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Abstract: We study an extended version of a sender–receiver signaling game—a context-signaling
(CS) game that involves external contextual cues that provide information about a sender’s private
information state. A formal evolutionary analysis of the investigated CS game shows that ambiguous
signaling strategies can achieve perfect information transfer and are evolutionarily stable. Moreover,
a computational analysis of the CS game shows that such perfect ambiguous systems have the
same emergence probability as non-ambiguous perfect signaling systems in multi-agent simulations
under standard evolutionary dynamics. We contrast these results with an experimental study where
pairs of participants play the CS game for multiple rounds with each other in the lab to develop a
communication system. This comparison shows that unlike virtual agents, human agents clearly
prefer perfect signaling systems over perfect ambiguous systems.

Keywords: sender–receiver signaling games; contextual cues; ambiguity; evolutionary stability;
imitation dynamics; online experiments

1. Introduction

David Lewis [1] developed a game-theoretic model to study how conventional com-
municative patterns can evolve through emerging regularities of communicative behavior,
giving rise to a (common interest) sender–receiver signaling game. In the vanilla variant
of such a signaling game, the expected utilities for sender and receiver are optimal if
and only if their strategies form perfect signaling systems: one-to-one mappings between
information states, signals and actions. Only such mappings guarantee perfect informa-
tion transfer. Previous research into most variants of the signalling game has shown that
perfect signaling systems (i) are the most expected outcome under evolutionary dynamics,
including dynamics on a population level as well as imitation and learning dynamics in
agent-based models [2–4], and (ii) display the highest level of evolutionary stability in
comparison to non-perfect signaling strategies, such as pooling strategies that represent
ambiguous signaling [5,6].

The superiority of perfect signaling systems over ambiguous signaling does not neces-
sarily hold for modified versions of the signaling game. For example, the context-signaling
game is an extension of the standard Lewis signaling game, which involves contextual cues,
i.e., clues that reveal the sender’s information state to the receiver. It can be shown that in
such a game, ambiguous signaling can ensure perfect information transfer: the sender’s
and the receiver’s strategies form a perfect ambiguous system, wherein the receiver uses
contextual cues for disambiguation [7,8].

In this article, we look into a context-signaling (CS) game where the evolutionary
expediency of perfect signaling systems and perfect ambiguous systems is equivalent. More
concretely, in this CS game, the probability for the emergence of a perfect signaling system
or a perfect ambiguous system is identical, starting from a random initial population state.
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Apart from the CS game, we will study two benchmark games: the standard Lewis signal-
ing (LS) game, and a variant of the context-signaling game with an information bottleneck,
which we call the context bottleneck (CB) game. We study these games (i) in computer
simulations where agents repeatedly interact and update their behavior according to an
imitation dynamics protocol; and (ii) in the laboratory, where pairs of participants repeat-
edly play the games with each other. Our main finding is that humans behave differently
from bots: in particular, the results for the CS game show that while, under evolutionary
dynamics, perfect signaling systems and perfect ambiguous systems emerge with the same
frequency, human participants in the lab are much more likely to arrive at perfect signaling
systems. We briefly discuss the implications of this finding in the conclusion.

1.1. Related Work

In this paper, we are interested in how human communicative behavior changes under
dynamics of cultural evolution and how this leads to the emergence of communicative
conventions and norms. There is a large body of literature that studies communicative (or
more generally, signaling) behavior under evolutionary dynamics, using the tools from evo-
lutionary game theory for formal analyses [5,6,9,10] and computational models for dynamic
analyses [4,11–14]. The computational part of our study considers repeatedly played vari-
ants of the signaling game and the role of ambiguity in decision making. The repeated game
structure has been studied extensively with respect to signaling games [2,3,11,15–19] as
well as other classical games, for example, the Prisoner’s Dilemma game or the Stag Hunt
game [20–24]. In particular, [25] looks into the role of ambiguity in strategic choices in the
Prisoner’s Dilemma game and the Matching Pennies game.

In contrast to the abundance of the formal and computational studies on signaling
games, very few studies are available that compare these mathematical results with actual
human behavior as studied in the laboratory, and only recently such computational research
has been complemented with signaling game experiments with human participants [26–29].
This work includes one study related specifically to the role of ambiguity in signaling games
played in the lab [30]. Both the computational and the experimental parts of our study
involve the context-signaling game, where successful strategies have to be able to cope
with changing contexts. This idea is related to a number of previous studies that explored
the role of changing contexts in games and their impact on strategic behavior, see, e.g., the
research on reflexive games [31,32] or stochastic games [33,34]. The context-signaling game
itself has been studied formally and computationally [7,8,18,35,36]. However, there is no
work to date that studies context-signaling games experimentally.

With this study, we want to start bridging this gap and thereby initiate a research
program that aims at using tools from experimental economics for addressing questions
in philosophy [27,28,37]. The primary focus of this novel approach lies in the juxtapo-
sition of mathematical predictions with experimental data, both derived from the same
underlying game model. As Bruner et al. [37] argue: “[...], these [experimental] studies are
important complements to the theoretical work that inspired them. They lend credence
to evolutionary game-theoretic predictions, both in specific cases and as a general tool for
predicting human communicatory behavior. In this way, they play a double epistemic
role, telling us something about human behavior as well as about our other methods for
understanding human behavior. In sum, we argue that these experimental methods have
much to offer to experimental philosophy, for extending and improving existing game-
theoretic explorations in philosophy, as well as for any inquiry into the nature of strategic
interaction—cooperation, altruism, communication, social coordination, social learning,
etc., -in humans.”

