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Abstract: We investigate the effect of the environment dimensionality and different dispersal strate-
gies on the evolution of cooperation in a finite structured population of mobile individuals. We
consider a population consisting of cooperators and free-riders residing on a two-dimensional lattice
with periodic boundaries. Individuals explore the environment according to one of the four dispersal
strategies and interact with each other via a public goods game. The population evolves according
to a birth–death–birth process with the fitness of the individuals deriving from the game-induced
payouts. We found that the outcomes of the strategic dispersal strategies in the two-dimensional
setting are identical to the outcomes in the one-dimensional setting. The random dispersal strategy,
not surprisingly, resulted in the worst outcome for cooperators.

Keywords: evolution of cooperation; public goods game; structured population

1. Introduction

Understanding the mechanisms that maintain cooperation is a long-standing problem
in evolutionary biology [1]. Cooperators sacrifice resources in order to benefit their com-
petitors, suggesting that evolution will actively select against cooperation. Game theory
demonstrates [2] that cooperation can be exploited by non-cooperators, also known as free
riders or defectors. A free rider is an individual who is assisted by cooperators without sac-
rificing resources needed to reciprocate any gained benefits. Despite this, natural selection
has produced widespread occurrences of cooperation.

Evolutionary game theory has been a useful theoretical framework for identifying
mechanisms that encourage cooperation [3–6]. Pairwise interactions between individuals
have been described with classical models such as the prisoner’s dilemma [2], the snowdrift
game [7], and the stag hunt game [8]. Natural interactions can involve multiple individuals.
Consequently, multiplayer games [9–11], such as the public goods game [12–14], have been
adapted to study cooperation with group dynamics.

Early models [3,15] have demonstrated that infinite well-mixed populations result in a
breakdown of cooperation. However, real populations are often divided by spatial or social
structures causing individuals to interact primarily with their neighbors. Studies have
found the spatial structure to be a crucial mechanism in the evolution of cooperation as it
allows cooperators to limit the effects of free riders by forming isolated clusters [6,16–22].
The effect of spatial structure may be dependent on dimensionality as higher dimensions
have been shown to be more beneficial to cooperators [23].

Organisms usually have the ability to change their neighbors by traveling to different
locations. To account for this, models have introduced mobility in a variety of forms:
random dispersal [24–29], moving away from unfavorable locations [30–33], and success-
driven mobility where individuals tend towards locations with greater benefits [34–37].
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Mobility can assist cooperators by enabling them to form protective groups; however, it
can also hinder cooperation by allowing free riders to invade and exploit such groups [38].

In this paper, we study the effects of higher dimensionality on the models established
in [35,36]. We consider a finite fixed-sized population of cooperators and free riders.
The population evolves through a birth–death Moran process [39] where reproduction
depends on the outcome of a multiplayer game [40]. Each individual occupies a node
in a square lattice with periodic boundaries (i.e., a two-dimensional torus). Mobility is
incorporated via random dispersal and three methods of strategic (success-driven) mobility:
probabilistic [36], semi-deterministic [35], and deterministic [35] dispersal strategies.

2. The Model

We adopted the one-dimensional models established in [35,36] and expanded them
to the two-dimensional spatial structure. We considered a fixed sized population of N
individuals, who employed a lifetime strategy of being either a cooperator or a free rider.
We used the standard assumption of evolutionary graph theory that mutation occurs
on a much slower time scale than selection; for the effect of the variable mutation rate,
see [41]. Each individual occupied a node within a 40 by 40 lattice with periodic boundaries.
Individuals had the ability to move around the lattice, and multiple individuals could share
a single node.

Evolution of this finite structured population was simulated by a stochastic model
based on a Markov process. The process was comprised of two types of events: reproduc-
tion and dispersal. The reproduction and dispersal processes take place on different spatial
scales, as will be explained below.

Every reproduction event begins with each individual playing a public goods game
with all individuals that belong to their interaction neighborhood. It is a Moore neighborhood
of radius D, which is one of the parameters of the model; this neighborhood consists of
(2D + 1)2 nodes. The payout of the public goods game to the individual In, whose group
consists of cn cooperators and fn free-riders (including the individual), is given by

pn =
1

cn + fn
+ B · cn − Cn, (1)

where

Cn =

{
C if In is a cooperator
0 if In is a free-rider,

(2)

and B represents the benefits of cooperation, while C represents the cost of cooperation.
Only the cooperators produce the benefit B and pay the cost of cooperation C, but all
individuals enjoy the benefits provided by cooperators. The term 1

cn+ fn
reflects local

competition for equally shared standing resources. Free-riders increase local competition
without adding benefit to the overall payout; consequently, their presence lowers the
payout to every individual in a neighborhood. The benefits provided by cooperators are
additive. Biologically, this can be justified as sharing valuable information such as predator
proximity [42] or forming biofilms where bacteria can secrete nutrients that are absorbed
by their local community [43].

