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Abstract: A formal game-theoretic model of an intertwined supply network, in full and simplified
versions, is proposed. Conditions for the sustainable development of an active system are presented
in general form and then specified to the class of intertwined supply networks. As an illustration, a
concise example of the dynamic Cournot duopoly and a detailed example of the model of Social and
Private Interests Coordination Engines (SPICE-model) for a marketing network are considered and
analytically investigated and sustainability conditions are established. An important conclusion is
that the sustainable development of the active system is possible only under the viability conditions
satisfied simultaneously with coordinating the interests of all active agents of the system.

Keywords: game theory; intertwined supply networks; models of coordination of social and private
interests; sustainability

1. Introduction

For the relations between society and nature, sustainable development problems
have been the focus of attention of politicians, scientists, and the public for more than
forty years. The meaning of this concept is that economic development should ensure
social welfare without disturbing the ecological balance: “ . . . development that meets the
needs and aspirations of the present without compromising the ability to meet those of the
future . . . ” [1] (p. 43). In the 1990s, the concept of “three pillars” became widespread in
sustainability theory. According to this concept, it is necessary to simultaneously consider
and balance economic, environmental, and social criteria. Therefore, in the mathematical
modeling of sustainable development, the state vector should include variables describing
the three groups of indicators. On a long or even infinite time horizon, the values of all state
variables should belong to a given range, thereby ensuring the sustainable development
of the socio-ecological-economic system. This idea was formalized in viability theory [2].
Nowadays, the concept of a circular economy plays a more and more significant role in
this area [3,4].

Unfortunately, practice shows that in most countries, the strategies of transition to
sustainable development remain nothing more than declarations. As we believe, the prob-
lem here is the absence of real agents interested in implementing sustainable development
conditions. These conditions cannot be satisfied by themselves and require special control
efforts. According to the author’s concept of sustainable management, the sustainable
development of an active system can be ensured only if the interests of all active elements
(agents) in this system are taken into consideration and coordinated. Thus, research into
sustainable development fits the context of motivation theory [5], mechanism design [6–8],
the theory of active systems [9,10], and the information theory of hierarchical systems [11].

For supply chains, sustainable development issues were analyzed in the position
paper by Ivanov and Dolgui [12]. The authors introduced a new generalizing concept of
intertwined supply networks (ISNs) as a set of interconnected supply chains; provided
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a comparative analysis of the concepts of resilience, robustness, stability, and viability;
illustrated their approach using the example of an ecological system model, and outlined
some lines of further research.

This paper develops and supplements [12] with the author’s concept of sustainable
management of active systems [13–18]. The contribution of this paper is as follows:

A well-grounded active system interpretation of ISNs is presented, and the role of
control in the functioning of various types of ISNs is described.The main objectives of the
paper are the following:

(1) to present an active system representation of ISNs, and to describe the functioning of
various types of ISNs;

(2) to give a game-theoretic formalization of ISNs with consideration of their structure;
(3) to specify the notions of the system’s sustainability and sustainable management in

game-theoretic terms;
(4) to study a dynamic game-theoretic model of Social and Private Interests Coordination

Engines (SPICE-model) for ISNs with application to marketing.

The contribution of this paper is as follows:

• a well-grounded active system interpretation of ISNs is presented, and the role of
control in the functioning of various types of ISNs is described;

• a game-theoretic formalization of ISNs as active systems is proposed, taking into
account their structure. Special cases of the general model are highlighted;

• the notions of the system’s sustainability and sustainable management capability are
specified within the deterministic ISN model;

• a dynamic game-theoretic model of Social and Private Interests Coordination En-
gines (SPICE-model) for ISNs is constructed, and application to marketing is con-
sidered. This model is studied for the linear functions of the private interests of
influence agents.

As we expect, intertwined supply networks should become an important area of
application in the theory of sustainable management of active systems. We launchthis
research process in the paper.

In Section 2, a literature review on the topic of the paper is provided. In Section 3,
a well-grounded interpretation of an ISN as an active system is presented, and a corre-
sponding game-theoretic model is introduced. In Section 4, the notions of the system’s
sustainability and sustainable management capability are given an original interpretation
and specified to the deterministic ISN model; also, a concise example of the dynamic
Cournot duopoly is considered. In Section 5, as a detailed example, the SPICE-model
for ISNs is constructed with application to marketing; also, this model is analytically in-
vestigated for the linear functions of private interests of influence agents. In Section 6,
concluding remarks are combined, and some lines of further research are discussed.

2. Literature Review

There are numerous publications devoted to the theory of sustainable development
and sustainability in its various aspects [1,19–21]. The main idea that sustainable develop-
ment is possible under certain requirements to the state of the socio-ecological-economic
system was mathematically formalized in viability theory [2,22,23]. For key economic, en-
vironmental, and social indicators, some thresholds are assigned, determining the domain
of the system’s viability [24]. An economic trajectory is considered sustainable if, at any
time instant, it belongs to a given domain of viability. The viability kernel plays the main
mathematical role here. This kernel is the set of all initial states for the trajectories satisfying
viability constraints. Martinet [25] suggested defining indicator thresholds by solving an
optimization problem. In a series of papers [26–28], a connection between the concepts of
maximin, viability, and sustainable development capability was established.

A concept for the sustainable management of active systems based on systems analysis,
mathematical modeling, and information technology was proposed [13–18]. The main
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idea put forward therein is that the sustainable development of an active system can be
achieved (i.e., sustainable development constraints can be satisfied) only if the active agents
of this system have an interest in it. More specifically, the weak and strong form of viability
conditions in the model of a controlled dynamic system were described; a game-theoretic
formalization of hierarchical control methods was suggested, considering sustainable de-
velopment requirements; several applications-relevant sustainable management problems
in various areas were solved.

The problems of considering and coordinating the interests of active agents were
studied in the theory of motivation [5], mechanism design [6–8], the theory of active
systems [9,10], and the information theory of hierarchical systems [11]. The central math-
ematical apparatus is provided by the theory of dynamic games [29–31]. Along with
traditional research methods, simulation plays a crucial role here [32].

An important class of models for coordination of interests is the models of the economy
of public goods [33]. A modification of these models, the so-called SPICE-models, was
suggested and analyzed in static [34,35] and dynamic statements [36,37]. In the SPICE-
models, each agent distributes his resource between the production of public good and his
private activity. As a result, the agent’s payoff consists of the share of his participation in
using public goods and his income from private investments, and it is necessary to choose
an optimal allocation of the resource between public and private interests. In addition, the
system’s viability requirements can be taken into consideration.