1.2. Structure of the Article

The article is structured as follows. In Section 2, we introduce the game models of
the three types of signaling games. In Section 3, we analyze the three signaling games (i)
by deriving their strategy spaces and equilibria, particularly with respect to evolutionary
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stability (static analysis), and (ii) by computing emergence rates of equilibria in simulation
experiments, where a population of agents repeatedly play one of the signaling games
and update their behavior according to an imitation update rule (dynamic analysis). In
Section 4, we present the results of an online experiment with human participants who play
repeatedly one of the three signaling games and contrast these results with the outcome of
the simulations. In Section 5, we present a conclusion, and in Section 6 we point to possible
directions of developing this research program.

2. The Game Models

We consider three different games, which we will call the Lewis signaling (LS) game,
the context-signaling (CS) game, and the context bottleneck (CB) game. Table 1 shows an
overview of notations required for the definition of (context) signaling games.

Table 1. Notations for the definition of (context) signaling games.

Symbol Description

ti ∈ T information states of set T
si ∈ S signals of set S
ri ∈ R response actions of set R
ci ∈ C contextual cues of set C
Pr ∈ (∆(T))C probability function over T given c ∈ C
U : T × R→ R utility function
σ : T → S sender strategy
ρ : S→ R receiver strategy (standard signaling game)
ρ : S× C → R receiver strategy (context-signaling game)
γ = 〈σ, ρ〉 communicative strategy (pair of sender + receiver strategy)

2.1. Lewis Signaling Game

The first game is a standard sender–receiver signaling game. This game type has
been extensively studied in many different fields, e.g., philosophy [1,3], economics [38,39],
linguistics [40,41], and theoretical biology [42,43]. In the following, we will call this game
type a Lewis signaling (LS) game, after one of its earliest formulations by Lewis [1].

A LS game is a game-theoretic model that outlines information transfer between the
sender and the receiver. An LS game is given by a tuple 〈T, S, R, U〉, where T is a set
of states, each of which represents the private information of the sender; S is a set that
contains signals that the sender transfers to the receiver, and R is a set that contains response
actions that the receiver can choose. Furthermore, U : T× R→ R is a utility function that
determines how well a state matches a response action. In all of the games that we consider
in the article, there is exactly one optimal action for any state, notified by the same indices.
More precisely, the utility function is defined as U(ti, rj) = 1 if i = j, or otherwise 0. In this
paper, we consider a variant of the LS game that has three states, three signals and three
actions: T = {t1, t2, t3}, S = {s1, s2, s3}, and R = {r1, r2, r3}.

One round of the LS game is played as follows: first, a state t ∈ T is randomly chosen.
Then, the sender communicates state t by choosing a signal s ∈ S. Afterwards, the receiver
chooses a response r ∈ R. Communication is successful if and only if s matches r, which
results in an optimal utility of 1 for both players, or otherwise 0.

The game determines the relationship between states and response actions through its
utility function, but it does not determine any relationship between signals and states or
signals and actions. Thus, as a consequence of the definition of the model itself, signals are
meaningless. However, signals can become meaningful due to the regularities in sender
and receiver behavior. Such behavior can be described in terms of strategies. A sender
strategy is defined by a function σ : T → S, and a receiver strategy is defined by a function
ρ : S → R. We describe agents’ communicative behavior by a combination of a sender
strategy and a receiver strategy. Therefore, a communicative strategy γ ∈ Γ = ST × RS is
defined as a strategy pair of sender strategy σ and receiver strategy ρ, thus γ = 〈σ, ρ〉.



Games 2022, 13, 20 4 of 19

The LS game entails 33 = 27 sender strategies and 33 = 27 receiver strategies, result-
ing in 729 communicative strategies. Only 6 strategies guarantee perfect communication.
These 6 strategies enable a one-to-one mapping between states and signals. In the Le-
wisean diction, these strategies are called perfect signaling systems. Figure 1 shows the six
strategy pairs that form perfect signaling systems. These are the only strategy pairs that
achieve a perfect expected utility of 1 against themselves, which is equivalent to perfect
information transfer.
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Figure 1. The six perfect signaling systems of the 3× 3 Lewis signaling game.

2.2. Context-Signaling Game

The context-signaling (CS) game is an extended version of the LS game. It is defined
by a tuple 〈T, S, R, C, Pr, U〉. It has the same components as the LS game plus a set C of con-
textual cues and a probability function Pr that maps probabilities of states onto contextual
cues, as described below. The idea here is that states can correlate with contextual cues, and
receiver strategies can access these cues to construe the very same signal differently given
different contexts. This allows the receiver to disambiguate signals that are ambiguously
used by the sender [7,8]. In other words, some ambiguous signaling systems can guarantee
perfect information transfer, provided that a reliable contextual cue delivers the necessary
additional information (something that is not possible in LS games, where ambiguous
signaling systems can never achieve perfect information transfer). Examples of such perfect
ambiguous systems will be given below.

In this paper, we consider a variant of the CS game that has three states, three signals,
three actions, and two contextual cues: T = {t1, t2, t3}, S = {s1, s2, s3}, R = {r1, r2, r3}, and
C = {c1, c2}. Moreover, we reconsider a CS game where the information states occur with
the following probabilities:

• Pr(t1 |c1) = 2/3, Pr(t1 |c2) = 0
• Pr(t2 |c1) = 1/3, Pr(t2 |c2) = 1/3

• Pr(t3 |c1) = 0, Pr(t3 |c2) = 2/3

In other words, the state t1 only appears with c1, the state t3 only appears with c2, and
the state t2 appears with c1 or c2, each with the same probability.