The reproduction events follow the standard invasion process from evolutionary graph
theory. This is a BDB (birth–death–birth) Moran process that ensures constant population
size [44]. The payout to each individual obtained from one round of the public goods game
is converted to the individual’s fitness via a smoothing function

rn = tan−1(pn) +
π

2
. (3)

This function ensures that individuals with a negative payout, as well as those outside
large clusters of cooperators, will still have a reasonable chance to reproduce. The probabil-
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ity that the individual In is chosen for reproduction is directly proportional to their fitness;
it is given by

rn

∑N
k=1 rk

. (4)

Each individual reproduces asexually by producing a single offspring. The offspring
will inherit the parent’s strategy (cooperator or free rider) and is placed at a random node
within the parent’s strategic interaction neighborhood. The reproduction event ends with
a random (with uniform probability) individual (except for the newborn) being removed
from the population.

At every dispersal event, a single individual is randomly (with uniform probability)
chosen to move to a location within their dispersal neighborhood. The dispersal neighborhood
of an individual is a Moore neighborhood of radius R, which represents the dispersal range;
it is one of the model parameters. The individual “samples” each of the (2R + 1)2 locations
within their dispersal range and chooses which location to move to according to one of the
following four strategies:

1. Random dispersal: An individual randomly (with uniform probability) selects any
location from their dispersal neighborhood.

2. Probabilistic dispersal [36]: An individual will move from their current location with
payout pn to a location that will result in payout p′n, with a probability proportional
to exp(p′n − pn).

3. Almost Deterministic dispersal [35]: An individual moves to the location that of-
fers the highest payout; if the highest payout occurs at multiple locations within
the dispersal neighborhood, then the individual will randomly choose one of these
locations.

4. Deterministic dispersal [35]: An individual will move to the closest location among
those that offer the highest payout; if several locations satisfy this criterion, then the
individual will randomly choose one of these locations.

We allowed only one dispersal strategy at a time; all individuals adopted the same
strategy. This resulted in four different exploration scenarios: one random and three
strategic.

The model was initiated by randomly (with uniform probability) placing every indi-
vidual onto a lattice node. Additionally, individuals were randomly assigned (with uniform
probability) the role of either cooperator or free rider. The Markov process proceeded in
discrete time steps. The type of the next event—reproduction or dispersal—was determined
randomly. The probability of the dispersal event occurring was equal to M

M+1 , where M is a
model parameter representing the population mobility rate.

We created an exact stochastic simulation of this Markov process in Matlab and ran
the simulations on an HPC cluster. Each process was run until it reached an absorbing
state: the population consisted of only cooperators or only free riders. Each combination of
parameters was run 10,000 times, and the fraction of trials that resulted in the population
consisting of all cooperators was the fixation probability of cooperators. The accuracy of the
simulated fixation probability of cooperators was estimated using the binomial distribution.
The standard deviation was equal to

√
q(q− 1)/n, where n is the number of trials, and q

is the actual fixation probability of cooperators. The maximum value of this expression
occurred when q = 0.5. Therefore, if n = 10,000 then the standard deviation would be at
most 0.005. It follows that our simulated fixation probabilities were correct up to ±0.01
with a 95% confidence interval.

All model parameters are summarized in Table 1. We used the same range of values for
B, C, M, and N as in [35,36]; these references also provide detailed justifications for the choice
of these values. The values of L, D, and R were adapted to the two-dimensional lattice.
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Table 1. Summary of the model parameters

Parameter Meaning Range of Values

B Benefits of cooperation {C/2, C/2 + 1/4, C/2 + 1/2, C/2 + 3/4}
C Cost of cooperation {2, 3, 4}
D Neighborhood radius {1, 3, 6, 10, 15}
L Lattice size 40× 40
M Mobility rate {0, 1, 10}
N Population size {10, 20, 30, 40}
R Dispersal range {1, 2, 3}

3. Outcomes for Static Populations

We studied the effects of the model parameters that were independent of mobility,
such as spatial structure, by considering an immobile population. We set the mobility rate
to zero, which ensured that only the reproduction event occurred. We observed that the
general behavior of a two-dimensional static population was consistent with that of the
previous one-dimensional models [35,36].

Cooperators thrived in small strategic interaction neighborhoods, while large neigh-
borhoods caused a decline in their performance. This is due to large neighborhoods limiting
the number of independent clusters that can exist. For example, a neighborhood radius of
10 allowed at most 3 separate clusters to form. When only a few clusters were available,
the population became essentially well mixed. Cooperators are disadvantaged in a well
mixed population, because free riders do not pay the cooperation cost. As a result, the
fixation probability in large neighborhoods was under 50% regardless of all other model
parameters.