Extensive literature was devoted to control models for different classes of systems
with a network structure, including ISNs. For example, note the monographs [38,39] and
the reviews [40,41]. Novikov analyzed the relations between game-theoretic and network
models [42]. As compared to this paper, the closest approach was described by Sedakov and
Zhen [43]. The earlier studies related to this paper can be found in [44,45]. Dynamic SPICE-
models on networks, with application to marketing, were considered [46,47]. Viability
conditions were taken into account [48]. The main idea was as follows: it suffices to control
only the strong subgroups of the influence digraph (opinion leaders), who determine
the stable final opinions of all other agents.Tur and Petrosyan [49] analyze strong time-
consistent solutions for cooperative differential games with network structure. They
introduce a new characteristic function that considers a networked structure. This approach
is developed in [50,51].

In the position paper, Ivanov and Dolgui [12] introduced a new generalizing concept
of intertwined supply networks (ISNs) as a set of interconnected supply chains; provided
a comparative analysis of the concepts of resilience, robustness, stability, and viability;
illustrated their approach using the example of an ecological system model, and outlined
some lines of further research. Rentizelas et al. [52] consider reverse supply network
design for circular economy pathways of wind turbine blades in Europe. Zhao et al. [53]
study contract strategy for two competing supply chains selling a substitutable product
under demand uncertainty. Kamalahmadi et al. [54] examine the relative impact on supply
chain responsiveness of adding flexibility and redundancy. They seek to investigate the
effectiveness of flexibility and redundancy in terms of minimizing expected supply chain
costs and maximizing expected service delivery when a supply chain is exposed to supplier
and environmental disruptions. Their results show that the backup-supplier practice is
more effective than the flexible-supplier practice, as measured by cost reduction and service-
level improvement. Dolgui et al. [55] analyzed the ripple effect in supply chains compared
to the bullwhip effect. The papers [56,57] focused on the impact of epidemics, particularly
COVID-19, on global supply chains and their sustainability. Disaster management was also
discussed by Dubey et al. [58]. The resilience of supply chains was examined in [59–61]. A
risk-based systematic approach to supplier selection was presented by Yoon et al. [62]. The
spread of risks in supply chains was also studied [63]. The adaptive properties of supply
chains were analyzed by Choi et al. [64]. For a large number of firms, the adaptation of
supply chains to disruptive influences was modeled within the agent-based framework [65].
An analysis of supply chains in the light of the circular economy concept was given [3,4,66].
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Choi et al. [64] presented a comprehensive review of publications on the game-theoretic
modeling of production management in a sharing and circular economy, collected in a
special issue of the International Journal of Production Research.

We summarize the results of the literature review in Table 1.

Table 1. Literature review (2019–2022).

Reference Number Brief Content

[12] A position paper introducing the notion of intertwined supply networks

[8–13,17–19] Analysis of supply chains (resilience, ripple effect, circular economy, and so on) and development of
the notion of ISN, including some game-theoretic models

[2,14–16] Differential game-theoretic models with networked structure

[3–7] Authors’ approach to the differential game-theoretic modeling of network systems with applications
in marketing

3. Intertwined Supply Networks: Control and Formalization

Ivanov and Dolgui [12] introduced the concept of an intertwined supply network
(ISN) as a set of interconnected supply chains that jointly provide society and markets with
goods and services. Figure 1 shows an ISN versus traditional supply chains and networks.
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Figure 1. Linear supply chains, supply networks, and intertwined supply networks [12].

As we believe, an ISN should, first of all, be interpreted as an active system [9,10]. This
means that the need to consider and coordinate the interests of active elements (agents)
in this system should come to the fore. According to the theory of active systems, active
agents have strategic behavior, i.e., make decisions facilitating the realization of their
interests. In particular, active agents can deliberately misrepresent information about their
characteristics reported to other agents.

Note that, within the systems approach, each element of an ISN is an active system
with its internal structure, and the ISN itself is included as an element in some active
supersystem of a higher level. For example, a regional ISN consists of enterprises located
in a given region of a country and is part of the national ISN. However, this aspect will not
be considered below: the subject of study is some separate ISN as an active system.

Within the theory of active systems, we propose the following general model of an ISN:

ISNB = 〈N, X, A, U, Y, P, g〉 (1)

Here N = {1, 2, . . . , n} is a finite set of active agents; X = X1 × X2 × . . .× Xn means
the set of all state profiles of active agents; xi(t) ∈ Xi denotes the state of agent i, treated
as a function of continuous or discrete time t; A =

∣∣∣∣aij
∣∣∣∣ is the matrix of links between

agents, defined by the interaction coefficients aij ∈ R; U = U1 ×U2 × . . .×Un gives the
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set of admissible action profiles of the agents; ui(t) is an admissible action of agent i at
a time instant t; Y = Y1 × Y2 × . . . × Yn denotes the set of possible type profiles of the
agents; yi ∈ Yi indicates the type of agent i; P is a probability distribution on the set Y;
finally, gi : U ×Yi → R (the set of real numbers) is the payoff function of agent i ∈ N, and
g = (g1, g2, . . . , gn).

A pair D = (N, A) determines a weighted digraph D specifying the ISN structure. If
aij = 0, then the arc (i, j) (the arc from the vertex i to vertex j) is absent.

Let si : Yi → Ui be the strategy of agent I, which determines his action depending
on his type, and s = (s1, s2, . . . , sn) be the profile of all admissible strategies of the agents.
Under a given profile s, the expected payoff of agent I of type yi is

g̃i(s, yi) = ∑
y−i∈Y−i

P(y−i|yi)gi(si(yi), s−i(y−i), yi) (2)

where agent I forms his belief about the types of other agents by the Bayes formula with
due consideration of the complete probability rule:

P(y−i|yi) =
P(yi, y−i)

P(yi)
=

P(yi, y−i)

∑y−i∈Y−i
P(yi, y−i)

(3)

Then model (1) is a game with incomplete (asymmetric) information, or a Bayesian
game [67], with the ISN structure taken into consideration.

For the sake of simplicity, below we will consider only the deterministic model of a
generalized normal-form game with complete information of the form

ISN = 〈N, X, A, U, g〉 (4)

in which the types of agents are fixed, and the agents use pure strategies. Therefore, the
probability distribution on the set of types is not required. In this case, the payoff functions
are of the form gi : U → R, i ∈ N.

For describing the evolution of the agents’ states, it is convenient to adopt the well-
known De Groot model of the opinion dynamics in a social group [68]:

xj(t + 1) = xj(t) +
n

∑
i=1

aijxi(t), j = 1, . . . , n, t = 0, 1, 2, . . . , T (5)

where T denotes the game duration (time horizon). Of course, more general (nonlinear)
models can be considered, but the state of agent j always changes depending on the
actions of those agents I that can influence him, i.e., for which the digraph D contains a
corresponding arc (i, j).

Note that in the theory of active systems, the aspect of control is crucial for the
operation of ISNs. Therefore, it makes sense to consider three special cases of ISNs as
follows. Such an approach rests on the models of control on networks [38], in which basic
agents and influence agents are often distinguished. Active influence agents impact the
basic agents in their interests, formalized by the payoff functions. The basic agents are
considered degenerate (passive), without any interests. The state of the basic agents evolves
during their interaction and under the purposeful impact of the influence agents.

