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Abstract: We formulate and study a two-player duel game as a terminal payoffs stochastic game. Players
P1, P2 are standing in place and, in every turn, each may shoot at the other (in other words, abstention
is allowed). If Pn shoots Pm (m 6= n), either they hit and kill them (with probability pn) or they miss
and Pm is unaffected (with probability 1− pn). The process continues until at least one player dies;
if no player ever dies, the game lasts an infinite number of turns. Each player receives a positive
payoff upon killing their opponent and a negative payoff upon being killed. We show that the unique
stationary equilibrium is for both players to always shoot at each other. In addition, we show that
the game also possesses “cooperative” (i.e., non-shooting) non-stationary equilibria. We also discuss a
certain similarity that the duel has to the iterated Prisoner’s Dilemma.
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1. Introduction

In this paper, we study a two-player duel game played in turns. Players P1, P2 are
standing in place and, in each turn, each player may shoots at the other; in other words,
abstention is allowed. If Pn shoots at Pm (m 6= n), either they hit and kill them or they miss
and Pm is unaffected; the respective probabilities are pn (Pn’s marksmanship) and 1− pn.
The process continues until at least one player dies; if no player ever dies then the game
lasts an infinite number of turns. We formulate the above as a stochastic game with terminal
payoffs. The precise game rules and players’ payoffs will be presented in Section 2.

Little work has been done on the duel. In fact, to the best of our knowledge, it has
only been studied as a preliminary step in the study of the “truel”, in which three stationary
players shoot at each other. In early works on the truel [1–4], the postulated game rules
guarantee the existence of exactly one survivor (“winner”). In an important early paper [5],
the somewhat paradoxical result of “survival of the weakest” is established; namely for
certain marksmanship combinations, the player with lowest marksmanship has the highest
probability of survival. A more general analysis appears in a further study [6], which
considers the possibility of “cooperation” between the players, in the sense that each
player has the option of abstaining, i.e., not shooting at their opponent in one or more turns
of the game. This idea is further studied by Kilgour (for the simultaneous truel) [7] and
(the sequential truel) [8,9]. These papers are, to the best of our knowledge, the first to
address the truel problem using a rigorous game theoretic analysis. Kilgour formulates
both the simultaneous and sequential truel as stochastic games with terminal payoffs (i.e.,
the players receive a single payoff at the end of the game) and obtains Nash equilibria, under
appropriate conditions. A similar analysis appears in a further study [10], where, however,
the truel is formulated as a discounted stochastic game. Recent papers on the truel include:
Refs. [11–14] where, among other innovations, the truel is formulated as an extensive
form game; Refs. [15–18], where a Markov chain formulation of several truel variants is
presented; and Refs. [19–21], in which truels among N players are studied, with each player
being represented by a node in a scale-free network.1

Several applications of the duel and, more frequently, of the truel have been proposed
in the above literature. The truel has been used to model behavior in confrontation situa-
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tions [25] and in political conflicts [26]. A truel variant has been used as a model of opinion
dissemination [17]. Business applications have been presented in a further study [27], in
which it is shown that, under certain conditions, weaker companies can grow stronger and
stronger companies can grow weaker with all the parties eventually converging. In legal
studies, the truel has been used to explore equality issues [28]. Last but not least, the nuel
(an N-person generalization of the duel and truel) has been used in biology to explain the
maintenance of variation in natural populations [29] and study marriage and reproduction
mechanisms [30]. Furthermore, the truel is relevant to the existence of “suicidal strategies”
employed by cells and bacteria [31,32].

A common characteristic of all the above-mentioned works is that they limit them-
selves to the study of stationary strategies. As we will show in the current paper, the duel
also possesses Nash equilibria in non-stationary strategies and it is safe to assume that the
same is true of the truel and the nuel (the N-player generalization of the duel and truel).

While the above papers focus on various forms of the truel, we believe that the
duel is interesting in its own right and has not received the attention it deserves. In
particular we will show that, under our formulation, the duel has a certain similarity
to the iterated Prisoner’s Dilemma (IPD) and possesses “cooperative” Nash equilibria in
non-stationary strategies.

In this paper, we study two versions of the duel with terminal payoffs. The rest of the
paper is structured as follows. In Section 2, we define the game rigorously. In Section 3 we
establish the existence of equilibria in stationary strategies. In Section 4, we discuss some
similarities between the game and the IPD. In Section 5, we prove that the duel also has
equilibria in non-stationary strategies (namely grim cooperation and Tit-for-Tat). In Section 6,
we summarize our results and propose some future research directions.