The model utilized a fixed lattice; consequently, the population size was equivalent to
population density. We considered a lattice with the constant shape of 40 by 40, offering
1600 occupiable nodes. The largest population we considered was 40 individuals; therefore,
at most, 2.5% of the available nodes were filled. Consequently, even relatively dense
populations were very sparse.

Cooperators tended to have a high fixation probability in dense populations. Figure 1
shows that the fixation probability was greatly boosted by increasing the population size
from 10 to 20. Increasing the population size was especially beneficial in situations where
cooperators were unfavored due to the high cost of cooperation. When the cost was at its
highest (C = 4), every population increase significantly improved the fixation probability.
In settings with a low cost of cooperation, increasing the population beyond 30 yielded
only marginal benefits for cooperators.
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Figure 1. Increasing the population density raises the fixation probability of cooperators. The left
pane represents the cooperator’s ideal condition with the highest benefits of cooperation paired with
the lowest cooperation cost. The right pane represents their least favorable condition with the lowest
benefits and highest cost.

The survival of cooperators often depends on their ability to form isolated clusters.
Consider two separate clusters: one that is completely comprised of cooperators and
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another that is infiltrated by free riders. Free riders in the mixed type cluster would
have the highest reproduction propensity; thus, they would outcompete their neighboring
cooperators. With fewer cooperators present, the reproduction propensities of individuals
in the mixed type cluster would decrease. As a result, individuals in the fully cooperative
cluster would be more likely to reproduce than those in the exploited cluster. Eventually,
the fully cooperative cluster would drive the mixed cluster to extinction.

Population density favored cooperators by increasing the likelihood that an isolated
cluster would aggregate as well as limiting the effects of free riders in large clusters. The
previous one-dimensional models found that dense populations needed more individuals
to be replaced in order to reach an absorbing state and, therefore, offer more reproduc-
tion events [35,36]. Consequently, dense populations provide isolated cooperators more
opportunities to reproduce and form clusters, whereas sparse populations cause isolated
cooperators to be removed before they can aggregate. Dense populations allow clusters to
be comprised of a greater number of individuals. In such clusters, the smoothing function
limits the differences between the reproduction propensities of free riders and cooperators,
thereby reducing the advantage of free riders.

Increasing the benefits of cooperation, while fixing the cost, raised the fixation probabil-
ity. Figure 2 shows which populations were most favored by increasing benefits. Increased
benefits had the greatest effect in sparse populations with a low neighborhood radius.
Cooperators in dense populations were heavily dominant; therefore, increased benefits
only provided marginal rewards. These behaviors were consistent for every cooperation
cost considered.
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Figure 2. Cooperation is promoted by increasing the benefits of cooperation while keeping the cost fixed.
The effects of increased benefits are greatest in sparse populations with small interaction neighborhoods.

The benefits of cooperation determined the viability of small cooperative clusters. This
was especially influential in sparse populations where most clusters start as an isolated
individual reproducing to create a cluster of two. In such clusters, increased benefits
significantly raise the reproduction propensity of both individuals resulting in a greater
likelihood that the cluster will continue to grow.

Raising the cost of cooperation while maintaining the same relative benefits decreased
the fixation probability. Figure 3 shows that increasing the cost was most detrimental to
sparse populations with small neighborhoods. An increased cost resulted in marginal
penalties to cooperators in dense populations.

The cost of cooperation lowered the reproduction propensity of cooperators, which
in turn reduced the likelihood that an isolated cooperator would form a cluster. An in-
creased cost was particularly detrimental to sparse populations where cooperative clusters
often originate from an isolated individual. Additionally, the smoothing function limited
the effects of increasing the cost on large groups. Consequently, an increasing cost im-
posed only minor penalties on cooperators in dense populations or populations with large
neighborhood radii.
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Figure 3. Increasing the cost of cooperation while maintaining the same relative benefits decreases
the fixation probability of cooperators. The effects are greatest in sparse populations and populations
with small interaction neighborhoods.

4. Outcomes for Different Dispersal Strategies

Next, we investigated the effect of each dispersal strategy in a two-dimensional setting.
The previous one-dimensional models found that high mobility rates and large dispersal
ranges tended to lower the fixation probability, specifically in situations where cooperators
were dominant [35,36]. These outcomes remained valid in the two-dimensional model.

We studied the effects of the mobility rate by considering an increasing rate while
simultaneously fixing the dispersal range at the lowest possible value (R = 1). We observed
that a low mobility rate generally had limited effects on cooperators. However, a high
rate could significantly reduce the performance of cooperators, especially when they were
favored by a high population density and small interaction neighborhood radius.

We analysed the impact of increasing the dispersal range while fixing the cost at the
central value (C = 3). We generally observed that the initial increase in dispersal range
(from R = 1 to R = 2) caused the largest drop in the fixation probability. The subsequent
increase in dispersal range (from R = 2 to R = 3) generally incurred a smaller penalty
on cooperators. Increasing the dispersal range was particularly harmful to cooperators in
settings with a high population density or a small interaction neighborhood radius.