To give an idealized example that is represented by this game, one can imagine using
alarm signals in the communication of animals such as monkeys. In this simplified example,
a group of monkeys uses three alarm signals to distinguish between different predator
types, and for each predator type there is a different optimal response action, such as hiding
in a bush or climbing a tree. In our example, there are three different types of predators,
represented by the information states t1, t2 and t3. Accordingly, ri is the optimal response
actions for an attack by ti, i ∈ {1, 2, 3}. The relevant contextual cues are daytime (c1) and
nighttime (c2) since predator type t1 is only active at daytime, predator type t3 is only active
at nighttime and predator type t2 can potentially attack at any time. By assuming daytime
and nighttime to be equally likely, this results in the probabilities Pr(t, c), as defined above.
Finally, three different signals are at the individuals’ disposal: s1, s2 and s3. Note that in this
example, a perfect ambiguous system would have (i) the sender using the same signal for
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the daytime predator and the nighttime predator, and (ii) the receiver arriving at the right
response action upon this signal by taking into account whether it is daytime or nighttime.

Formally, one round of the CS game is played as follows: first, a contextual cue c ∈ C
is chosen randomly. Then, a state t ∈ T is chosen with probability Pr(t|c). Then, the sender
communicates the given state by choosing a signal s ∈ S. Afterwards, the receiver chooses
a response r ∈ R. Importantly, the receiver knows the current contextual cue c and can use
this information for adjusting her behavior. Communication is successful if and only if the
state matches the response action, which results in an optimal utility of 1 for both players,
else 0.

As in the LS game, a CS game’s sender strategy is defined by a function σ : T → S.
However, a receiver strategy is defined by a function ρ : S× C → R since the receiver
can also make use of the contextual cue to organize her behavioral pattern. Again, we
describe agents’ communicative behavior by a combination of sender and receiver strategy
γ = 〈σ, ρ〉.

The CS game has a much greater strategic space than the LS game (concrete numbers
below). Moreover, the CS game has two different types of strategies that guarantee perfect
communication, which we will call perfect signaling systems (as defined before) and perfect
ambiguous systems. Note that the perfect ambiguous systems of the CS game only use two
signals, one of which can be successfully disambiguated by the receiver through contextual
cues. Figure 2a shows an exemplary perfect signaling system and Figure 2b, an exemplary
perfect ambiguous system. In total, the CS game, as defined here, has 54 different perfect
signaling systems and 54 different perfect ambiguous systems.
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s2
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r1
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(a) Perfect signaling system.

t1

t2

t3
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s2

s3

r1

r2

r3

c1

c2

(b) Perfect ambiguous system.

Figure 2. A perfect signaling system of the CS game is shown in (a), and a perfect ambiguous system
of the CS game is shown in (b). Both achieve an expected utility of 1.

2.3. Context Bottleneck Game

The context bottleneck (CB) game is a CS game with a particular property: it has fewer
signals than states. Formally, a CB game and its communicative strategies are defined
exactly like for the CS game before, with the only difference in that it has a smaller signal
space: S = {s1, s2}. Therefore, without contextual cues, it would be impossible to achieve
perfect information transfer since it is impossible to distinguish between |T| different
states with |S| < |T| different signals. However, the CB game entails ambiguous systems
that achieve perfect information transfer. All in all, the CB game has two such perfect
ambiguous systems, as shown in Figure 3a,b.

Moreover, the CB game has non-perfect ambiguous systems that achieve very high
communicative success of 5

6 . Two of such systems are shown in Figure 3c,d. For example, in
the system in Figure 3c, communication only fails when t2 appears in context c1. This case
appears with a probability 1

6 since Pr(t2|c1) =
1
3 , and the probability that c1 is given at all is

1
2 since contextual cues are drawn randomly. In the remaining cases, which therefore appear
with a probability 1− 1

6 = 5
6 , communication is always successful. Setting probabilities off

against utilities yields 1
6 × 0 + 5

6 × 1 = 5
6 .
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Figure 3. The two perfect ambiguous systems of the CB game are shown in (a,b), both of which
achieve an expected utility of 1. Two (of 12) exemplary non-perfect but evolutionarily stable pooling
systems of the CB game are shown in (c,d), both of which achieve an expected utility of 5

6 .

These non-perfect ambiguous systems are relevant for the following study since they
are evolutionarily stable (a concept that we introduce below). Note that the CB game and
the CS game both have evolutionarily stable non-perfect ambiguous systems, whereas in
the LS game only perfect signaling systems are evolutionarily stable. An overview of the
three games and their properties is shown in Table 2.

Table 2. Properties of the three games studies in this articles.

LS Game CS Game CB Game

number of states 3 3 3
number of signals 3 3 2

contextual cues no yes yes

3. Formal and Computational Analysis

In this section, we will study formal properties and evolutionary aspects of the three
games. For the evolutionary analysis, we look at so-called expected utility (EU) tables that
contain all the expected utility (EU) values EU(γ, γ′) over all communicative strategies
γ, γ′ ∈ Γ of a game G. Moreover, here EU values assume agents to be in the sender
and receiver role with the same frequency. Formally, the expected utility EU(γ, γ′) with
γ = 〈σ, ρ〉 and γ′ = 〈σ′, ρ′〉 is defined as follows:

EU(γ, γ′) =
1
2

UC(σ, ρ′) +
1
2

UC(σ
′, ρ)

whereby UC(σ, ρ) is the communicative utility of using a sender strategy σ against a receiver
strategy ρ. The communicative utility is defined as follows for the LS game:

UC(σ, ρ) = ∑
t∈T

1
|T| ·U(t, ρ(σ(t)))

For the CS game and CB game, UC is defined slightly differently due to taking contex-
tual cues into consideration and is defined as follows:

UC(σ, ρ) = ∑
c∈C

∑
t∈T

1
|C| · Pr(t|c) ·U(t, ρ(σ(t), c))

Studying EU tables is a standard practice in evolutionary game theory (EGT), partic-
ularly when it comes to signaling games [3]. An EU table as defined here is a symmetric
normal form representation of the game and enables the detection of evolutionary prop-
erties, particularly evolutionarily stable strategies [44,45], a central concept in EGT. For
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a symmetric normal form game with strategy set Γ and utility function EU : Γ2 → R, a
strategy γ ∈ Γ is an evolutionarily stable strategy (ESS) if and only if the following two
conditions hold:

1. EU(γ, γ) ≥ EU(γ′, γ) for all γ′ 6= γ
2. If EU(γ, γ) = EU(γ′, γ) for some γ′ 6= γ, then EU(γ, γ′) > EU(γ′, γ′)

ESSs are equilibria with an invasion barrier: when a whole population plays an ESS
then the population cannot be invaded by a (small) number of mutants. More concretely, if
mutants appear, and if their number is below a particular threshold, then the evolutionary
dynamics wipe out the mutants and the population swings back to the state where everyone
plays the ESS. The size of an invasion barrier can differ from ESS to ESS and can be
approximated through other means, as pointed out in Section 3.2. In the next section, we
will specify the games’ startegy spaces and evolutionary equilibria.