3.1. Optimal Control in ISNs

The set of agents is N = {0, 1, . . . , n}, where the number 0 corresponds to a single
influence agent, and the other agents are basic. In the linear case, the dynamics equation
(Equation (5)) takes the form

xj(t + 1) = xj(t) + bjuj(t) +
n

∑
i=1

aijxi(t), j = 1, . . . , n, t = 0, 1, 2, . . . , T (6)
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where bj is the degree of impact of the influence agent on basic agent j. If the influence
agent has no impact on basic agent j, then bj = 0. In this case, model (4) reduces to the
optimal control problem (here and farther “→ max ” denotes the mathematical problem
of maximization)

g(u(·)) =
T

∑
t=1

e−ρtgt(x(t), u(t)) + G(x(T))→ max, u(t) ∈ U (7)

along the trajectories of (6), where: ρ ∈ (0, 1] denotes the discount factor; gt and G(x(T))
are the instantaneous payoff function of the influence agent and his terminal payoff,
respectively. The horizon T can be finite or infinite; in the latter case, the terminal payoff is
absent. The functions u(·) can be open-loop or feedback strategies.

3.2. Conflict Control in ISNs

The set of agents is N = {1, . . . , k, k + 1, . . . , n}, where the first k numbers correspond
to the influence agents, and the other (n− k) numbers to the basic agents. The linear
dynamics equation has the form

xj(t + 1) = xj(t) +
k

∑
l=1

bl jul j(t) +
n

∑
i=k+1

aijxi(t), j = 1, . . . , n, t = 0, 1, 2, . . . , T (8)

where bl j is the degree of impact of influence agent l on basic agent j. If influence agent
l has no impact on basic agent j, then bl j = 0. Models (4) and (8) represent a differential
normal-form game in which the payoff functions of the agents are given by

gi(u(·)) =
T

∑
t=1

e−ρtgit(x(t), u(t)) + Gi(x(T))→ max, ui(t) ∈ Ui, i = 1, . . . , n. (9)

3.3. Hierarchical Control in ISNs

The set of agents is N = {0, 1, . . . , k, k + 1, . . . , n}, where the number 0 corresponds
to the upper-level influence agent (called the Principal in the theory of active systems),
the next kk numbers to the other influence agents, and the rest (n− k) numbers to the
basic agents. The Principal coordinates the activity of all influence agents without any
direct impact on the basic agents. As before, the dynamics equation has the form (8).The
Principal’s interests are described by

g0(u(·)) =
T

∑
t=1

e−ρtg0t(x(t), u(t)) + G0(x(T))→ max, u0(t) ∈ U0 (10)

and the agents’ interests by (9), and U = U0 ×U1 × . . .×Un.
Models (8)–(10) are a hierarchical (Stackelberg) differential normal-form game in which

the Principal makes the first move.
Of course, more general (nonlinear) models can be considered in all cases. For the

continuous-time statement, the sums in the payoff functions are replaced with the integrals
and the difference dynamics equations with the differential ones. The diagrams of these
structures are shown in Figure 2, with the following abbreviations: optimally controlled
intertwined supply networks (OCISNs), conflict controlled intertwined supply networks
(CCISNs), and hierarchically controlled intertwined supply networks (HCISNs).
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Let us emphasize that in real ISNs, all agents are active. They are divided into basic
agents and influence agents primarily for methodological purposes, for the convenient
modeling of control processes. At the same time, in several real situations, the special
cases of OCISNs, CCISNs, and HCISNs reflect quite well the subject matter, when the
optimal, conflict, or hierarchical control of some ISN plays the primary role, and many of
its elements can be considered as relatively passive objects of influence.

4. Notion of Sustainability
4.1. General Case

According to viability theory [2], the viability condition for models (1) or (4), repre-
senting the main requirement for sustainable development, can be written as

∀t : x(t) ∈ X∗. (11)

If at any time instant, the system stays within a given domain X∗, then its development
is assumed sustainable. The concept of viability and approaches to its formalization have
been discussed in detail in Section 2.

What is much more important, the viability condition, in the form (11) or some other,
is necessary but, in principle, insufficient to ensure sustainable development. Active agents,
intended to ensure the sustainable development of the system, must be interested in this;
otherwise, condition (11) will remain a needless burden for them, and their real actions will
not be aimed at fulfilling it.

In the original model (1) or (4), equal agents influence some dynamic object in their
interests, simultaneously and independently of each other. At the same time, there are
objective requirements (viability conditions) that should be satisfied for the object’s state
from the entire active system viewpoint. We write model (4) as a differential normal-form
game of nn players:

Ji(u(·)) =
∫ ∞

0
e−ρtgi(x(t), u(t), t)dt→ max, (12)

ui(t) ∈ Ui, i ∈ N; (13)
.
x = f (x(t), u(t), t), x(0) = x0. (14)
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Here, N = {1, . . . , n} is the set of active agents; gi and Ji represent the instantaneous
payoff function and integral payoff functional of agent i ∈ N, respectively; ui(t) denotes
the control of agent i ∈ N at a time instant t, and u(t) = (u1(t), . . . , un(t)); Ui is the set
of all admissible controls of agent i ∈ N, and U = U1 × . . . ×Un; x(t) gives the value
of the state variable at a time instant t; x0 specifies an initial state; f is a given function
determining state variations over time; finally, ρ ∈ (0, 1] means the discount factor. In the
general case, the state variable and control can be vectors. The infinite time horizon better
suits the concept of sustainable development, although problem statements with T < ∞
are also possible. Also, we make the following assumptions. First, the sets Ui are compact
in the corresponding vector spaces. Second, the vectorfunction f is continuous in t and
continuously differentiable in the other variables. Third, there exists a constant κ > 0 such
that for any x, t ≥ 0, and u ∈ U, || f (x, u, t)|| ≤ κ(1 + ||x||), where the denotation ||·|| is
the norm of a vector. Fourth, the functions gi are continuous in all variables. Fifth, the
functions satisfying the constraint (13) are piecewise continuous in t, smooth in x for all
t ≥ 0, and belong to the classes of admissible feedback strategies.

The viability condition has the form (11). Note that in the original statement, condition
(11) is external for the set of agents, i.e., they are not interested in its implementation.
Therefore, initially, the model cannot be considered as a differential game (12)–(14) with
the additional state-space constraints (11).

The solution of the game (12)–(14) will be understood as the set of Nash equilibria
NE, under the assumption NE 6= ∅ (otherwise, the problem makes no sense). In particular,
NE 6= ∅ if Ui are convex and compact whereas gi(ui, u−i) are concave in ui on Ui for all
u−i ∈ U−i, i ∈ N.

Denote by U∗ = {u ∈ U : ∀t x(t) ∈ X∗} the set of controls ensuring viability, assuming
again that U∗ 6= ∅ (otherwise, further considerations become pointless). If UDG = NE ∩
U∗ 6= ∅, then the sustainable management problem (11)–(14) has a solution. The controls
u ∈ UDG ensure viability, and the interests of all agents are also taken into consideration
through a Nash equilibrium in their game (the compatibility of interests).