2. Game Description

Our duel game involves players P1, P2 and evolves in discrete time steps (turns)
t ∈ {1, 2, ...}. The state at time t is

s(t) = s1(t)s2(t) ∈ S = {11, 10, 01, 00}.

For n ∈ {1, 2}, sn(t) is Pn’s state at t ∈ {0, 1, 2, ...} and can be

sn(t) = 1 : when Pn is alive at the t-th turn;
sn(t) = 0 : when Pn is dead at the t-th turn.

Pn’s action at t ∈ {1, 2, ...} is fn(t), which can be F (Pn is shooting) or A (Pn is not shooting).
If fn(t) = F then: (a) we have s−n(t) = 0 (i.e., P−n dies)2 with probability pn ∈ (0, 1) and
(b) s−n(t) = 1 with probability 1− pn. We set f(t) = f1(t) f2(t) and p = (p1, p2). We
assume throughout the paper that for n ∈ {1, 2}, pn ∈ (0, 1), i.e., it is strictly between zero
and one.

The game starts at an initial state s(0); obviously, the case of interest is
s(0) = 11. At times t ∈ {1, 2, ...}, the players simultaneously choose their actions f1(t),
f2(t) and the game moves to state s(t) according to the conditional state transition probability
Pr(s(t)|s(t− 1), f(t)). If we number the states as follows

00→ 1, 01→ 2, 10→ 3, 11→ 4,

then we get a “controlled” transition probability matrix Π(φ) where

Πij(φ) = Pr(s(t) = j|s(t− 1) = i, f = φ).
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For every action vector, a terminal state s ∈ {1, 2, 3} (or, equivalently, s ∈ {00, 01, 10})
transits to itself with probability one; i.e., for all i ∈ {1, 2, 3}:

Πii(AA) = Pr(s(t) = i|s(t− 1) = i, f = AA) = 1;

Πii(AF) = Pr(s(t) = i|s(t− 1) = i, f = AF) = 1;

Πii(FA) = Pr(s(t) = i|s(t− 1) = i, f = FA) = 1;

Πii(FF) = Pr(s(t) = i|s(t− 1) = i, f = FF) = 1.

Transitions from the state s = 4 (or s = 11) are a little more complicated. Consider,
for example, the case f = FF, i.e., when both players fire. Then, letting pn = 1− pn for
n ∈ {1, 2}, we have:

Π41(FF) = Pr(s(t) = 00|s(t− 1) = 11, f = FF) = Pr(“P1 hits P2, P2 hits P1”) = p1 p2;

Π42(FF) = Pr(s(t) = 01|s(t− 1) = 11, f = FF) = Pr(“P1 misses P2, P2 hits P1”) = p1 p2;

Π43(FF) = Pr(s(t) = 10|s(t− 1) = 11, f = FF) = Pr(“P1 hits P2, P2 misses P1”) = p1 p2;

Π44(FF) = Pr(s(t) = 11|s(t− 1) = 11, f = FF) = Pr(“P1 misses P2, P2 misses P1”) = p1 p2.

The elements of the other matrices are computed similarly, yielding

Π(AA) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 Π(AF) =


1 0 0 0
0 1 0 0
0 0 1 0
0 p2 0 p2



Π(FA) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 p1 p1

 Π(FF) =


1 0 0 0
0 1 0 0
0 0 1 0

p1 p2 p1 p2 p1 p2 p1 p2


From the above matrices (or from game rules), we see that there exist two possibilities.

1. The game stays in state 11 ad infinitum (no player is ever killed);
2. At some t′ the game moves to a state s(t′) ∈ {10, 01, 00} (one or both players are

killed). These are terminal states, i.e., as soon as they are reached, the game terminates.

When the game reaches a terminal state s, Pn (n ∈ {1, 2}) receives payoff qn(s) as follows:

q1(10) = a1 q2(01) = −b2
q1(01) = −b1 q2(01) = a2
q1(00) = a1 − b1 q2(00) = a2 − b2

where we assume that for n ∈ {1, 2}, an > 0 and bn > 0. We set a =(a1, a2) and b = (b1, b2).
A finite history is a sequence h = s(0)f(1)s(1)...f(T)s(T), a non-terminal finite his-

tory is an h = s(0)f(1)s(1)...f(T)s(T) where s(T) = 11 and an infinite history is an
h = s(0)f(1)s(1)... . An admissible history is one which conforms to the game rules; the set
of all admissible finite (resp. infinite) histories is denoted by H∗ (resp. H∞); H∗ denotes the
set of all non-terminal finite histories. The set of all histories is H = H∗ ∪ H∞. It will be
useful to define payoff as a function Qn : H → R as follows