3.1. Strategy Spaces and Equilibria

The LS game has 27 sender strategies and 27 receiver strategies, resulting in 729 com-
municative strategies, out of which 6 strategies (0.8% of the strategy space) form perfect
signaling systems. It has been proven in [6] that perfect signaling systems are the only ESS
for any signaling game with n information states, n signals and n response actions, n ≥ 2.
Therefore, the 6 strategy pairs (see Figure 1) are the only ESS of the LS game, but it has
also been shown that particular ambiguous strategies (so-called pooling strategies) have
attraction potential under evolutionary dynamics [6,13,46].

While Lewis signaling games have been extensively studied in the past, the evolution-
ary aspects of context-signaling games have been the focus of only two recent studies [7,8].
The CS game as defined here has not been studied at all. The CS game has 27 sender
strategies and 729 receiver strategies, which results in 19.683 communicative strategies.
A computational analysis of the whole strategy space showed that the CS game entails
54 perfect signaling systems (0.27% of the strategy space), such as depicted in Figure 2a, and
54 perfect ambiguous systems (0.27% of the strategy space), such as depicted in Figure 2b.
Moreover, it can be shown that both strategy types have the same attraction potential under
evolutionary dynamics, such as the replicator dynamics [47]–a standard dynamics in EGT.
In other words, starting from a random population distribution, it is equally likely that
a perfect signaling system or a perfect ambiguous system emerges under evolutionary
dynamics. Finally, the CS game has a number of non-perfect ambiguous strategies that
form evolutionarily stable sets [48]. The analysis of these sets would go beyond the scope
of this paper, but note that the strategies therein are similar to the two exemplary strategies
of the CB game in Figure 3c,d.

The CB game has eight sender strategies and 81 receiver strategies, which results
in 648 communicative strategies. As already mentioned, the CB game strategies cannot
form perfect signaling systems due to its bottleneck property of having fewer signals than
states/actions. However, the CB game has two perfect ambiguous systems (0.3% of the
strategy space), which are both shown in Figure 3a,b. Moreover, the CB game has 12 non-
perfect ambiguous strategies that form two evolutionarily stable sets [48]. Two of them are
shown in Figure 3c,d. As already indicated, all of these non-perfect ambiguous systems
achieve a communicative success of 5

6 .
Table 3 shows an overview of the strategy spaces and their evolutionary aspects of all

three games.
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Table 3. Strategic/evolutionary properties of the three games.

LS Game CB Game CS Game

number of sender strategies 27 8 27
number of receiver strategies 27 81 729
total number of strategies 729 648 19,683
perfect signaling systems 6 (0.8%) - 54 (0.27%)
perfect ambiguous systems - 2 (0.3%) 54 (0.27%)
(non-perfect) evolutionarily stable sets no yes yes

3.2. Emergence Rates under Evolutionary Dynamics

As indicated at the beginning of this section, the detection of evolutionarily stable
states is a static analysis, which helps one to understand what kind of strategies are expected
to persist and hence are hard to be replace with other strategies. However, knowing that
a strategy γ is an ESS does not tell us anything about processes that make a population
end up in a state where everyone plays γ. Evidently, ESSs are very often endpoints of
an evolutionary process, but how likely it is for such endpoints to be reached under
evolutionary dynamics must be determined by adynamic analysis.

A very common approach of such a dynamic analysis is as follows: we start with a
population of agents, each of whom is randomly attributed a strategy. Then, we simulate
an iterated interaction process, where agents update their behavior according to an evolu-
tionary dynamics protocol until a stable endpoint is reached. In general, such an endpoint
corresponds to a stable equilibrium, very often an ESS. When we reproduce the simulation
process multiple times, we obtain emergence rates of such equilibria, which approximate
the size of their basins of attraction (the basin of attraction of an equilibrium λ is the range
of population states that lead to λ under the evolutionary dynamics.). In other words, these
emergence rates are indicators for how likely an equilibrium is to emerge under the tested
evolutionary dynamics, starting from a randomly selected population state.

For the computation of emergence rates, we applied an algorithm that accomplishes
imitation dynamics with the decision method ‘pairwise difference imitation’ (PDI). It can
be shown that the PDI dynamics constitute one of the multiple agent-based protocols that
approximate replicator dynamics [49]. Moreover, the PDI dynamics constitute a more
realistic model for an agent-based perspective, since (i) they consider a finite population,
and (ii) their members do not need to have global knowledge (such as knowing the
average utility of a population, which e.g., has to be taken into account for an agent-based
interpretation of the replicator dynamics) but only local knowledge about one interlocutor’s
performance in making strategy updates. The details of this PDI dynamics algorithm are
described as Python-similar pseudo code in Appendix A.

We carried out three simulation experiments, one for each game. In each experiment,
we conducted 1000 simulation runs. Each simulation run started with a population of
100 agents, initially attributing a communicative strategy γ randomly drawn from the set
of all strategies Γ. The simulation ended when all agents had adopted the same strategy.

