,21]. Thus, it is important to understand
the evolutionary forces that shape social learning. Previous work on this topic has been
criticized because it assumes that social and individual learning are distinct processes.
Perreault et al. [18] analyzed a model in which social and individual learning result from a
single learning mechanism. However, this model did not allow for biased social learning.

Here, we extend this framework to allow for payoff bias and content bias. Our results
are qualitatively similar to previous work suggesting that the assumption that social and
individual learning are distinct processes is not crucial. We also derived more detailed
predictions about the nature of both forms of biased social learning that can be tested with
laboratory data on social learning.

The model present here has several limitations. First, it assumes that there are only two
discrete behaviors. Many real-world behaviors have many possible variants. Second, the
environment varies only in time. Human populations also face spatial variation. Third, sets
of cultural models are assembled at random, and there is no age structure. While previous
work (e.g., [2]) suggests that adding these complexities does not lead to qualitatively
different predictions, one cannot be sure until the work is done.

These results suggest that natural selection will favor the use of payoff cues under
a wide range of environmental conditions. People in small-scale societies solve many
difficult adaptive problems. They depend on complex technologies and opaque ecological
knowledge that arises in the solution of very hard problems. Such problems, particularly
in fast changing environments strongly favor the use of payoff information. We believe
that combining payoff information with social and environmental cues expanded the
range of ecological habitats ancestral human populations could occupy and made these
populations better able to survive the high frequency, high amplitude climatic fluctuations
that prevailed during the Upper Pleistocene, and may have facilitated the rapid range of
expansion of the human species at approximately 60 kya BP.

The power of general purpose learning mechanisms like payoff bias does not mean
that human minds are predicted to be a blank slate. If some environments are reliably more
frequent, or if some traits reliably have bigger fitness advantages, our results suggest that
selection will favor learning rules that, all other things being equal, make it more likely
that individuals will adopt traits that are more adaptive in expectation.
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Appendix A

Here, we provide more details about the derivations sketched in the body of this paper.
In the first section, we deal with payoff bias; in the second, we provide derivations for
content bias. The code for the simulation is available at https://github.com/PerreaultC/
Boyd-Perreault-Payoff-and-Content-Bias.git.

Appendix A.1. Optimal Social Learning with Payoff Information

Payoff bias occurs when social learners observe both behavior and payoff and are
more likely to adopt behaviors that are statistically associated with higher payoffs. In this
paper, we derive the optimal payoff bias rule, and study the conditions under which it is
adaptive. We assume that there is also individual learning based on an environmental cue
as in Perreault et al. (2012).

Consider a large population that lives in a environment which can exist in two states,
imaginatively labeled state 1 and State 2. Each generation, the environment switches with
probability γ and stays the same with probability 1− γ. The means that over the long
run, the environment is equally likely to be in each state. Individuals acquire one of two
behaviors, behavior 1 and Behavior 2 by either individual or social learning. Behavior 1 is
favored by selection when the environment is in state 1 and behavior 2 is favored when the
environment is in state 2. The relative fitness advantage of the favored behavior in each
environment is the same.

Each individual observes an environmental cue that can takes on a range of values.
Let Pr(y|1) and Pr(y|2) be the probability that an individual observes cue value y in
environments 1 and 2 respectively.

Each individual also observes n models sampled from the previous generation.
For the jth model, social learners observe the behavior bj and the individuals payoff,
xj. Otherwise models are identical. Thus, the entire sample is given by the pair of vec-
tors b = (b1, b2, . . . bn) and x = (x1, x2, . . . , xn). Let Pr

(
bj, xj|k

)
be the joint probability that

the jth individual has behavior bj and payoff xj in environment k. The probabilities of
payoffs of different models conditioned on behavior and the state of the environment are
independent so Pr(x, b|k) = ∏ Pr

(
xj, bj|k

)
.