For a detailed treatment of the problem of compatibility of interests, we introduce the
social welfare functional

J(u(·)) = ∑
i∈N

Ji(u(·)).

Then, under the condition

∀uNE ∈ NE\UDG ∃u ∈ UDG : J(u) ≥ J
(

uNE
)

, (15)

the viability requirements (11) are perfectly compatible with social welfare. In the opposite
case, i.e., when

∃uNE ∈ NE\UDG ∀u ∈ UDG : J(u) < J
(

uNE
)

(16)

the viability requirements are not perfectly compatible with social welfare. Next, if

∀i ∈ N ∀uNE ∈ NE\UDG ∃u ∈ UDG : Ji(u) ≥ Ji

(
uNE

)
, (17)

then the viability requirements are perfectly compatible with the private interests of all
agents. In the opposite case, i.e., when

∃i ∈ N ∃uNE ∈ NE\UDG ∀u ∈ UDG : Ji(u) < Ji

(
uNE

)
, (18)

the viability requirements are not compatible with the private interests of some agents.
Obviously, (17)→ (15), and (16)→ (18).

If UDG = NE ∩U∗ = ∅, then the sustainable management control (11)–(14) in the
original statement has no solution.



Games 2022, 13, 35 9 of 21

If UDG 6= ∅, but (16) or at least (18) holds, then the problem is solvable, but the
social welfare in general or at least the interests of some agents will suffer if the viability
conditions are satisfied. In these cases, there are two possible ways to modify the problem
statement; see below.

Collaboration is a method in which all agents agree to ensure the viability condition
(11), voluntarily and consciously. In this case only, the sustainable management problem
for active systems with independent agents is described by the differential normal-form
game with the state-space constraints (11)–(14).

In particular, independent agents can cooperate, form agrand coalition, and jointly
maximize the total payoff functional (social welfare) with respect to all control vari-
ables. Then, the differential normal-form game (12)–(14) is replaced with the optimal
control problem

J(u(·))→ max, (19)

with the constraints (13) and (14).
We introduce the set of arguments of function J at which the maximum is achieved, i.e.,

−
U = Arg max

u(·)∈U
J(u(·)). If UOC = U∗ ∩

−
U 6= ∅, then the sustainable management problem

for active systems in the cooperative statement has a solution. Note that in this problem,

UOC 6= ∅⇒ ∀−u ∈
−
U\UOC ∃u ∈ UOC : J(u) = J

(−
u
)

, i.e., the condition UOC 6= ∅ makes
viability compatible with social welfare.

In the case of collaboration, all agents (members of the grand coalition) agree to ensure
the viability condition (11). For the grand coalition, the optimal control problem with
state-space constraints (11), (13), (14), and (19) arises accordingly.

Suppose that the control problem in the original statement has no solution, and
collaboration is not applicable in practice. In this case, the Principal should be introduced
into the system, with the main goal to ensure viability via hierarchical influence on the sets
of admissible controls of the agents (compulsion) or their payoff functionals (impulsion);
for details, see [13,14]. This leads to a hierarchical differential game of the form

J0(p(·), q(·), u(·)) =
∫ ∞

0
e−ρtg0(x(t), p(t), q(t), u(t), t)dt→ max, (20)

p(t) ∈ P, q(t) ∈ Q; (21)

Ji(p(·), q(·), u(·)) =
∫ ∞

0
e−ρtgi(x(t), pi(t), u(t), t)dt→ max, (22)

ui(t) ∈ Ui(qi(t)), i ∈ N; (23)

subject to the additional constraints (11) and (13). Here, g0 and J0 are the Principal’s instanta-
neous payoff function and integral payoff functional, respectively; p(t) = (p1(t), . . . , pn(t))
represents the vector of impulsion controls; finally, q(t) = (q1(t), . . . , qn(t)) denotes the
vector of compulsion controls. Note that in this case, the model turns into a hierarchical
differential Stackelberg game with state-space constraints: fulfilling the viability condition
(11) is the Principal’s main goal. The set of Nash equilibria in the agents’ game takes the
form NE(p, q) since the solutions of this game depend on the Principal’s actions. For this
model, the same mathematical requirements are imposed as for models (12)–(14).

We introduce the following sets of agent controls:

• Umax = max
p∈P,q∈Q

max
u∈U(q)

J0(p, q, u), which globally maximizes the payoff functional of

the Principal;
• Umax

NE = max
p∈P,q∈Q

max
u∈NE(p,q)

J0(p, q, u), which ensures the compatibility of the agents’

interests with the Principal’s interests, albeit neglecting viability;
• U∗max = max

p∈P,q∈Q
max
u∈U∗

J0(p, q, u), which ensures viability with due consideration of the

Principal’s interests, albeit neglecting the agents’ interests;
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• U∗NE(p, q) = NE(p, q) ∩U∗U∗NE(p,q)=NE(p,q)∩U∗, which ensures viability with due con-
sideration of the agents’ interests, albeit neglecting the Principal’s interests;

• UHDG(p, q) = Umax
NE ∩ U∗max ∩ U∗NE(p, q)UHDG(p,q)=Umax

∗∗NE
max

NE , which ensures viability
with the perfect compatibility of all interests.

If ∃(p, q) ∈ P×Q : UHDG 6= ∅, then the sustainable management problem (11), (14),
(20)–(23) has a solution in the hierarchical statement. The non-emptiness of the sets U∗max,
U∗NE(p, q) gives a theoretical possibility to solve the problem. However, this possibility is
rather ambiguous in practice since either the agents’ interests or the Principal’s interests
are not considered.

The following pairs of classification attributes determine the information structures of
the differential games:

• open-loop strategies v(t) = φ(t) (Stackelberg games) or feedback strategies v(t) = φ(t, x(t))
(inverse Stackelberg games); see [69];

• compulsion v(t) = q(t) or impulsion v(t) = p(t);
• the deterministic or stochastic model.

For assessing the concordance of interests in quantitative terms, a reasonable approach
is to use the indices of system compatibility. For the model without the Principal, this index
has the form

ISC = Jmax − JNE, (24)

where Jmax = max
u∈U

J(u) and JNE = min
u∈NE

J(u). Thus, ISC characterizes the difference between

the global maximum of social welfare and its value in the worst-case Nash equilibrium.
Note that for this purpose, the price of anarchy is often used as well [70]

PA =
Jmax

JNE . (25)

For the model with the Principal, the system compatibility index can be written as

IH
SC = Jmax

0 − JNE
0 , (26)

where Jmax
0 = max

p∈P,q∈Q
max

u∈U(q)
J0(p, q, u) and JNE

0 = max
p∈P,q∈Q

min
u∈NE(p,q)

J0(p, q, u).