4.1. Random Dispersal

Random dispersal had an overwhelmingly negative effect on cooperators, to the ex-
tent that it could lead to a breakdown in cooperation. Figure 4 shows that increasing the
mobility rate caused a sharp decline in the fixation probability, especially when the neigh-
borhood radius was 1. An increased rate mildly reduced the performance of cooperators
in sparse populations. Low cooperation benefits paired with an increasing rate caused a
massive decline in the fixation probability. An increased rate resulted in a similar decline in
dense populations.
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Figure 4. In the random dispersal model, increasing the mobility rate is detrimental to cooperators.
An increased rate is particularly harmful to cooperators in small neighborhoods with a low benefit–
to–cost ratio.
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Figure 5 shows that increasing the dispersal range while fixing the mobility rate at
1 could significantly impact cooperation. An increased range had a limited effect on sparse
populations. Cooperators with a neighborhood radius of 1 and a low benefit–to–cost
ratio were particularly vulnerable to an increasing range. A large dispersal range could
cause a breakdown of cooperation in otherwise dominant cooperators. These effects were
substantially worst when the mobility rate was 10 (Figure 6). A high mobility rate and
large dispersal range always caused a breakdown of cooperation in neighborhoods with
radius 1.
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Figure 5. In the random dispersal model, increasing the dispersal range for a low mobility rate
(M = 1) reduces the fixation probability of cooperators in small neighborhoods, especially when
D = 1.
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Figure 6. In the random dispersal model, increasing the dispersal range for a high mobility rate
(M = 10) causes a breakdown in cooperation in neighborhoods that are sufficiently small.

Random dispersal was detrimental to cooperators, because it prevented them from
forming stable clusters. More specifically, increasing the mobility rate provided clusters
more opportunities to drift apart. An increased dispersal range raised the likelihood that
an individual would leave a cluster in a single dispersal event. Cooperation can not be
maintained when the mobility rate is high and the dispersal range is equal to or greater than
the neighborhood radius (i.e., when D = 1). In such settings, a breakdown in cooperation
is caused by frequently occurring dispersal events having a high likelihood of forcing
individuals out of their clusters.

Random dispersal had limited effects on sparse populations where cooperators gen-
erally did not have ample time to form clusters. However, increasing the mobility rate
and dispersal range disadvantaged cooperators in dense populations, which were heavily
dependent on large clusters. Cooperators unable to establish large clusters did not benefit
from the smoothing function limiting the effects of free riders. Additionally, dense pop-
ulations required more reproduction events to reach an absorbing state. Therefore, free
riders had more opportunities to benefit from their advantage over scattered cooperators.
Cooperators that were unable to form clusters were more sensitive to parameters that affect
isolated cooperators. As a result, changes in the cost and benefits of cooperation had a
larger effect on the fixation probability.
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4.2. Probabilistic Dispersal

Probabilistic dispersal hindered cooperation with increases in the movement rate or
dispersal range generally leading to a decline in the fixation probability. Figure 7 shows
the effects of increasing the mobility rate while fixing the dispersal range at 1. Cooperators
already restricted by a sparse population received only light penalties from an increased
rate. On the other hand, a high mobility rate reduced the advantage of cooperators in dense
populations. Cooperators in neighborhoods with a radius of 1 and a low benefit–to–cost
ratio were disproportionately affected by an increased rate.
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Figure 7. In the probabilistic dispersal model, increasing the mobility rate can greatly diminish the
advantage of cooperators in dense populations.

Figure 8 shows that increasing the dispersal range while keeping the mobility rate low
(M = 1) was generally harmful to cooperators. In sparse populations, an increased range
primarily affected neighborhoods with a radius of 1. Cooperators in dense populations
were broadly undermined by increasing the dispersal range. These effects were greater
when the mobility rate was 10 (Figure 9). When the mobility rate and dispersal range were
sufficiently large, a breakdown in cooperation occurred in populations with a neighborhood
radius of 1 and a low benefit–to–cost ratio.
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Figure 8. In the probabilistic dispersal model, increasing the dispersal range while keeping the
mobility rate low (M = 1) is primarily detrimental to cooperators in dense populations.

Probabilistic dispersal disadvantaged cooperators in dense populations by allowing
free riders to infiltrate cooperative clusters. Increasing the mobility rate offered free riders
more opportunities to find and exploit clusters. Sparse populations often led to smaller
group sizes and fewer reproduction events. In such settings, free riders had difficulty
reaching cooperators in time to exploit them. However, dense populations offered free
riders ample time to reach otherwise isolated clusters.