Qn(h) =


qn(s(T)) if h = s(0)f(1)s(1)...f(T)s(T) ∈ H∗, s(T) is terminal,
0 if h = s(0)f(1)s(1)...f(T)s(T) ∈ H∗, s(T) is non-terminal,
0 if h ∈ H∞

Note that if the game never terminates, both players receive zero payoff.
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A strategy for Pn is a function σn : H∗ → [0, 1]; it corresponds to, for every non-terminal
finite history h, the probability that, given that the current history is h, Pn will shoot P−n:

σn(h) = Pr("Pn shoots P−n").

A stationary strategy is a σn depending only on the current state s, hence we simply write
σn(s). Since a stationary strategy σn depends only on the current state, it is fully determined
by the values σn(s) for s ∈ {00, 01, 10, 11}, i.e., from

σn(00), σn(01), σn(10), σn(11).

But any admissible strategy (i.e., compatible with the game rules) must assign

σn(00) = σn(01) = σn(10) = 0.

Consequently, a stationary strategy is determined by a single number xn = σn(11).
A strategy profile is a vector σ = (σ1, σ2). We denote the set of all admissible strategies

by Σ and the set of all admissible stationary strategies by Σ.
An initial state s(0) and two strategies σ1 and σ2 (used, respectively, by P1 and P2)

determine a probability measure on the set of all histories; hence we can define the ex-
pected payoffs

∀n ∈ {1, 2} : Qn(s(0), σ1, σ2) = Es(0),σ1,σ2
(Qn(h)).

We have, thus, formulated the terminal payoffs duel as a game. We are interested in
the game that starts at s(0) = 11, which we will denote by Γ(p, a, b). We assume that P1
and P2 are looking for a Nash equilibrium (NE), i.e., a strategy profile (σ̂1, σ̂2) such that

∀n ∈ {1, 2}, ∀σn ∈ Σ : Qn((1, 1), σ̂n, σ̂−n) ≥ Qn((1, 1), σn, σ̂−n).

3. Stationary Equilibria

As already noted, an admissible stationary strategy σ1 for P1 is fully determined by
x1 = σ1(11) = Pr(P1 shoots P2); i.e., σ1 is determined by a single variable x1 ∈ [0, 1].
Similarly, every admissible stationary strategy σ2 for P2 is fully determined by a single
variable x2 ∈ [0, 1]. Hence, we will often speak of the strategy xn (rather than σn) and the
strategy profile (x1, x2) (rather than (σ1, σ2)). When P1 and P2 use strategies x1 and x2, the
state sequence is a Markov chain; using the previous numbering of states we have the
transition probability matrix

Π(x1, x2) =


1 0 0 0
0 1 0 0
0 0 1 0

x1 p1x2 p2 (x1 p1 + x1)x2 p2 x1 p1(x2 p2 + x2) (x1 p1 + x1)(x2 p2 + x2)


Also, we can define

Vn(x1, x2) = Qn(11, (x1, x2)).

If (x1, x2) = (0, 0) we obviously get V1(0, 0) = 0. Conversely, if (x1, x2) 6= (0, 0) then we
have the following equation for V1 (temporarily omitting the x1, x2 arguments for brevity
of notation):

V1 = x1 p1(x2 p2 + x2)a1 − (x1 p1 + x1)x2 p2b1

+x1 p1x2 p2(a1 − b1) + (x1 + x1 p1)(x2 p2 + x2)V1.

The equation is obtained as follows: the expected payoff from state 11 is the sum of
four terms:

1. The transition to state 10 gives payoff a1 and takes place with probability x1 p1 (P1 shot
and hit P2) multiplied by (x2 p2 + x2) (P2 either shot and missed or did not shoot);
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2. The transition to state 01 gives payoff −b1 and takes place with probability x2 p2 (P2
shot and hit P1) multiplied by (x1 p1 + x1) (P1 either shot and missed or did not shoot);

3. The transition to state 00 gives payoff a1 − b1 and takes place with probability x1 p1
(P1 shot and hit P2) multiplied by x2 p2 (P2 shot and hit P1);

4. The transition to state 11 gives payoff V1 (it is as if the game starts from the beginning)
and takes place with probability (x1 + x1 p1) (P1 either shot and missed or did not
shoot) multiplied by (x2 p2 + x2) (P2 either shot and missed or did not shoot).