The index IH
SC characterizes the compatibility of interests from the Principal’s view-

point. In both cases, the perfect compatibility of interests occurs under ISC = 0. The
condition ISC ≈ 0 indicates almost perfect compatibility.

When solving problems (11) and (14), and (20)–(23), it is sometimes convenient to
single out the following situations:

• The Principal shows indifference, J0(·) ≡ J0, being interested only in the viability
condition (11). Then, the set Umax becomes needless, and it remains to verify the
condition ∃(p, q) ∈ P×Q : U(p, q) 6= ∅

• The Principal maximizes the social welfare

J0(·) = J(·) = ∑
i∈N

Ji(u(·)); (27)

in this case, the interests of the Principal and agents are co-directed.
Note that the Principal’s capabilities on the compulsion and impulsion of agents

incur costs and are therefore limited. Let us introduce the functions Cq(q), Cp(p), which
characterize the administrative and economic costs of the Principal, respectively. It is natural

to assume that: Cq(q) = Cq

(
∑

i∈N
qi

)
, lim

q→0
Cq(q) = ∞, and Cq(nxmax) = 0, where xmax

denotes the maximum value of the state variable, and Cq(q) is monotonically decreasing
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on [0, nxmax; Cp(p) = Cp

(
∑

i∈N
pi

)
, Cp(0) = 0, lim

p→n
Cp(p) = 0, and Cp(p) is monotonically

increasing on [0, n]. Then the Principal’s budget constraints have the following form:

• in the case of compulsion,

Cq(q) ≤ R; (28)

• in the case of impulsion,

Cp(p) ≤ R. (29)

Here, R is the Principal’s budget.
Well, sustainable development (sustainability: S) is possible under the two conditions

satisfied simultaneously, namely, viability (V) and the compatibility of interests (C):

S = V + C. (30)

The viability condition always has the form (11). The conditions for the compatibility
of interests depend on the structural configuration of the active system (N, A); see the
description above. If both conditions on the right-hand side of (30) hold, then the ISN is
resistant to internal and external disturbances, including emergencies and threats.

Different statements of the sustainable management problem for active systems are
combined in Table 2.

Table 2. Sustainable management problems for active systems.

With Principal Without Principal

Independent agents Differential (difference) normal-form game Hierarchical (Stackelberg differential (difference) game
of (n + 1) players with state-space viability constraints

Grand coalition of
agents (cooperation)

Continuous- or discrete-time optimal
control problem

Hierarchical (Stackelberg) differential (difference)
game of 2 players with state-space viability constraints

4.2. Sustainability of Intertwined Supply Networks

Intertwined supply networks represent active organizational and economic systems.
For this class of systems, strategic behavior is critical, which is expressed primarily in the
desire of economic agents to maximize their profits. At the same time, the real interests of
active agents have a more complex character. First, along with the natural desire to profit as
quickly as possible, economic agents should take care of the long-term successful operation
of enterprises and organizations. Second, besides the purely economic component, the
social responsibility of business, the awareness of environmental problems, and protec-
tion against threats of anthropogenic, technogenic, and biological nature are playing an
increasing role. Taken together, these factors form the viability conditions for ISNs.

Thus, in model (4), (N, A) is a structural digraph of an ISN that determines the set
of active agents and links between them; Xi represents the set of states of agent i, and Ui
denotes the set of his admissible actions; gi : U1 × . . .×Un →R is the payoff function of
agent i, i ∈ N. The viability condition (11) for the state vector xi can be written as

∀t : xij(t) ∈ X∗ij, j = 1, 2, . . . , |Xi|, i = 1, 2, . . . , n. (31)

As a rule, the viability domains X∗ij are given by inequalities of one of the following types:

∀t : xij(t) ≤ xmax
ij ; (32)

∀t : xij(t) ≥ xmin
ij ; (33)
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∀t : xmin
ij ≤ xij(t) ≤ xmax

ij . (34)

Here, xmin
ij and xmax

ij are some thresholds for each indicator.For example, for an in-
dustrial enterprise, the viability conditions for emissions of pollutants have the form
(32); for profit, the form (33); for wages, the form (34), taking into consideration the total
wages fund.

As an illustrative example of ISNs, consider a dynamic Cournot duopoly of the form

git(u1t, u2t) = (a− c− u1t − u2t)uit, 0 ≤ uit ≤ a/2, 0 < a/2 < c < a, i = 1, 2 (35)

where uit is the output of firm i at step t; c denotes the specific costs; finally, a is the demand
parameter. Then git describes the profit of firm i at step t. Assuming that xi(t) = git, the
state of firm i evolves according to Equation (35). The total discounted profit of firm i on
the infinite horizon is given by

Ji(u1, u2) = (1− δ)∑∞
t=0 δtgit, (36)

where ui = (ui0, ui1, . . .), and δ ∈ (0, 1) is the discount factor.
Denote by uC the output of each firm in cooperation (cartel collusion), supposing that

in this case, all firms have the same outputs. Let us choose the viability condition in the
integral form

Ji(u1, u2) ≥ Ji

(
uC, uC

)
, i = 1, 2. (37)

Consider possible ways to ensure this condition in the infinite-horizon repeated game
(35), (36). First, assume that all firms have agreed on an output uC for any step. If at a step t
one of the firms has a different output, then starting from the step (t + 1), the agreement
becomes invalid, and the output of each firm is equal to the equilibrium value uNE

i .
In the one-step game (35), the Nash equilibrium is calculated from the system

of equations
∂gi
∂ui

= a− c− 2ui − uj = 0, i = 1, 2. (38)

Note that the response function of player I is

ũi
(
uj
)
=

1
2
(
a− c− uj

)
, i = 1, 2. (39)

Due to the players’ symmetry, u1 = u2 = uNE, and the solution of (38) is

uNE =
a− c

3
, gNE =

(a− c)2

9
.

For the equal outputs u1 = u2 = u, we obtain

g1(u, u) = g2(u, u) = g(u, u) = (a− c− 2u)u,

and hence the cooperative solution and the corresponding payoff are

uC =
a− c

4
, gC =

(a− c)2

8
. (40)

Let player 1 violate the agreement immediately. Then

u10 = u∗1 , u20 = uC, u1t = u2t = uNE, t = 1, 2, . . .
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In view of (39), the value u∗1 is 3
8 (a− c), and consequently, g10

(
u∗1 , uC) = 9

64 (a− c)2.
Under the above assumptions, the total payoff of player 1 takes the form

J(1)1 =
9(1− δ)

64
(a− c)2 +

1− δ

9
(a− c)2

∞

∑
t=1

δt =

[
9(1− δ)

64
+

δ

9

]
(a− c)2.

Complying with the agreement, player 1 obtains the total payoff

(1− δ)∑∞
t=0 δt (a− c)2

8
=

(a− c)2

8
.

Therefore, the breach of the agreement is non-beneficial under the condition

(a− c)2

8
> J(1)1 .

After some trivial transformations, we arrive at δ > 9
17 .