Increasing the dispersal range reduced the number of dispersal events needed for
an individual to reach a group of cooperators. Cooperators usually aggregated via re-
production; thus, an increased range primarily allows free riders to infiltrate and exploit
clusters. A large dispersal range can compensate for a low mobility rate, thereby reducing
the fixation probability.
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Figure 9. In the probabilistic dispersal model, increasing the dispersal range for a high mobility rate
(M = 10) causes a breakdown of cooperation in sparse populations and eliminates the advantage of
cooperator in dense populations.

The observed breakdown in cooperation was the result of a low benefit–to–cost ratio
placing heavy penalties on clusters for losing cooperators, exacerbated by a high movement
rate and a large dispersal range. A low benefit–to–cost ratio burdened cooperators in small
groups. When the dispersal range was larger than the neighborhood radius, there was
an elevated chance that cooperators would probabilistically leave their cluster. A high
movement rate provides more opportunities for clusters to drift apart. Consequently, the
negative impact of the low ratio is enhanced by the average cluster size shrinking.

4.3. Almost Deterministic Dispersal

The almost deterministic dispersal was slightly harmful to cooperation with increases
in the mobility rate and dispersal range generally having limited effects on the fixation
probability. Figure 10 shows that cooperators in dense populations were susceptible to an
increasing mobility rate. Sparse populations were widely unaffected by an increased rate,
with the expectation of a small decline in the fixation probability of small neighborhoods.
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Figure 10. In the almost deterministic dispersal model, increasing the mobility rate is detrimental to
cooperators in dense populations.

Figure 11 shows the effects of increasing the dispersal range while keeping the mobility
rate low (M = 1). An increased range reduced the performance of cooperators in dense
populations with sufficiently small neighborhoods. These effects were slightly greater
when the mobility rate was high (Figure 12). Sparse populations were largely unaffected
by changes to the dispersal range, regardless of the mobility rate.
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Figure 11. In the almost deterministic dispersal model, increasing the dispersal range while keeping
the mobility rate low (M = 1) is primarily detrimental to cooperators in dense populations.
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Figure 12. In the almost deterministic dispersal model, increasing the dispersal range for a high mobility
rate (M = 10) affects cooperators in dense populations, while sparse populations remain unchanged.

The almost deterministic dispersal disadvantaged cooperators by allowing free riders
to efficiently locate clusters. Individuals using this dispersal strategy always moved to
an optimal position. A high mobility rate gave free riders ample opportunities to reach
clusters. Similarly, a large dispersal range permitted cooperators to travel farther with each
dispersal event. As a result, cooperators in dense populations were unlikely to remain
isolated. Sparse populations offered fewer reproduction events and fewer clusters. As
such, they did not provide sufficient opportunities for even optimally moving free riders to
exploit cooperators.

4.4. Deterministic Dispersal

Deterministic dispersal had minor effects on cooperation. Figure 13 shows that in-
creasing the mobility rate had the greatest impact on dense populations. In such settings,
even a high rate only caused a small decline in the fixation probability. Cooperators in
sparse populations suffered slight penalties from an increased rate.
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Figure 13. In the deterministic dispersal model, increasing the mobility rate primarily lowers the
fixation probability of dense populations with small neighborhoods.
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Figure 14 shows that increasing the dispersal range while keeping the mobility rate
low (M = 1) was harmful to cooperators in dense populations. Even when the mobility
rate i=was high (M = 10), an increased range did not completely eliminate the advantage
of dominating cooperators (Figure 15). Regardless of the mobility rate, an increased range
had a negligible effect on sparse populations.
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Figure 14. In the deterministic dispersal model, increasing the dispersal range for a low mobility rate
(M = 1) causes small declines in the fixation probability of dense populations while leaving sparse
populations unaltered.
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Figure 15. In the deterministic dispersal model, increasing the dispersal range for a high mobility
rate (M = 10) only has a negative effect on cooperators in dense populations.

Deterministic dispersal restricted the movement of free riders; hence, it had a limited
effect on cooperation. Free riders must move to the closest optimal position; therefore they
could only enter the edge of a cluster. As a result, it was easy for cooperators to flee from
encroaching free riders. Increasing the mobility rate and dispersal range primarily affected
dense populations, where cooperators formed large clusters. Having too many members
prevented a large cluster from traveling faster than oncoming free riders. However, the
small clusters seen in sparse populations could effectively retreat from invading free riders.

5. Comparison of the Dispersal Strategies

In this section, we compare the outcomes of each dispersal strategy. We observe
that the general behavior of each strategy (except random dispersal, which was new for
the two-dimensional setting) remained consistent with the results of the one-dimensional
models [35,36]. Overall, when the mobility rate was low (M = 1), every form of success-
driven dispersal produced a similar fixation probability. This is the result of the low rate
limiting dispersal opportunities, thereby restricting the impact of mobility. When the
dispersal range was small (R = 1), random dispersal generally produced a similar fixation
probability to the success-driven dispersal strategies (Figure 16), the exception being a
reduced fixation probability when the cost of cooperation was high and the interaction
neighborhood was small (D = 1).
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Figure 16. All models result in similar fixation probabilities when the mobility rate is low and the
dispersal range is small. Legend: R—random dispersal, P—probabilistic dispersal, AD—almost
deterministic dispersal, D—deterministic dispersal.