Let Pr(1|y, x, b) be the probability that the environment is in state 1 given that a learner
observes an environmental cue y and models with behaviors b and payoffs x. Then the
optimal decision rule is adopt behavior 1 if Pr(1|y, x, b) > 1/2 otherwise adopt behavior 2.

The first step in calculating Pr(1|y, x, b) is to calculate the joint probability that the
environment is in state 1, and that the individual observes y, x and b, Pr(1, y, x, b).

Pr(1, y, x, b) = Pr(y|1)Pr(x, b|1)Pr(1) = Pr(y|1)Pr(x|b, 1)Pr(b|1)Pr(1)

Now, we use Bayes’ law to calculate Pr(1|y, x, b)

Pr(1|y, x, b) =
Pr(1, y, x, b)
Pr(y, x, b)

https://github.com/PerreaultC/Boyd-Perreault-Payoff-and-Content-Bias.git
https://github.com/PerreaultC/Boyd-Perreault-Payoff-and-Content-Bias.git
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However, Pr(y, x, b) = Pr(y, x, b|1)Pr(1) + Pr(y, x, b|2)Pr(2). Using the expression
for these conditional joint probabilities and the fact that the environment is equally likely
to be in either state so Pr(1) = Pr(2), this becomes

Pr(1|y, x, b) =
Pr(x|b, 1)Pr(b|1)Pr(y|1)

Pr(y|1)Pr(x|b, 1)Pr(b|1) + Pr(y|2)Pr(x|b, 2)Pr(b|2)

Thus, the probability that the environment is in state 1 given the cues is greater than 1/2 if

Pr(y|1)Pr(x|b, 1)Pr(b|1) >
1
2

Pr(y|1)Pr(x|b, 1)Pr(b|1)

+
1
2

Pr(y|2)Pr(x|b, 2)Pr(b|2)

Pr(y|1)Pr(x|b, 1)Pr(b|1) > Pr(y|2)Pr(x|b, 2)Pr(b|2)
Pr(b|1)
Pr(b|2) >

Pr(x|b, 2)
Pr(x|b, 1)

Pr(y|2)
Pr(y|1)

So far, the derivation is completely general. Models can be sampled in any way, and
the payoffs can take any distribution. Now, let us first assume that models are sampled
at random from the previous generation. To do this, let p be the expected frequency of
behavior 1 given that the population is experiencing environment 1. Due to the symmetry
of the model, p is also the expected frequency of behavior 2 given that the population is
experiencing environment 2. Then Pr(b|1) = pj(1− p)n−j and Pr(b|2) = pn−j(1− p)j,
where j is the number of individuals with the favored behavior. Second, assume that the
payoff of an individual with the favored behavior is a normally distributed random variable
with mean µ + d and variance v and the payoff an individual with the disfavored behavior
is a normally distributed variable with mean µ and variance v. The common mean, µ, is
itself a normally distributed random variable with mean zero and a very large variance, V.
This means that the absolute magnitudes of payoffs provide no information about the state
of the environment, but that the difference between the payoffs is informative. Finally,
assume the environmental cue in is a normally distributed random variable with mean
ξ and variance ω when the environment is in state 1 and has mean −ξ and ω when the
environment is in state 2.

With these assumptions, the optimal decision rule is to adopt behavior 1 if

pj(1− p)n−j

pn−j(1− p)j >

∫
N(x, µ)dµ∫
D(x, µ)dµ

exp
(
−(y+µ)2

2ω

)
exp

(
−(y−µ)2

2ω

)
where

N(x, µ) = exp
(
−µ2

2V

)
exp

(
−

∑bi=2(xi − µ− d)2 + ∑bi=1(xi − µ)2

2v

)

and

D(x, µ) = exp
(
−µ2

2V

)
exp

(
−

∑bi=1(xi − µ− d)2 + ∑bi=2(xi − µ)2

2v

)
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Now, we manipulate the integrands, first in the numerator. Let