The results were as follows. For the LS game, agents eventually adopt a perfect
signaling system in 86% of all runs. In the remaining 14%, so-called partial pooling
equilibria emerge, which are non-perfect ambiguous systems that achieve a communicative
success of 2

3 . This result is in line with related studies that investigate the 3× 3 LS game with
other evolutionary dynamics. For example, Skyrms [3] reports for the 3× 3 LS game that
under replicator dynamics, perfect signaling systems emerge in 95.3% of all runs, whereas
in the remaining 4.7% partial pooling equilibria emerge. Moreover, Barrett [2] shows
that when two agents play the 3× 3 LS game repeatedly and update their probabilistic
choices via reinforcement learning, perfect signaling systems emerge in 90.4% of all runs,
whereas in the remaining 9.6% partial pooling equilibria emerge. Taken together, all these
studies show that across different evolutionary dynamics, in a vast majority of runs perfect
signaling equilibria emerge.
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For the CB game, perfect ambiguous systems emerge less often than non-perfect ambigu-
ous systems (44% to 56%). Note that all non-perfect ambiguous systems that have emerged
are those that have achieved a communicative success of 5

6 (example strategies are shown in
Figure 3c,d) and are evolutionarily stable (see discussion in Sections 2.3 and 3.1). Finally, for
the CS game, we also see the emergence of non-perfect ambiguous systems (31%), all of which
achieve a communicative success of 5

6 . Perfect signaling systems and perfect ambiguous
systems emerge with almost the same frequency (34% vs. 35%). The results are outlined in
Table 4.

Table 4. Results of the imitation dynamics: 100 agents, no mutation, 100 runs.

LS Game CB Game CS Game

perfect signaling
system 86% - 34%

perfect ambiguous
systems - 44% 35%

non-perfect
ambiguous systems 14% 56% 31%

In sum, we see that results differ across games. The LS game has only one type of
strategy that is evolutionarily stable: the perfect signaling system. Not surprisingly, this
strategy type emerges in a vast majority of runs. The CB game, however, has two types of
evolutionarily stable strategy types: perfect and non-perfect ambiguous systems. It turns
out that only these two types emerge, and the non-perfect ambiguous systems emerge
slightly more often. Finally, for the CS game, all three types are evolutionarily stable, and
all three types emerge with roughly the same frequency.

4. Online Experiments

Common models of evolutionary dynamics, such as the PDI dynamics, formalize
evolutionary processes driven by the principles of random trial-and-error and utility max-
imization. These principles constitute a reasonable assumption for modeling biological
evolution (where utility represents fitness), but do they also constitute a reasonable assump-
tion for cultural evolution? We argue that cultural evolution might involve more complex
principles, such as biased trial-and-error processes (instead of completely random ones),
that pay respect to higher cognitive skills of the individuals. This leads us to the general
research question of this section: do human participants in the lab behave differently than
virtual agents under evolutionary dynamics when playing the signaling games discussed
in this paper? To study this question, we present an experimental study where participants
in the lab play the three games repeatedly for a number of rounds with a fixed partner. We
use design protocols from experimental economics, where game payoff is transferred into
real money, which is payed out after the experiment on top of to the participation fee.

With the lab experiment we want to test four hypotheses, which are motivated by the
results of the simulation experiments (see Table 4) and assumptions about the difference
between adaptive dynamic and rational decision making. Note that under evolutionary
dynamics, optimal communication systems emerge with a frequency of 66% across the
three games (86% for the LS game, 44% for the CB game, and 69% for the CS game).
We assume that participants in the lab learn perfect communication systems with higher
frequencies for at least one reason: since the evolutionary dynamics produce a randomly
initiated process of trial-and-error, populations can potentially get trapped in a sub-optimal
local optimum. However, the behavior of participants in the lab is more likely driven
by rational considerations of optimization, and perfect communication systems are the
preferred endpoint of such an optimization-guided learning process. Therefore, we state
the following first hypothesis:
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Hypothesis 1. For the LS, CS and CB games, perfect communication systems emerge more often
in the laboratory under a fixed partner protocol than in simulation runs under adaptive (PDI)
dynamics.

From Hypothesis 1, we can derive more specific hypotheses that relate to the specific
outcome of each game. The hypothesis about the LS game is as follows.

Hypothesis 2. Playing the LS game, in the vast majority of experimental runs, participants
establish a perfect signaling system in the laboratory under a fixed partner protocol.

For the CB game, we see that the perfect ambiguous system emerged slightly less often
than 50%. However, assuming that participants arrive at a better rate in the laboratory
experiments, we put forward the following hypothesis:

Hypothesis 3. Playing the CB game, in the majority of experimental runs, participants establish a
perfect ambiguous system in the laboratory under a fixed partner protocol.

Finally, we see that for the CS game, perfect communication systems emerge 69%.
Moreover, we know that perfect signaling systems and perfect ambiguous systems both
emerge with roughly the same frequency (34% vs. 35%), and we also know that both types
of communication systems have the same basin of attraction sizes under evolutionary dy-
namics. We assume that this relationship can be reproduced in the laboratory experiments;
therefore, we put forward the following hypothesis:

Hypothesis 4. Playing the CS game, in the majority of experimental runs, participants establish
a perfect communication system in the laboratory under a fixed partner protocol, whereby perfect
signaling systems and perfect ambiguous systems emerge with roughly the same frequency.