Now suppose that when player 1 deviates from the cooperative agreement, player
2 uses the punishment strategy. This strategy can be calculated from the condition
uP

2 ∈ Argmin
u2

g1(u1, u2), which yields uP
2 = a/2. Being aware of this fact, starting from the

step t = 1, player 1 will choose the optimal response umin
1 = ũ1

(
uP

2
)
∈ Argmax

u1
g1
(
u1, a

2
)
,

i.e., umin
1 = a−2c

4 . In this case, g1
(
umin

1 , uP
2
)
= (a−2c)2

16 . Then, the total payoff of player 1
takes the form

J(2)1 =
9
64

(1− δ)(a− c)2 + (1− δ)
∞

∑
t=1

δt(a− 2c)2

16
=

9(1− δ)(a− c)2 + 4δ(a− 2c)2

64
.

Hence, the condition of non-beneficial breach of agreement is J(2)1 < (a− c)2/8, or
after simple transformations,

δ >
(a− c)2

(a + c)(5a− 7c)
.

Thus, with a sufficiently large value of the discount factor, trigger strategies of various
types ensure the viability of this ISN.

In addition, note that in this model,

PA =
JC

JNE =
9
8

, ISC = JC − JNE =
(a− c)2

72
.

5. SPICE-Models of Intertwined Supply Networks in Marketing

As a detailed example, we present the model of Social and Private Interests Coordina-
tion Engines (SPICE-model) for a marketing network.

There are (n + m + 1) elements of a marketing network, namely, the coordinating
Principal, m influence agents (firms), and n basic agents (consumers). The Principal has
some amount of resources to be distributed among the influence agents, which use these
resources to attract consumers to purchase the goods or services. The system’s state
dynamics are characterized by the opinions of the basic agents—their planned purchases of
goods or services from the firms. The opinions are formed during the interaction of basic
agents with each other (taking into consideration their own opinions), under the marketing
impact exerted by the influence agents.

The influence agents have a common interest, expressed by the desire to maximize the
opinions of the basic agents, and some private interests, associated, e.g., with third-party
investments. Therefore, their problem is to distribute the marketing budget optimally,
allocated by the Principal, between the implementation of these interests. The Principal’s
problem is to maximize the opinions of the basic agents, considering the costs of marketing,
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and to ensure the viability conditions for the entire system. According to these condi-
tions, the total opinion of the basic agents should belong to a given range on the entire
planning horizon.

These considerations lead to the model

J0 =
∫ T

0
e−ρt

[
∑n

j=1 xj(t)−∑m
i=1 ri(t)

]
dt→ max,

ri(t) ≥ 0, ∑m
i=1 ri(t) ≤ R, t ∈ [0, T], i = 1, 2, . . . , m,

x∗ ≤∑n
j=1 xj(t) ≤ x∗, t ∈ [0, T],

Ji =
∫ T

0
e−ρt

[
∑n

j=1 xj(t)−∑n
j=1 si

ju
i
j(t) + pi

(
ri(t)−∑n

j=1 ui
j(t)
)]

dt→ max, (41)

∑n
j=1 ui

j
(

xj(t)
)
≤ ri(t), i = 1, 2, . . . , m, t ∈ [0, T], si

j =

{
1 if bi

j > 0,
0 if bi

j = 0,
,

.
xj = ∑m

i=1 bi
j

√
ui

j
(

xj(t)
)
+ ∑n

l=1 ãl jxl(t), xj(0) = xj0, j = 1, 2, . . . , n (42)

Here n denotes the number of the basic agents (the size of the target audience); m is the
number of the influence agents (competing firms). If firm i has no impact on agent j, then
bi

j = 0. In addition, R is the total marketing budget of the Principal; T gives the duration
of this game (planning horizon); J0 and Ji are the payoff functionals of the Principal and
influence agents, respectively; ri(t) is the marketing budget of the Principal allocated to
agent i at an instant t; xj(t) reflects the opinion of basic agent j at an instant t; ui

j(t) specifies

the costs of the marketing impact of influence agent i on basic agent j at an instant t; bi
j is

the degree of impact of influence agent i on basic agent j; ρ denotes the discount factor;
finally, ãij is the coefficient of impact of basic agent i on the opinion increase of agent j, with
the additional constraints ∑n

j=1 ãij = 0 and −1 ≤ ãii ≤ 0, where i = 1, 2, . . . , n.
Let us explain the negative coefficient of impact of basic agent i on his opinion increase.

The opinion increase of basic agent i is considered with respect to his initial opinion: the
former is the initial opinion of basic agent i multiplied by some positive coefficient, minus
his opinion at the current instant. In other words, the absolute value ãii is the share in the
opinion of basic agent i that he will replace with the opinions of other agents. In particular,
if basic agent i absolutes the truth of his opinion (“there are only two opinions: mine and
the wrong one!”), this stubborn agent will not change his opinion, which is reflected in
his opinion increase by the coefficient ãii = 0, and he will not listen to anyone’s opinion
(i.e., ãji = 0 for j = 1, 2, . . . , n). If basic agent i annihilates his own opinion (“what will the
others say?”), then the rejection of his opinion is expressed by the minimum coefficient
of impact on his opinion increase (in this case, ãii = −1), and ∑n

j=1 ãji = 1 (his opinion is
entirely replaced with the other opinions).

Solving the problem of firm i, we can replace the n state variables xj with their
sum, denoting by x the single state variable ∑n

j=1 xj = x, where ∑n
j=1 xj0 = x0. Then

∑n
j=1 ∑n

l=1 ãl jxl = ∑n
l=1 ∑n

j=1 ãl jxl = ∑n
l=1 xl ∑n

j=1 ãl j = 0, and conditions (41) and (42) take
the forms

Ji =
∫ T

0
e−ρt

[
x−

n

∑
j=1

si
ju

i
j
(
xj(t)

)
+ pi

(
ri(t)−

n

∑
j=1

ui
j(t)

)]
dt→ max

and
.
x = ∑n

j=1 ∑m
i=1 bi

j

√
ui

j
(
xj(t)

)
, x(0) = x0, (43)

respectively.
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Supposing that the Bellman function is linear, under the condition ∑n
j=1 ui

j
(
xj(t)

)
≤ ri(t),

from the Hamilton–Jacobi–Bellman equation we obtain the relation

ui
j =

Ri(t)
(

bi
j

)2

∑n
j=1

(
bi

j

)2 , (44)

where Ri(t) denotes the amount of resources allocated by the influence agent to attract the
basic agents. The optimal amount of these resources is given by

Ri(t) = min

{
1

4(1 + pi)
2 (α(t))

2 ∑n
j=1

(
bi

j

)2
, ri(t)

}
, α(t) =

1
ρ

(
1− eρ(t−T)

)
. (45)

In view of (45), the expression (44) can be written in the form

ui
j =

(
bi

j

)2

∑n
j=1

(
bi

j

)2 min

{
1

4(1 + pi)
2 (α(t))