After some algebra, the V1 equation is simplified to

V1 = x1 p1a1 − x2 p2b1 + V1x1 p1x2 p2 −V1x1 p1 −V1x2 p2 + V1

and has the following solution3:

V1(x1, x2) =
x1 p1a1 − x2 p2b1

1− (1− x1 p1)(1− x2 p2)
.

By the same analysis for V2(x1, x2), we finally get the expressions

V1(x1, x2) =

{
0 if x1 = x2 = 0

x1 p1a1−x2 p2b1
1−(1−x1 p1)(1−x2 p2)

otherwise
(1)

V2(x1, x2) =

{
0 if x1 = x2 = 0

x2 p2a2−x1 p1b2
1−(1−x1 p1)(1−x2 p2)

otherwise
(2)

Proposition 1. The only stationary NE of Γ(a, b, p) is (x1, x2) = (1, 1).

Proof. Suppose that P1 and P2 use the profile (x1, x2). To determine whether this is an NE,
from P1’s point of view we have to check whether they have anything to gain by unilaterally
deviating to some other strategy σ1. A crucial fact is that we only have to check whether
P1 gains by switching to another stationary strategy. This is true because, if P2 uses the
stationary strategy x2, then P1 must solve an Markov Decision Process problem; it is well
known that in this case he gains nothing by using non-stationary strategies [33].

Let us first check whether (0, 0) is a Nash equilibrium. If P1 deviates to another
stationary strategy x1, we will have

V1(0, 0)−V1(x1, 0) = 0− x1 p1a1 − 0p2b1

1− (1− x1 p1)(1− 0p2)
= −a1 < 0.

Hence, (0, 0) cannot be an NE. Next, take any (x1, x2) 6= (0, 0) and suppose P1 deviates to
y1. Then

V1(x1, x2)−V1(y1, x2)

=
x1 p1a1 − x2 p2b1

1− (1− x2 p2)(1− x1 p1)
− y1 p1a1 − x2 p2b1

1− (1− x2 p2)(1− y1 p1)

=
p1x2 p2(a1 + b1(1− x2 p2))(x1 − y1)

(1− (1− x1 p1)(1− x2 p2))(1− (1− y1 p1)(1− x2 p2))

The denominator is positive. The numerator has the sign of x1 − y1. Hence, the sign
of V1(x1, x2)− V1(y1, x2) is the same as that of x1 − y1 and consequently, P1 never (resp.
always) has an incentive to deviate from x1 to a smaller (resp. greater) y1. The same
arguments can be applied to P2 and their strategy x2. It follows that the only stationary NE
is (x1, x2) = (1, 1) and this completes the proof.

4. Connection to the Iterated Prisoner’s Dilemma

Applying Formulas (1) and (2) to (x1, x2) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, we get
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V1(0, 0) = 0 V2(0, 0) = 0
V1(0, 1) = −b1 V2(0, 1) = a2
V1(1, 0) = a1 V2(1, 0) = −b2

V1(1, 1) = p1a1−p2b1
1−(1−p2)(1−p1)

V2(1, 1) = p2a2−p1b2
1−(1−p2)(1−p1)

It can immediately be seen that

−b1 = V1(0, 1) < 0 = V1(0, 0) < a1 = V1(1, 0)

and if we identify the strategy xn = 0 (never shooting at the opponent) with “cooperation”
and the strategy xn = 1 (always shooting at the opponent) with “defection”, the above
inequalities remind us of the Prisoner’s Dilemma (PD). The similarity would be complete if
the additional inequalities

V1(0, 1) < V1(1, 1) < V1(0, 0)

also held; because in this case we would have

V1(0, 1) < V1(1, 1) < V1(0, 0) < V1(1, 0) (3)

which corresponds exactly to the well known sequence of PD inequalities [22]:

S < P < R < T.

Now, (3) is equivalent to

−b1 <
p1a1 − p2b1

1− (1− p2)(1− p1)
< 0 < a1.