4.1. Experimental Setup

We conducted five experimental sessions with 10 participants each. In each session,
five pairs of participants played one of the three signaling games (LS game, CS game and
CB game) for a sequence of 30 rounds. For reasons that we describe below, we partitioned
the sequence into five blocks of six rounds each, so that Block 1 includes the Rounds 1–6,
Block 2 includes the Rounds 7–12, and so on. The role of both participants alternated
for each round, so that in the even round numbers, player 1 was sender and player 2
was receiver, and in the odd round numbers it was exactly the other way around. Each
experiment had a fixed sequence of information states that where presented to the sender.
This sequence was designed in a way that in every block, each of the participants was
exposed to each of the three information states exactly one time. A block of a sequence
could, for example, look as follows:

• player 1 is sender, information state is t2;
• player 2 is sender, information state is t3;
• player 1 is sender, information state is t1;
• player 2 is sender, information state is t2;
• player 1 is sender, information state is t3;
• player 2 is sender, information state is t1.

This structure is useful for analyzing the communication protocol because we can
deduce from the participants’ behavior of every block if (i) both participants use the same
protocol and (ii) the protocol reproduces one of the perfect communication strategies as
introduced earlier.

We recorded the behavior of all participants to evaluate how the communicative suc-
cess changes and if the participants manage to establish perfectly working communication
protocol at the end of the experiment. The experimental design was developed for being
used in online experiments. Participants received a url that directed them to a waiting
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room where they waited to be paired with another participant. For four of the five sessions,
we recruited participants via the crowdsourcing platform Prolific, and for the remaining
one we recruited participants from an online seminar via an invitation link. An overview
of the five sessions is depicted in Table 5.

Table 5. Overview of the experimental sessions with 50 participants in total.

Game Recruitment Participants

Session I LS game Prolific 10 (5× 2)
Session II CS game Invitation 10 (5× 2)
Session III CS game Prolific 10 (5× 2)
Session IV CB game Prolific 10 (5× 2)
Session V CB game Prolific 10 (5× 2)

We conducted two sessions (II and III) for the CS game and two sessions (IV and V)
for the CB game. For the LS game, we conducted solely one session (Session I) because this
game has been studied frequently elsewhere [26,27,29], and one session was sufficient to
confirm that the results are in line with findings of former studies with similar settings.
More details about the software for the experimental design and the procedure and structure
of an experimental run can be found in Appendix B.

4.2. Experimental Results

In the first analysis step, we computed the communicative success (CoS) rates for
every six rounds. Figure 4b–f show CoS rates over blocks for all five pairs of participants
of each session, where each data plot represents a pair of participants. Figure 4b shows
the result for the LS game. It shows that initially the CoS rates are below 100%, but they
increase over time, and in all five sessions the participants communicate with a 100% CoS
rate during the last block of the experiment. Figure 4c,d show the results for both sessions
with the CS game. Additionally, here almost all CoS rates are below 100% at the beginning.
Moreover, CoS rates mostly increase so that in 9 of 10 runs participants communicate with
a 100% CoS rate at the last block of the experiment. Finally, Figure 4e,f show the results for
both sessions with the CB game. Here, all CoS rates are below 100% at the beginning. In
6 of 10 runs, participants communicate with a 100% CoS rate during the last block of the
experiment, and in one run the CoS rate is near 100% (gray line of Session V). In three runs,
however, CoS rates are below 50% during the last block.

Figure 4a summarizes the results for each game type, showing the CoS rates averaged
over all participants for the initial 6 rounds, the final 6 rounds, and all the rounds. The
results show that the tendencies are the same in all three games: the CoS rates are initially
lower, and they increase over time (on average), but with different magnitudes across the
three game types. Not surprisingly, the LS game has the lowest initial CoS rates since the
expected communicative success is 1

3 for a random guess, whereas for the CS ans CB game
it is 1

2 due to the contextual cues. Moreover, the CB game has the lowest final CoS rates. As
we will see, this is due to the bottleneck property that makes it harder for participants to
establish a successful communication protocol.

In a next step, we analyzed the participants’ behavior in the last six rounds to establish
what kind of communication protocol they might have developed. The results are as
follows: for the LS game (Session I), all five pairs of participants have established a perfect
signaling system in the final six rounds (or even earlier). Here, both players use exactly the
same protocol, which is characterized by on of the signaling systems as shown in Figure 1.

For the CS game (Sessions II and III), in 8 of 10 runs participants established a perfect
signaling system in the final six rounds. In one run (green data plot of Figure 4d), partici-
pants established a non-perfect ambiguous system that did not always achieve a CoS rate
of 100%, although in this particular run it did. Finally, in another run (gray data plot of
Figure 4d), participants tried to establish a pooling system that only considered contextual
cues but failed in doing so, so that the communicative success broke down eventually.
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(b) Session I: LS game.
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(c) Session II: CS game.
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(d) Session III: CS game.
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(e) Session IV: CB game.
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(f) Session V: CB game.

Figure 4. Communicative success (CoS) rates of the experiments. (a) shows the CoS rates over initial
6, final 6 and all rounds, averaged over all participants for each game type. (b–f) show the CoS rates
over blocks of all participant pairs for Sessions I to V, respectively.

For the CB game (Sessions IV and V), in 7 out of 10 runs participants established a
perfect ambiguous system. In one of these runs (gray data plot of Figure 4f), the CoS rate
was not 100% during the last block, due to the fact that one of the players made a mistake.
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However, the communication protocol of these six rounds and former rounds show that
the participants used a perfect ambiguous system. In the remaining three runs (red and
gray line of Figure 4e, red line of Figure 4f), participants failed to establish any efficient
communication protocol.

A bar plot of the frequencies of emerged communication protocol types for the three
different games is shown in Figure 5a.
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100%

LS game CS game CB game

PS PA nPA fail

(a) Experimental results.
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(b) Simulation results.

Figure 5. Frequency of types of communication systems that emerged in the laboratory experiments
(a) and in the simulation runs under evolutionary dynamics (b). Perfect signaling systems (PS) are
coded red, perfect ambiguous systems (PA) are coded blue and non-perfect ambiguous systems (nPA)
are coded darkgray. Experimental runs where participants failed to establish a joint communication
protocol after 30 rounds are coded lightgray.