2
n

∑
j=1

(
bi

j

)2
, ri(t)

}
. (46)

Now we study the Principal’s strategy. The Principal can only increase the value
∑n

j=1 xj, allocating his resources to the firms. Then the optimal strategy of the Principal is
obvious. From the problem statement, it follows that ∑n

j=1 xj0 ≥ x∗.
The Principal solves the problem

J0 =
∫ T

0
e−ρt

(
n

∑
j=1

xj(t)−
m

∑
i=1

ri(t)

)
dt→ max

subject to the constraints x∗ ≤ ∑n
j=1 xj(t) ≤ x∗ , ri(t) ≥ 0, ∑m

i=1 ri(t) ≤ R, and

∑n
j=1 ui

j
(

xj(t)
)
≤ ri(t), i = 1, 2, . . . , m, where

.
xj = ∑m

i=1 bi
j

√
ui

j
(
xj(t)

)
+ ∑n

l=1 ãl jxl(t),

xj(0) = xj0, j = 1, 2, . . . , n, and t ∈ [0, T].
Clearly, to optimize his objective function, the Principal should optimally increase the

value ∑n
j=1 xj(t) until reaching the value x∗. Then he should stop allocating the resources

to the firms. In this case, the value ∑n
j=1 xj(t) will remain equal to x∗ on the remainder of

the planning horizon.
For implementing this strategy, at the instant t = 0 the Principal should determine the

instant t = h when the value ∑n
j=1 xj(h) will become equal to x∗ under the corresponding

strategy.
Under the condition ∑m

i=1 ri(t) ≤ R, the Hamilton–Jacobi–Bellman equation with the

linear Bellman function yields the optimal values ri(t) = 1
4 (α(t))

2 ∑n
j=1

(
bi

j

)2
. However,

the Principal knows that not all resources will be spent on social interests. Hence, the
optimal amount of resources that the Principal will allocate to the influence agent is

ri(t) = 1
4(1+pi)

2 (α(t))
2 ∑n

j=1

(
bi

j

)2
, thereby compelling the agents to spend all their resources

on social interests.
Substituting the expression (46) into Equation (43) for the sum of the state variables x,

we obtain
.
x = ∑m

i=1

√
ri(t)∑n

j=1

(
bi

j

)2
, x(0) = x0.

Integrating this equation, we find

x(t) =
∫ t

0
∑m

i=1

√
ri(τ)∑n

j=1

(
bi

j

)2
dτ + x0. (47)
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Thus, h1 = x−1(x∗) is the instant when the right-hand side of the expression (47) will
reach the value x∗. Knowing the value h1, we can reformulate the Principal’s problem
as follows:

J0 =
∫ h1

0
e−ρt

(
x(t)−

m

∑
i=1

ri(t)

)
dt→ max

subject to the constraints ri(t) ≥ 0, ∑m
i=1 ri(t) ≤ R, t ∈ [0, h1], i = 1, 2, . . . , m, and (47).

Additionally, we establish the following facts: under the condition ∑m
i=1 ri(t) < R, the

optimal amount of resources is ri(t) = 1
4(1+pi)

2

(
α0(t)

)2
∑n

j=1

(
bi

j

)2
, where

α0(t) = 1
ρ

(
1− eρ(t−h1)

)
, t ∈ [0, h1]; under the condition ∑m

i=1 ri(t) = R, the Principal
is ready to allocate the influence agents the amount

ri(t) = R
∑n

j=1

(
bi

j

)2

∑m
k=1 ∑n

j=1

(
bk

j

)2 , (48)

but only if they will spend these resources ultimately on social interests.
If the inequality

∑m
k=1 ∑n

j=1

(
bk

j

)2

4(1 + pi)
2 <

m

∑
k=1

∑n
j=1

(
bk

j

)2

4(1 + pk)
2 (49)

holds at least for one influence agent, then the amount of resources for her reduces to the

value that she is ready to spend on social interests, i.e., ri(t) = 1
4(1+pi)

2 (α(t))
2 ∑n

j=1

(
bi

j

)2
.

The sets of agents for which inequality (49) is satisfied (or not) depend on time. Let K(t)
be the set of agents for which condition (49) holds, and L(t) be the set of agents for which
inequality (49) does not hold. The following result is easy to show: if at least two of the
coefficients pi have different values, the sets K(t) and L(t) are non-empty at those instants
when the Principal does not have enough resources. Therefore, taking into consideration
the expression (48),

ri∈K(t)(t) =
1

4(1 + pi)
2 (α(t))

2 ∑n
j=1

(
bi

j

)2
, t ∈ [0, h1],

ri∈L(t)(t) =

R−∑i∈K(t)

(α(t))2 ∑n
j=1

(
bi

j

)2

4(1 + pi)
2

 ∑n
j=1

(
bi

j

)2

∑k∈L(t) ∑n
j=1

(
bk

j

)2 , t ∈ [0, h1].

Thus, for those agents who can spend resources on private interests, the supply of
resources is reduced, and the remaining resources are allocated proportionally between
those agents who spend them on social interests. At the remaining instants t ∈ [h1, T],
ri(t) = 0.

There exists a unique instant h1
∗ at which the resources are enough, and h1 < h1

∗. The

resources may be not enough only under the condition 4Rρ2 ≤ ∑m
i=1

∑n
j=1

(
bi

j

)2

(1+pi)
2 , and only at

the instants t < h1
∗. In view of the aforesaid, we write:
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JNE = maxJ0
ri , 1≤i≤m

+ x∗
T∫

h1

e−ρtdt = 1
ρ

(
e−ρh1 − e−ρT

)
x∗ + 1

ρ

(
1− e−ρh1

)
x0+

+
∫ h∗1

0

α0(τ)

 ∑
i∈K(τ)

α(τ)∑n
j=1

(
bi

j

)2

2(1+pi)
+

√√√√R− ∑
i∈K(τ)

(α(τ))2 ∑n
j=1

(
bi

j

)2

4(1+pi)
2

√
∑

k∈L(t)

n
∑

j=1

(
bk

j

)2
− R

e−ρτdτ+

+

(
m
∑

i=1

(1+2pi)∑n
j=1

(
bi

j

)2

(1+pi)
2

) ∫ h1
h∗1

[
(α0(τ))

2

2

]
e−ρτdτ.

To calculate JC, assume that each influence agent maximizes not his utility, but the
Principal’s utility under a given strategy of the latter, i.e., solves the problem

J̃i =
∫ T

0
e−ρt

(
∑n

j=1 xj(t)−∑m
i=1 ri(t)

)
dt→ max,

subject to the constraints
x∗ ≤∑n

j=1 xj(t) ≤ x∗,

.
xj = ∑m

i=1 bi
j

√
ui

j
(
xj(t)

)
+ ∑n

l=1 ãl jxl(t), xj(0) = xj0, j = 1, 2, . . . , n,

∑n
j=1 ui

j
(
xj(t)

)
≤ ri(t), i = 1, 2, . . . , m, t ∈ [0, T].