N(x, µ) = exp

(
−µ2

2V
−

∑bi=2(xi − µ− d)2 + ∑bi=1(xi − µ)2

2v

)

= exp

(
−∑

(
x2

i − 2µxi + µ2)−∑bi=2
(
−2dxi + 2µd + d2)

2v
− µ2

2V

)

= exp
(
−2(n− j)µd + 2µnx̄− nµ2

2v
− µ2

2V

)
exp

(
−∑ x2

i
2v

)
exp

(
− (n− j)d2 − 2d(n− j)x̄2

2v

)
where x̄1 is the mean of the n observed payoff values and x̄2 is the mean of the (n− j)
observed payoff values for individuals with behavior 2. Since the right two terms do not
involve µ, they can be taken outside of the integral. Then rewriting the term containing µ

exp
(
−2(n− j)µd + 2µ = nx̄− nµ2

2v
− µ2

2V

)
exp

(
− k1

2

(
µ2 − 2k2µ

))

where k1 = 1
V + n

v and k2 =

(
nx̄−(n−j)d

v

)
( 1

V + n
v )

. Then

exp
(
−2(n− j)µd + 2µnx̄− nµ2

2v
− µ2

2V

)
= exp

(
− k1

2

(
(µ− k2)

2
))

exp
(

1
2

k1k2
2

)
This means that

exp
(
−2(n− j)µd + 2µnx̄− nµ2

2v
− µ2

2V

)
= exp

(
− k1

2

(
(µ− k2)

2
))

exp


(

nx̄−(n−j)d
v

)2

2
(

1
V + n

v

)


Thus,

lim
V→∞

∫
N(x, µ)dµ = exp

(
−∑ x2

i
2v

)
exp

(
−(n− j)d2 + 2(n− j)dx̄2

2v

)

lim
V→∞

exp


(

nx̄−(n−j)d
v

)2

2
(

1
V + n

v

)
 ∫ exp

(
− k1

2

(
(µ− k2)

2
))

dµ


= exp

(
−∑ x2

i
2v

)
exp

(
−(n− j)d

(
d− 2x̄2

2v

))

exp

(
(nx̄− (n− j)d)2

2nv

)
C

where C =
∫

exp
(
− k1

2 (µ− k2)
2
)

dµ is a constant that depends on k1 but not k2. A similar
derivation yields an expression for the denominator of the fraction on the right-hand side
of the decision rule:

lim
V→∞

∫
D(x, µ)dµ = exp

(
(nx̄− jd)2

2nv

)
exp

(
−∑ x2

i
2v

)
exp

(
−jd

(
d− 2̄x1

2v

))
C
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where x̄2 is the mean payoff of individuals who use behavior 2. Then the decision rule becomes(
p

1− p

)(2j−n)
> exp

(
(nx̄)2 − 2nx̄(n− j)d + ((n− j)d)2 − (nx̄)2 + 2nx̄jd− (jd)2

2nv

)

exp
(

jd(d− 2x̄1)− (n− j)d(d− 2x̄2)

2v

)
exp

(
−
(
y2 + 2ξy + ξ2)+ (y2 − 2ξy + ξ2)

2ω

)

> exp
(
−2n2 x̄d + 4nx̄jd + n2d2 − 2njd2

2nv

)
exp

(
d

j(d− 2x̄1)− (n− j)(d− 2x̄2)

2v

)
exp

(
−2ξy

ω

)
> exp

(
d
−2x̄

( n
2 − j

)
+ d
(

j− n
2
)

v

)

exp

(
d

d
(

j− n
2
)
− jx̄1 + (n− j)x̄2

v

)
exp

(
−2ξy

ω

)
> exp

(
−x̄(n− 2j)− jx̄1 + (n− j)x̄2

v
d

)
exp

(
−2ξy

ω

)

> exp

−
(

j
n x̄1 +

n−j
n x̄2

)
(n− 2j)− jx̄1 + (n− j)x̄2

v
d

 exp
(
−2ξy

ω

)