4.3. Discussion

Figure 5a,b juxtapose the experimental results and the simulation results (values of
Table 4). The figures highlight that the results are in line with Hypothesis 1. On aver-
age across the three games, perfect communication systems emerged in the lab in 20 of
25 experimental runs, and thus in 80% of all runs, whereas they emerged in 66% of all
simulation runs under imitation dynamics. Moreover, perfect communication systems
emerged more frequently in the lab for every single game type, namely, 100% versus 86%
for the LS game, 80% versus 69% for the CS game, and 70% versus 44% for the CB game
(cf. Figure 5).

Furthermore, the experimental results (i) are in line with Hypothesis 2 since perfect
signaling systems emerged in all experimental sessions with the LS game, and (ii) confirm
Hypothesis 3 since perfect ambiguous systems emerged in the majority (70%) of all sessions
with the CB game. The experimental results only partially confirm Hypothesis 4. It is
true that in the majority (80%) of all sessions with the CS game, participants established a
perfect communication system. However, whenever they established one, it was always a
perfect signaling system. This result goes against Hypothesis 4, where we assumed that
perfect signaling systems and perfect ambiguous systems emerge roughly with the same
frequency, as was the case in the simulation study. This discrepancy is clearly visible by
comparing the middle bars of Figure 5a,b.

Why do we find this difference in the emergence of communication systems under
evolutionary dynamics relative to with participants in the lab? One aspect that we expect
to play a role here is the underlying mechanism of decision making. Note that low-level
evolutionary dynamics, such as imitation dynamics, simulate a trial-and-error process: “If
what I do works, I stick to it, otherwise I adopt what works better.” These dynamics do
not incorporate any higher-order mechanisms of decision making, in contrast to what we
believe the human participants did in the lab sessions. Human players incorporate their
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knowledge about the situation and, in particular, their predictions on how the other player
will act in this situation. This makes them prefer establishing a communication system
that is based on communicated signals only over one that involves additionally external
contextual cues.

Let us make this point more precise. In the CS game, a CoS rate of 100% can be
achieved with a perfect signaling system or a perfect ambiguous system. The success
of perfect signaling is not dependent on contextual cues but only on the behavior of the
other player. Since participants know that the other player is exactly in the same situation
(they both want to communicate successfully to maximize utility), one can rely on the
other’s behavior. In other words: perfect signaling systems are very attractive as the
circumstances—particularly that both participants’ interests are perfectly aligned—make
the behavior of the other player reliable. In Section 6, we will propose a number of factors
that are expected to change the circumstances in a way such that perfect signaling might
become less, and ambiguous signaling more attractive.

5. Conclusions

The central game of our study is the CS game, where the evolutionary expediency of
perfect signaling systems and perfect ambiguous systems is equivalent, as shown in com-
puter simulations of populations of agents playing the CS game repeatedly and updating
strategies according to the PDI protocol. However, when human participants in the lab
repeatedly play the game with each other, they arrive at perfect signaling systems in the
vast majority of experimental runs, which clearly shows that they disprefer the utilizations
of contextual cues for establishing perfect ambiguous systems.

The discrepancy between the emergence rates of communication strategies in simula-
tions under evolutionary dynamics and in experiments in the lab is the main finding of this
study. We believe that this is most probably due to a difference in the sophistication level
(low-level vs. high-level) of decision making or preexisting cognitive biases. This insight is
not new but is also discussed with respect to other games. For example, Skyrms [50] studies
a Stag Hunt game with pre-play signaling. He shows that under low-level evolutionary
dynamics, agents very frequently (around 75%) establish an interaction protocol where
the whole population plays the cooperative stag strategy upon receiving any signal, much
more often than without pre-play signaling. Skyrms refers to paper by Aumann [51], who
discusses the same scenario and argues that high-level rational agents would establish a
communication protocol with meaningless signals, which makes pre-play communication
completely ineffecitve. Here, high-level sophistication is assumed to be disadvantageous
for establishing a more cooperative, more beneficial convention.

Therefore, one must be careful with taking any adaptive low-level dynamics as a good
model for cultural evolution. For any phenomenon under investigation, one must factor
in the following question: how much sophistication, rationality and recognition of the
situation is necessarily involved in the decision-making processes of agents in a society?
Models of cultural evolution must take these aspects into consideration, with an immediate
goal of having a nuanced picture of the particular phenomenon under investigation, and
with a long-term goal of developing a broader set of evolutionary dynamics that are
properly sensitive to the different levels of agents’ sophistication in their decision making.
(For example, when we look at learning in games, we find two very prominent learning
models that involve quite different levels of sophistication: reinforcement learning [52] and
fictitious play [53]. While the former one is a low-level learning model where agents do not
even need to know the payoff structure of the game or even the existence of another player,
the latter one assumes a higher level of sophistication, where agents have to know that
exact payoff structure of the game and form beliefs about how other players will behave,
based on past experiences.)
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6. Outlook

The results of this experiment invite follow-up studies with context-signaling games
to determine the conditions that promote ambiguity and access to contextual cues. As we
showed in this study with the CB game, one such condition is an information bottleneck,
but we believe there are more such relevant factors. Another one might be alignment
of interests: when we change the underlying condition that interests of both players are
completely aligned to one where they are only partially aligned, then we might expect
that participants will prefer to exploit contextual cues, due to the fact that such cues then
have a higher reliability than signals from a interlocutor with competing interests. (See
Blume et al. [26] and Rubin et al. [28] for experimental studies with signaling games
with partially aligned interests.) A further condition is signaling costs: when it is very
costly for the sender to learn or use a large number of signals, then reducing the number is
beneficial for the sender, as long as there is a way that communication is still successful;
for example, through a disambiguation effort taken by the receiver through the use of
contextual cues. (See Santana [7] and Mühlenbernd [8] for formal and computational
analyses with context-signaling games that involve signaling costs. Both studies show that
signaling costs promote the emergence of perfect ambiguous systems.)