If ∑n
j=1 xj(0) ≥ x∗, then the optimal strategy of each firm is obvious: it should not

invest in marketing. Moreover, this is impossible because, in this case, the Principal allocates
no financial resources to the firms, i.e., ui

j(t) = 0.
Let ∑n

j=1 xj(0) < x∗. Unlike the Principal, no influence agent can a priori estimate the
instant h when the sum of the state variables will reach the value x∗. However, this estimate
turns out needless because the optimal strategies of firms are independent of the length
of the planning horizon. Consider the game on the time interval [0, h]. Using the same
considerations as for the optimization of Ji, we obtain the following optimal strategies of
the Principal and influence agents:

ui
j(t) =

Ri(t)
(

bi
j

)2

∑n
j=1

(
bi

j

)2 , α(t) =
1
ρ

(
1− eρ(t−T)

)
, (50)

ri(t) =
1
4

α(t)∑n
j=1

(
bi

j

)2
if

1
4

α(t)∑m
i=1 ∑n

j=1

(
bi

j

)2
≤ R, (51)

ri(t) = R
∑n

j=1

(
bi

j

)2

∑m
k=1 ∑n

j=1

(
bk

j

)2 if
1
4

α(t)∑m
i=1 ∑n

j=1

(
bi

j

)2
> R. (52)

As a result, Ri(t) = ri(t). In addition,

x(t) =
∫ t

0
∑m

i=1

√
ri(τ)∑n

j=1

(
bi

j

)2
dτ + x0, (53)

where ri(t) is calculated by Formulas (50) and (51). From (52) we can express the value
h2 = x−1(x∗), the instant when the right-hand side of Equation (52) reaches the value x∗.

Then ui
j
(

xj(t)
)
=

(
bi

j

)2
ri(t)

∑n
j=1

(
bi

j

)2 , i = 1, 2, . . . , m, j = 1, 2, . . . , n, t ∈ [0, h], where ri(t) is given by

Formulas (50) and (51).
By analogy with the previous case, we can demonstrate the existence of a unique

instant h2
∗ such that the resources are not enough for t < h2

∗.
Accordingly, we write
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JC = maxJ0
ri , 1≤i≤m

+ x∗
T∫

h2

e−ρtdt = 1
ρ

(
e−ρh2 − e−ρT

)
x∗ + 1

ρ

(
1− e−ρh2

)
x0+

+
∫ h∗2

0

[
α0(τ)

(√
R ∑m

k=1 ∑n
j=1

(
bk

j

)2
)
− R

]
e−ρτdτ +

(
∑m

i=1 ∑n
j=1

(
bi

j

)2

4

) ∫ h2
h∗2

(
α0(τ)

)2e−ρτdτ.

For the Principal, the system compatibility index (26) takes the form

ISC = JC − JNE = 1
ρ

(
e−ρh2 − e−ρh1

)
(x∗ − x0) +

∫ h∗2
0

[
α0(τ)

(√
R

m
∑

k=1

n
∑

j=1

(
bk

j

)2
)
− R

]
e−ρτdτ+

+

(
∑m

i=1 ∑n
j=1

(
bi

j

)2

4

) ∫ h2
h∗2

(
α0(τ)

)2e−ρτdτ

−
(

m
∑

i=1

(1+2pi)∑n
j=1

(
bi

j

)2

(1+pi)
2

) ∫ h1
h∗1

[
(α0(τ))

2

2

]
e−ρτdτ−

−
∫ h∗1

0

[
α0(τ)

∑i∈K(τ)
α(τ)∑n

j=1

(
bi

j

)2

2(1+pi)
+

√
R−∑i∈K(τ)

(α(τ))2 ∑n
j=1

(
bi

j

)2

4(1+pi)
2

√
∑k∈L(t) ∑n

j=1

(
bk

j

)2
−

R

]
e−ρτdτ, where α0(t) = 1

ρ

(
1− eρ(t−h2)

)
.

For social welfare, the system compatibility index (24) differs from its counterpart for
the Principal: the private incomes of all agents are added to JC and JNE. However, since in
this case, the agents cannot spend resources on social interests, both indices coincide.

Therefore, in the model under consideration, the viability condition holds if ∑n
j=1 xj0 ≥ x∗.

The total opinion cannot decrease, i.e., the left-hand part of the inequality x∗ ≤ ∑n
j=1 xj(t) ≤ x∗

is satisfied. Upon reaching the upper bound of this state-space constraint, the Principal
should stop allocating the resources to the influence agents, and the right part of the
inequality will be satisfied accordingly.

The compatibility condition holds partially since the agents have private interests,
which are not fully realized due to the Principal. The system compatibility index tends to 1
as the coefficients of private activity vanish. This result was established in [45], where a
similar model was studied without considering the private interests of influence agents.

6. Conclusions

Ivanov and Dolgui [12] introduced the concept of intertwined supply networks (ISNs)
as a set of interconnected supply chains and considered their sustainability. This paper has
developed and supplemented [12] with the author’s theory of sustainable management of
active systems. A formal game-theoretic model of an intertwined supply network, in full
and simplified versions, has been proposed. Conditions for the sustainable development
of an active system have been presented in general form and then specified inthe case of
intertwined supply networks. As an illustration, a concise example of the dynamic Cournot
duopoly and a detailed example of the model of Social and Private Interests Coordination
Engines (SPICE-model) for a marketing network have been considered and analytically
investigated, and sustainability conditions have been established. An important conclusion
is that the sustainable development of the active system is possible only under the viability
conditions satisfied simultaneously with coordinating the interests of all active agents of
the system.

The proposed game-theoretic approach permits considerationof strategic aspects of
intertwined supply networks. It is very important to emphasize that in the sustainability
theory the viability conditions are not explicitly connected with coordinating the interests
of all active agents of the system. The viability requirements are just formulated without
mentioning a subject or subjects of their implementation. In this case, sustainability remains
only a declaration.
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Certainly, many important issues stay beyond the consideration in this paper, which
is only a first step. It is necessary to specify game-theoretic models for different types of
ISNs. Stochastic models seem to be more adequate forreal situations. Games in the form of
characteristic functions are useful for the analysis of possible allocations of the cooperative
income and stability of business and political agreements.

It seems promising to develop further the theory of sustainable management of ac-
tive systems as applied to intertwined supply networks. Particularly, we will investi-
gate regional social–ecological–economic systems as intertwined supply networks. It
seems prospective to use cognitive maps as a base for mathematical modeling with a
game-theoretic description of the control subsystem. Additionally, cooperative games and
stochastic game-theoretic models will be studied.

As for practical implications, first of all, the companies will receive an adequate tool
for conceptual analysis of intertwined supply networks, for example, in the modernization
of logistic chains. Some specific results of the mathematical analysis may be used as
immediate practical recommendations, for example, in resource allocation in marketing.
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