A low mobility rate (M = 1) and a medium dispersal range (R = 2) demonstrated the
advantage of success-driven dispersal models over random dispersal. Random dispersal
yielded lower fixation probabilities in settings with sparse populations or low benefits of
cooperation (Figure 17).
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Figure 17. When the mobility rate is low and the dispersal range is sufficiently large, all forms of
success-driven mobility result in higher fixation probabilities than random dispersal in neighborhoods
of radius 1.

A low mobility rate paired with a dispersal range of 3 resulted in differing model
outcomes. (Figure 18). The deterministic and almost deterministic dispersal models
produced similar fixation probabilities. However, probabilistic dispersal reduced the
fixation probability in populations with a low benefit–to–cost ratio and a neighborhood
radius of 1. The random dispersal model often resulted in significantly lower fixation
probabilities when D = 1.
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Figure 18. Deterministic and almost deterministic dispersal are more favorable to cooperators than
probabilistic dispersal in settings with a low benefit–to–cost ratio and a neighborhood radius of 1.
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When the mobility rate was high (M = 10), the fixation probability primarily depended
on the cooperators’ ability to evade free riders and maintain stable clusters. Entering a
cooperative cluster significantly increased a free rider’s payout. However, cooperators
moving away from free riders only received a marginal increase in payout resulting from
less competition for local standing resources, reflected in the term 1

cn+ fn
. Consequently,

every considered form of success-driven mobility allowed free riders to effectively exploit
clusters, while the cooperators’ ability to evade free riders varied (Figure 19).
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Figure 19. Deterministic dispersal is the highest performing model, followed by the almost deter-
ministic model, with probabilistic dispersal producing the lowest fixation probability of out of all
success-driven models.

The probabilistic dispersal model was ill suited for evasion, since the slightly higher
payout only mildly raised the probability that a cooperator would move away from free
riders. However, cooperators using the deterministic or almost deterministic dispersal
strategies relocated to a location with the greatest payout, regardless of how much of an
improvement it would be. Additionally, deterministic dispersal only allowed free riders to
enter the edge of a cluster. As a result, cooperators could flee from free riders with fewer
dispersal events.

The random and probabilistic dispersal models allowed clusters to drift apart and
were, therefore, less favorable to cooperators. In both models, a low benefit–to–cost ratio
led to a breakdown in cooperation (Figure 20). Such breakdowns did not occur with the
deterministic and almost deterministic dispersal strategies, since cooperators were able to
form stable clusters.
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Figure 20. Breakdowns in cooperation only occur in the random and probabilistic dispersal models.

A high movement rate (M = 10) and large dispersal range (R = 3) demonstrated
the general ranking of each dispersal strategy (Figure 21). Random dispersal resulted in
the lowest fixation probabilities as it prevented cooperators from maintaining clusters.
The probabilistic model did not allow cooperators to effectively evade free riders and
suffered from clusters drifting apart. Therefore, probabilistic dispersal was the lowest
performing form of success-driven mobility. Cooperators using the almost deterministic
strategy could avoid encroaching free riders. However, free riders were able to enter the
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center of clusters, which made it difficult for cooperators to break away. As such, almost
deterministic dispersal was the middle performing form of success-driven mobility. The
deterministic model was the highest performing dispersal strategy as it allowed cooperators
to evade oncoming free riders. Consequently, deterministic dispersal was the only model
that preserved cooperators’ dominance in dense populations, even when the mobility rate
was high, and the dispersal range was large.
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Figure 21. The deterministic dispersal is the only model that maintains a cooperator’s advantage in
dense populations.

6. Discussion

This research was motivated by our desire to investigate the effect of the dimensionality
of the spatial structure on the models investigated in [35,36]. Compared to the previous
one-dimensional models, the two-dimensional model provided cooperators additional
directions to escape from encroaching free riders. Additionally, in the two-dimensional
model, the area of the dispersal range and strategic interaction neighborhood changed
exponentially. Yet, the overall qualitative findings of [35,36] for the one-dimensional model
remained valid for the two-dimensional model:

• Cooperators do best in small strategic-interaction neighborhoods and higher popula-
tion densities.

• Cooperators may achieve fixation probabilities close to one in “good” circumstances.
• Deterministic dispersal—where individuals move to the closest location with maxi-

mum payout—avoids a breakdown in cooperation in “bad” circumstances.