Finally, contextual cues might be exploited more when we have a larger group of
participants. For example, Bruner et al. [27] conducted experiments with a 3× 3 Lewis
signaling games played over 60 rounds by a group of 12 participants under random
matching protocol. Here, perfect signaling systems emerged much less frequently, only in
3 out of 10 sessions, whereas in the other sessions non-perfect ambiguous systems emerged.
(See also Blume et al. [26] for a similar study where participants more frequently establish
perfect signaling systems.) It is reasonable to assume that in such a setting, contextual cues
are helpful since receivers can rely on them to turn a non-perfect into a perfect ambiguous
system. The role of these and many other factors should be tested in future studies to see
their effect on the evolution of ambiguity in the laboratory.
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administration, R.M., S.W. and P.Ż.; Resources, R.M.; Software, R.M.; Writing—original draft, R.M.,
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ESS evolutionarily stable strategy
PDI pairwise difference imitation
CoS communicative success
PS perfect signaling
PA perfect ambiguity
nPA non-perfect ambiguity

Appendix A. Pairwise Differential Imitation (PDI) Dynamics

A pseudo code (based on Python) of the PDI dynamics is given in Figure A1:

PD Imitation Algorithm
1 Input: set of n agents A = {a1, a2, . . . an},
2 signaling game G,
3 sender strategies S
4 receiver strategies R
5 break condition B
6 for a ∈ A:
7 a.σ = random_element(S)
8 a.ρ = random_element(R)
9 while not B:
10 for ai ∈ A:
11 for aj ∈ A:
12 play_game(G, ai, aj)→ Us,Ur
13 ai.ASU + = Us
14 aj.ARU + = Ur
15 for ai ∈ A:
16 aj = random_element(A)
17 if ai.ASU < aj.ASU
18 pr = aj.ASU−ai.ASU
19 with probability pr: ai.σ = aj.σ
20 if ai.ARU < aj.ARU
21 pr = aj.ARU−ai.ARU
22 with probability pr: ai.ρ = aj.ρ
23 for a ∈ A:
24 a.ASU = 0
25 a.ARU = 0

Figure A1. Pseudo Python code of the ‘pairwise difference’ imitation algorithm.

The input parameters are a set of agents, a signaling game G, a set S of sender strategies,
a set R of receiver strategies, and a breaking condition B (lines 1–5). First, all agents are
initialized with a random sender strategy σ and a random receiver strategy ρ (lines 6–
8). Then, a number of simulation steps are accomplished until the breaking condition is
reached (line 9). In each simulation step, every agent interacts with every other agent by
playing game G, one as sender, the other as receiver. After each interaction, the sender
agent’s accumulated sender utility (ASU) and the receiver agent’s accumulated receiver
utility (ARU) are incremented by the utility they scored in the game, Us and Ur, respectively
(interaction part, lines 10–14). Afterwards, each agent ai is attributed to another random
agent aj (lines 15–16). If agent ai has a lower ASU value than aj, she adopts the sender
strategy of the other agent with a probability that equals the difference of both agents’ ASU
values (lines 17–19); the same happens independently for the ARU values (lines 20–22).
Finally, all agents’ ASU and ARU values will be reset for starting a new round (lines 23–25).

Appendix B. Experimental Procedure

The experimental design was created with LabVanced. Participants started the ex-
periments via a link, which they either received via eMail invitation (Session II) or on the
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Crowdsourcing platform Prolific (Sessions I, III, IV and V). Upon clicking this link, partici-
pants waited in a virtual lobby to get matched with another participant. After matching,
participants saw a screen with the following general instructions:

• In this experiment you will play a communication game with an other participant for
a number of 30 rounds.

• In each round you both can score 10 points if you play successfully, otherwise you
both receive 0 points.

• Your final total score will be converted into real money (100 points = 1£) and added to
your participation fee.

• Please take your time and play carefully. Press ’Next’ to go to the video tutorial
(<2 min) that explains how to play the game.

Afterwards, participants saw a short tutorial video (less than 2 min) that demonstrates
how to play the communication game (cf. Figure A2).

(a) Initial sender perspective.

(b) Receiver perspective after receiving a signal.

(c) both agents’ perspective after response.

Figure A2. Screenshots of an exemplary interaction round for the LS game, with the green agent as
sender and the blue agent as receiver. (a) Initial perspective of the green agent in sender role. Her
private information state is ’banana’ (alternatives: ’apple’, ’grapes’), and she has to pick a signal, $, &
or §. (b) Perspective of the blue agent (receiver role) after the sender has picked signal &. He cannot
see the information state of the green agent and has to guess an information state as response: ’apple’,
’banana’ or ’grapes’. (c) Perspective of both agents after the receiver has picked ’grapes’ as response.
Communication failed in this example, and both don’t score.
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Then, the experiment started. For each pair of participants, one player was inaugurated
as the ’blue agent’ and the other as the ’green agent’, represented by a blue or green smiley
face, respectively. Both participants played the communication game for 30 rounds, thereby
alternating between sender role and receiver role. The three information states were
represented by the fruit icons ’apple’, ’banana’ and ’grapes’. The signals were represented
by diverse characters, for example, the $-symbol or the &-symbol. The contextual cues
in the SC game and the CB game were represented by an orange box that contains a
disjunction of two information states. Figure A2 shows the screenshots of an exemplary
interaction round for the LS game, with the green agent as sender and the blue agent as
receiver. Figure A3 shows the final screen of an exemplary interaction round for the CS
game to illustrate the contextual cue representation.

Figure A3. Screenshots of the final screen of an exemplary interaction round for the CS game. The
contextual cue is presented as a disjunction of two information states, of which one is true.
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