The first inequality is equivalent to

0 <
p1a1 − p2b1

1− (1− p2)(1− p1)
+ b1 = p1

a1 + b1(1− p2)

p1 + p2(1− p1)

which is always satisfied. The second inequality is

p1a1 − p2b1

1− (1− p2)(1− p1)
< 0,

which will be satisfied iff
p1a1 < p2b1

The third inequality is always satisfied. Similarly, the inequalities

V2(0, 1) < V2(1, 1) < V2(0, 0) < V2(1, 0) (4)

will be satisfied iff
p2a2 < p1b2

Combining the above, we get the following “PD-like condition”

a2

b2
<

p1

p2
<

b1

a1
(5)

which is necessary and sufficient to have the following ordering of the payoffs

V1(0, 1) < V1(1, 1) < V1(0, 0) < V1(1, 0) (6)

V2(0, 1) < V2(1, 1) < V2(0, 0) < V2(1, 0) (7)
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In light of (6) and (7), we will call the never-shooting strategy xn = 0 (which henceforth
will also be denoted by σC) the cooperating strategy, and the always-shooting strategy xn = 1
(which henceforth will also be denoted by σD) the defecting strategy. The terminology is
inspired by the analogy to the PD. Namely, in both the PD and the duel, both players would
have a higher payoff if they adhered to

(
σC, σC); but this is not a NE and each player has

incentive to switch to σD. Consequently, rational players will follow the strategy profile(
σD, σD), which, while being an NE, yields lower payoff to both players.4

As is well known, cooperative NE do exist for the iterated PD, and these involve the use
of non-stationary strategies, such as grim-cooperation and Tit-for-Tat (TfT). Hence, in the next
section, we will show that there exist corresponding non-stationary cooperative strategies
which are NE of Γ(p, a, b).

Before concluding this section, it is worth discussing in what ways our duel game
Γ(p, a, b) differs from the IPD. Three obvious differences are:

1. The IPD is a deterministic game, while Γ(p, a, b) involves randomness;
2. In the IPD, each player receives a payoff in every turn and the total payoff is the

discounted (by a discount factor γ) sum of turn payoffs, while in Γ(p, a, b), payoff is
obtained only at the final turn and is undiscounted;

3. The IPD will last an infinite number of turns, while Γ(p, a, b) may (depending on the
p values and the strategy used) terminate in a finite number of turns (in fact, it may
be the case that it will terminate in a finite number of terms with probability one).

However, there is an formulation of the IPD in which the payoffs are not discounted
but the game may terminate in every turn with a positive probability p = 1− γ > 0. In
this formulation, the IPD is also a random game and will terminate in a finite number of
turns with probability one; the total expected payoff of each player equals the discounted
payoff of the deterministic IPD version.

5. Non-Stationary Equilibria

Drawing upon similar results for the IPD, we will now show that the duel has coop-
erative NE in non-stationary strategies. The first such strategy we introduce is the grim
cooperation strategy σG, which is defined as follows for Pn (n ∈ {1, 2}):

σG :
As long as P−n does not shoot Pn, Pn never shoots P−n;
if P−n shoots Pn at round t, then Pn shoots P−n at all rounds t′ > t.

This strategy was originally used in the analysis of the IPD.

Proposition 2.
(
σG, σG) is an NE of Γ(a, b, p) iff

b1

a1
>

1 + p2(1− p1)

1− p1
· p1

p2
and

b2

a2
>

1 + p1(1− p2)

1− p2
· p2

p1
. (8)

Proof. We have
VG

1 = Q1

(
11,
(

σG, σG
))

= 0

since, if both players adhere to σG, nobody will ever get killed. Next, let us consider
possible P1 strategies σ1 deviating from σG. It is easy to see that it suffices to consider the
strategy σD, because, as soon as P1 deviates from σG, P2 will shoot at P1 on every turn and
hence, P1 has no incentive to not shoot; furthermore, if P1 deviates from σG, they might as
well deviate on the first turn. Now, let us compute

VR
1 = Q1

(
11,
(

σD, σG
))

.
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If P1 uses σD at t = 1, then P2 will also revert to σD at times t ∈ {2, 3, ...}. Hence, P1’s
expected payoff will be

VR
1 = p1a1 + (1− p1)

(
0 + VD

1

)
= p1a1 + (1− p1)

p1a1 − p2b1

1− (1− p2)(1− p1)

=
p2(1− p1)(p1a1 − b1) + p1a1

1− (1− p1)(1− p2)
.

For
(
σG, σG) to be an NE, we must have VR

1 < VG
1 , which is equivalent to

p2(1− p1)(p1a1 − b1) + p1a1 < 0. (9)

By assumption

1 + p2(1− p1)

p2(1− p1)
p1a1 − b1 < 0⇔

−b1 p2 + b1 p2 p1 + p1a1 + p1a1 p2 − p2
1a1 p2

p2(1− p1)
< 0⇔

−b1 p2 + b1 p2 p1 + p1a1 + p1a1 p2 − p2
1a1 p2 < 0⇔

p2(1− p1)(p1a1 − b1) + p1a1 < 0.