We found that the general behavior of each strategic dispersal strategy did not change
in the two-dimensional setting. The ranking of the dispersal strategies in terms of the
evolution of cooperation were consistent with the one-dimensional results, with determin-
istic dispersal being the best performing form of success-driven mobility and probabilistic
dispersal being the worst.

The results of this paper, therefore, suggest that the model is robust with respect to
the lattice dimension, and that the original one-dimensional model already captures all the
key features.

One novel feature of the two-dimensional model that was not considered in the one-
dimensional models was the random dispersal strategy. The random dispersal strategy
is similar to the exploration strategy in the territorial raider model [40]. The random
dispersal offers new insights into the breakdown in cooperation observed in the proba-
bilistic model [36]. Mobility can harm cooperation by allowing free riders to infiltrate and
exploit cooperative clusters. However, dispersal strategies that prevent stable clusters from
forming are severely detrimental to cooperators. Therefore, the observed breakdown in
cooperation under random dispersal was the result of cooperative clusters drifting apart.

In our model, movement incurred no cost. However, this is not necessarily realistic;
see [45] for the model of a mobile population with costly movement. The cost of movement
may have a deciding effect on the evolution of cooperation. For example, in [45], the cost of
movement was the main predictor of the stability of the population of defectors.
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With the success-driven dispersal strategies, the movement of individuals depends on
the locations of the other individuals, because all individuals tend to be in the vicinity of
cooperators while avoiding free-riders. In essence, the individuals do not move indepen-
dently of each other. Yet in our current model, the dispersal of individuals depended on
the current locations of other individuals rather than their dispersal strategies. See [46] for
a collection of novel models of coordinated movement, which provide various measures of
dispersal and aggregation in groups of individuals.

Author Contributions: K.W.: running simulations, visualizations, manuscript writing; I.V.E.: study
design, coding simulations, manuscript writing, project supervision. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Nowak, M. Five rules for the evolution of cooperation. Science 2006, 314, 1560–1563. [CrossRef] [PubMed]
2. Axelrod, R. The Evolution of Cooperation; Basic Books: New York, NY, USA , 1984.
3. Nowak, M. Evolutionary Dynamics: Exploring the Equations of Life; Harvard University Press: Cambridge, MA, USA, 2006.
4. Sigmund, K.; Nowak, M. Evolutionary game theory. Curr. Biol. 1999, 9, R503–R505. [CrossRef]
5. Smith, J. Evolution and the Theory of Games; Cambridge University Press: Cambridge, UK, 1982.
6. Szabó, G.; Fáth, G. Evolutionary games on graphs. Phys. Rep. 2007, 446, 97–216. [CrossRef]
7. Hauert, C.; Doebeli, M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nat. Mater. 2004,

428, 643–646. [CrossRef]
8. Kirchkamp, O. Spatial evolution of automata in the prisoners’ dilemma. J. Econ. Behav. Org. 2000, 43, 239–262. [CrossRef]
9. Broom, M.; Cannings, C.; Vickers, G.T. Multi-player matrix games. Bull. Math. Biol. 1997, 59, 931–952. [CrossRef]
10. Hilbe, C.; Wu, B.; Traulsen, A.; Nowak, M. Evolutionary performance of zero-determinant strategies in multiplayer games. J.

Theor. Biol. 2015, 374, 115–124. [CrossRef]
11. Palm, G. Evolutionary stable strategies and game dynamics for n-person games. J. Math. Biol. 1984, 19, 329–334. [CrossRef]
12. Hauert, C.; De Monte, S.; Hofbauer, J.; Sigmund, K. Volunteering as red queen mechanism for cooperation in public goods games.

Science 2002, 296, 1129–1132. [CrossRef]
13. Kurokawa, S.; Ihara, Y. Emergence of cooperation in public goods games. Proc. R. Soc. B Biol. Sci. 2009, 276, 1379–1384. [CrossRef]
14. Santos, F.; Santos, M.; Pacheco, J. Social diversity promotes the emergence of cooperation in public goods games. Nature 2008,

454, 213. [CrossRef] [PubMed]
15. Hofbauer, J.; Sigmund, K. Evolutionary Games and Population Dynamics; Cambridge University Press: Cambridge, UK, 1998.
16. Brauchli, K.; Killingback, T.; Doebeli, M. Evolution of cooperation in spatially structured populations. J. Theor. Biol. 1999,

200, 405–417. [CrossRef] [PubMed]
17. Nakamaru, M.; Matsuda, H.; Iwasa, Y. The evolution of cooperation in a lattice-structured population. J. Theor. Biol. 1997,

184, 65–81. [CrossRef]
18. Nowak, M.; Bonhoeffer, S.; May, R. Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA 1994,

91, 4877–4881. [CrossRef] [PubMed]
19. Nowak, M.; May, R. Evolutionary games and spatial chaos. Nature 1992, 359, 826–829. [CrossRef]
20. Ohtsuki, H.; Hauert, C.; Lieberman, E.; Nowak, M. A simple rule for the evolution of cooperation on graphs and social networks.