> exp

−j
(

1 + (n−2j)
n

)
x̄1 + (n− j)

(
1− (n−2j)

n

)
x̄2

v
d

 exp
(
−2ξy

ω

)

> exp

−j
(

n+(n−2j)
n

)
x̄1 + (n− j)

(
n−(n−2j)

n

)
x̄2

v
d

 exp
(
−2ξy

ω

)

> exp

(
d

( −2j(n−j)
n x̄1 +

2j(n−j)
n x̄2

v

))
exp

(
−2ξy

ω

)
> exp

(
2d

j(n− j)
n

(
x̄2 − x̄1

v

))
exp

(
−2ξy

ω

)
Taking the log of both sides of the inequality yields(

j− n
2

)
ln
(

p
1− p

)
>

d
v

(
j(n− j)

n

)
(x̄2 − x̄1)−

ξ

ω
y

or

j− n
2
> G

(
j(n− j)

n

)
(x̄2 − x̄1)− gy

where
G =

d

v ln
(

p
1−p

)
and

g =
ξ

ω ln
(

p
1−p

)
If the environment is in state 1, the expected value of x̄1is µ + d and the expected

value of x̄2 is µ. The variance of the sum of two normally distributed random variables
is the sum of the variances so x̄2 − x̄1 is normally distributed with mean −d and variance
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v
(

1
j +

1
n−j

)
= nv

j(n−j) . In environment 2, the variance is the same but the mean is d.
As before, y is normally distributed, but now with mean ξ and variance ω. So for an
individual with genotype gi and Gi, you can calculate the right-hand side of the inequality
from the sum of two cumulative distributions, and then proceed as before.

Appendix A.2. Optimal Content Bias

The first step in calculating Pr(1|xi, j) is to calculate the joint probability that the
environment is in state 1, and that the individual observes x1 and j, Pr(1, xi, j). Since
Pr(xi|1) and Pr(j|1) are independent it follows that

Pr(xi, j|1) = Pr(xi|1)Pr(j|1)

and thus
Pr(1, xi, j) = Pr(xi, j|1)Pr(1) = Pr(xi|1)Pr(j|1)Pr(1)

Now, we use Bayes’ law to calculate Pr(1|xi, j)

Pr(1|xi, j) =
Pr(1, xi, j)
Pr(xi, j)

However, Pr(xi, j) = Pr(xi, j|1)Pr(1) + Pr(xi, j|2)Pr(2). Using the expression for
these conditional joint probabilities derived above, this becomes

Pr(1|xi, j) =
Pr(xi|1)Pr(j|1)Pr(1)

Pr(xi|1)Pr(j|1)Pr(1) + Pr(xi|2)Pr(j|2)Pr(2)

The probability that the environment is in state 1 is Pr(1) = π and the probability it is
in state 2 is Pr(2) = 1− π thus

Pr(1|xi, j) =
Pr(xi|1)Pr(j|1)π

Pr(xi|1)Pr(j|1)π + Pr(xi|2)Pr(j|2)(1− π)

It is useful to rewrite this expression as

Pr(1|xi, j) =
Pr(j|1)
Pr(j|2)π

Pr(j|1)
Pr(j|2)π + Pr(xi |2)

Pr(xi |1)
(1− π)

Substituting the expression for Pr(1|xi, j) into the optimal decision rule yields

Pr(j|1)
Pr(j|2)π

Pr(j|1)
Pr(j|2)π + Pr(xi |2)

Pr(xi |1)
(1− π)

>
d1

d1 + d2

Pr(j|1)
Pr(j|2)π >

(
d1

d1 + d2

)(
Pr(j|1)
Pr(j|2)π +

Pr(xi|2)
Pr(xi|1)

(1− π)