Nature 2006, 441, 502–505. [CrossRef]
21. Roca, C.; Cuesta, J.; Sánchez, A. Effect of spatial structure on the evolution of cooperation. Phys. Rev. E 2009, 80, 046106.

[CrossRef]
22. Roca, C.; Cuesta, J.; Sánchez, A. Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics. Phys. Life

Rev. 2009, 6, 208–249. [CrossRef]
23. Dyken, J.; Müller, M.; Mack, K.; Desai, M. Spatial population expansion promotes the evolution of cooperation in an experimental

prisoner’s dilemma. Curr. Biol. 2013, 23, 919–923. [CrossRef]
24. Antonioni, A.; Tomassini, M.; Buesser, P. Random diffusion and cooperation in continuous two-dimensional space. J. Theor. Biol.

2014, 344, 40–48. [CrossRef]
25. Gelimson, A.; Cremer, J.; Frey, E. Mobility, fitness collection, and the breakdown of cooperation. Phys. Rev. E 2013, 87, 042711.

[CrossRef] [PubMed]

http://doi.org/10.1126/science.1133755
http://www.ncbi.nlm.nih.gov/pubmed/17158317
http://dx.doi.org/10.1016/S0960-9822(99)80321-2
http://dx.doi.org/10.1016/j.physrep.2007.04.004
http://dx.doi.org/10.1038/nature02360
http://dx.doi.org/10.1016/S0167-2681(00)00118-9
http://dx.doi.org/10.1007/BF02460000
http://dx.doi.org/10.1016/j.jtbi.2015.03.032
http://dx.doi.org/10.1007/BF00277103
http://dx.doi.org/10.1126/science.1070582
http://dx.doi.org/10.1098/rspb.2008.1546
http://dx.doi.org/10.1038/nature06940
http://www.ncbi.nlm.nih.gov/pubmed/18615084
http://dx.doi.org/10.1006/jtbi.1999.1000
http://www.ncbi.nlm.nih.gov/pubmed/10525399
http://dx.doi.org/10.1006/jtbi.1996.0243
http://dx.doi.org/10.1073/pnas.91.11.4877
http://www.ncbi.nlm.nih.gov/pubmed/8197150
http://dx.doi.org/10.1038/359826a0
http://dx.doi.org/10.1038/nature04605
http://dx.doi.org/10.1103/PhysRevE.80.046106
http://dx.doi.org/10.1016/j.plrev.2009.08.001
http://dx.doi.org/10.1016/j.cub.2013.04.026
http://dx.doi.org/10.1016/j.jtbi.2013.11.018
http://dx.doi.org/10.1103/PhysRevE.87.042711
http://www.ncbi.nlm.nih.gov/pubmed/23679453


Games 2022, 13, 40 16 of 16

26. Jia, N.; Ma, S. Evolution of cooperation in the snowdrift game among mobile players with random-pairing and reinforcement
learning. Phys. A Stat. Mech. Its Appl. 2013, 392, 5700–5710. [CrossRef]

27. Sicardi, E.; Fort, H.; Vainstein, M.; Arenzon, J. Random mobility and spatial structure often enhance cooperation. J. Theor. Biol.
2009, 256, 240–246. [CrossRef] [PubMed]

28. Tomassini, M.; Antonioni, A. Lévy flights and cooperation among mobile individuals. J. Theor. Biol. 2015, 364, 154–161. [CrossRef]
29. Vainstein, M.; Silva, A.T.C.; Arenzon, J. Does mobility decrease cooperation? J. Theor. Biol. 2007, 244, 722–728. [CrossRef]
30. Aktipis, C. Know when to walk away: Contingent movement and the evolution of cooperation. J. Theor. Biol. 2004, 231, 249–260.

[CrossRef]
31. Cong, R.; Wu, B.; Qiu, Y.; Wang, L. Evolution of cooperation driven by reputation-based migration. PLoS ONE 2012, 7, e35776.

[CrossRef]
32. Lin, H.; Yang, D.P.; Shuai, J. Cooperation among mobile individuals with payoff expectations in the spatial prisoner’s dilemma

game. Chaos Solitons Fractals 2011, 44, 153–159. [CrossRef]
33. Wu, T.; Fu, F.; Wang, L. Moving away from nasty encounters enhances cooperation in ecological prisoner’s dilemma game. PLoS

ONE 2011, 6, e27669. [CrossRef]
34. Buesser, P.; Tomassini, M.; Antonioni, A. Opportunistic migration in spatial evolutionary games. Phys. Rev. E 2013, 88, 042806.

[CrossRef]
35. Erovenko, I. The evolution of cooperation in one-dimensional mobile populations with deterministic dispersal. Games 2019, 10, 2.

[CrossRef]
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