)
Pr(j|1)
Pr(j|2)π

(
1− d1

d1 + d2

)
>

Pr(xi|2)
Pr(xi|1)

(1− π)

(
d1

d1 + d2

)
Pr(j|1)
Pr(j|2) >

Pr(xi|2)
Pr(xi|1)

 (1− π)
(

d1
d1+d2

)
π
(

1− d1
d1+d2

)


Pr(j|1)
Pr(j|2) >

Pr(xi|2)
Pr(xi|1)

(
1− π

π

)(
d1

d2

)
Notice that when environments are equally likely (π = 1/2) and payoff advantages

are symmetrical (d1 = d2), this condition is the same as that given in [18].
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Now, assume that (1) the expected frequency of individuals with behavior 1 in envi-
ronment 1 is p1 and the frequency of individuals with behavior 2 in environment 2 is p2
and that models are sampled at random from the previous generation so that Pr(j|1) and
Pr(j|2) binomial with parameters p1 and n, and p2 and n, and (2) the environmental cue is
a normally distributed random variable with mean µ and variance v when the environment
is in state 1 and has mean −µ and v when the environment is in state 2. This means that
individuals adopt behavior 1 if

n!
j!(n−j)! pj

1(1− p1)
n−j

n!
j!(n−j)! pn−j

2 (1− p2)j
>

e−
(x+µ)2

2v

e−
(x−µ)2

2v

(
1− π

π

)(
d1

d2

)

This expression can be simplified to become(
p2

1− p1

)j−n( p1

1− p2

)j
> e−

xµ
v

(
1− π

π

)(
d1

d2

)
Since the logarithm function is monotonic, we can take the logarithm of both sides of

the inequality which yields a simple linear form for the decision rule

jln
(

p1

1− p2

)
+ (j− n)ln

(
p2

1− p1

)
> − xµ

v
+ ln

((
1− π

π

)(
d1

d2

))
jln
(

p1 p2

(1− p1)(1− p2)

)
− n ln

(
p2

1− p1

)
> − xµ

v
+ ln

((
1− π

π

)(
d1

d2

))

j− n
ln
(

p2
1−p1

)
ln
(

p1 p2
(1−p1)(1−p2)

) >

µ
v x + ln

((
1−π

π

)(
d1
d2

))
ln
(

p1 p2
(1−p1)(1−p2)

)
This leads to the three parameter decision rule

j− a
n
2
> −gx + b

where

g =
µ
v

ln
(

p1 p2
(1−p1)(1−p2)

)
This is the same parameter as in the symmetric, unbiased case.

b =
ln
(

1−π
π

)
+ ln

(
d1
d2

)
ln
(

p1 p2
(1−p1)(1−p2)

)
First, suppose that d1 = d2 so that the advantage of behavior 1 in environment one

is the same as the advantage of behavior 2 in environment 2 and π = 0.5 so that both
environments are equally likely, b = 0, and the right-hand side of the decision rule is the
same as in the unbiased case studied by [18]. If π > 0.5 and d1 > d2, so environment 1 is
more likely and behavior one has a bigger relative payoff, then both terms in the numerator
are negative and b < 0. This means that other things being equal, learners are more likely
to adopt behavior 1. Similiarly, if π > 0.5 and d1 > d2, learners are more likely to adopt
behavior 2. If the terms have opposite sign then the effect on the decision depends on their
relative magnitude. Finally,

a =
ln
(

p2
1−p1

)
ln
(

p2
1−p1

)
+ ln

(
p1

1−p2

)
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So, if p1 = p2 then a = 1/2, and the left-hand side reduces to the same expression as
in the unbiased case. Since p1, p2 > 0.5.

ln
(

p1

1− p2

)
> ln

(
p2

1− p1

)
> 0

and therefore 1 > a > 0. This means when environment 1 is more common, the rule favors
behavior 1 when j > an

2 . Even if fewer than half of the models exhibit behavior one, the
social cue may say choose behavior 1.
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