Hence, (9) holds and P1 has no incentive to deviate from σG. By a similar analysis, we can
also show that P2 has no incentive to deviate from σG. This completes the proof.

Remark 1. The duel NE conditions (8) imply

b1

a1
>

1 + p2(1− p1)

1− p1
· p1

p2
⇒ p1

p2
<

1− p1

1 + p2(1− p1)
· b1

a1
<

b1

a1
,

b2

a2
>

1 + p1(1− p2)

1− p2
· p2

p1
⇒ p2

p1
<

1− p2

1 + p1(1− p2)
· b2

a2
<

b2

a2
.

Hence, the conditions (8) are stronger than the originally postulated condition (5) for the
existence of a “PD-like” ordering in the duel.

Now, we will define another non-stationary cooperative strategy, which will turn out
to be an NE of the duel. This is the Tit-for-Tat strategy σT f T , defined for Pn (n ∈ {1, 2})
as follows:

σT f T :
In the first turn Pn does not shoot P−n;
at every other turn Pn performs the same action (shooting or not shooting)
that P−n performed in the previous round.

This strategy was also originally used in the analysis of the iterated PD.

Proposition 3.
(

σT f T , σT f T
)

is an NE of Γ(a, b, p) iff

b1

a1
>

1 + p2(1− p1)

1− p1
· p1

p2
and

b2

a2
>

1 + p1(1− p2)

1− p2
· p2

p1
. (10)

Proof. If both players play the strategy σT f T , then they never shoot at each other and their
payoffs are

∀n ∈ {1, 2} : VT f T
n = Qn

(
11, σT f T , σT f T

)
= Qn

(
11, σC, σC

)
= 0.
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Now, suppose that P2 adheres to σT f T but P1 deviates. If P1 gains by deviating from σT f T at
some turn, then they must also gain by shooting at P2 in the first turn. If they do so, then P2
shoots at P1 for all subsequent turns, until P1 reverts to not firing. Thus, P1 has two options
after their first deviation.

1. They can continue shooting in all subsequent turns, in which case, so will P2;
2. They can revert to not shooting, in which case, in the next turn, they are in the same

situation as at the start of the game.

Consequently, if P1 can increase their payoff by deviating, then they can do so, either
(a) by shooting in every turn, or (b) by alternating between shooting and not shooting.
If we find conditions under which P1 cannot increase their payoff by either of the above
strategies, then, under the same conditions, P1 cannot increase their payoff by deviating,
which implies that

(
σT f T , σT f T

)
is an NE.

1. Consider first the case in which P1 adopts the strategy σD of shooting in each turn.
Then we have

Qn

(
11, σD, σT f T

)
= Q1

(
11,
(

σD, σG
))

= VR
1

and, by the same analysis as in the proof of Proposition 2, we know that VC
1 −VR

1 > 0
iff

p2(1− p1)(p1a1 − b1) + p1a1 < 0

which is equivalent to our assumption

b1

a1
>

1 + p2(1− p1)

1− p1
· p1

p2
.

2. Next consider the case in which P1 alternates between shooting and not shooting.
Then their payoff will be

VS
1 = p1a1 + (1− p1)

(
0 + p2(−b1) + (1− p2)VS

1

)
.

The above equation holds because the expected payoff VS
1 is computed by summing

the following possibilities. P1 will certainly shoot and then:

(a) With probability p1, P2 will kill P2 and hence, receive payoff a1;
(b) With probability 1− p1, P2 will miss (and receive zero payoff) and in the next

turn P2 will shoot and kill P1; this combination has probability (1− p1)p2 and
gives to P1 payoff −b1;

(c) With probability 1− p1, P1 will miss and in the next turn P2 will shoot and miss
P1; this combination has probability (1− p1)(1− p2) and returns the game to
the original state, in which P1 receives payoff VS

1 .

Simplifying the above equation and solving we obtain

VS
1 =

p1a1 − p2b1 + p2b1 p1

p1 + p2 − p2 p1
.

For an NE we must have VC
1 −VS

1 > 0 and this will hold when

0 > p1a1 − p2b1 + p2b1 p1 ⇔ p2b1(1− p1) > p1a1 ⇔
b1

a1
>

1
1− p1

· p1

p2
.

However, from our assumption (10), we have

b1

a1
>

1 + p2(1− p1)

1− p1
· p1

p2
>

1
1− p1

· p1

p2
.
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Hence VC
1 −VS

1 > 0.

Combining 1 and 2, we see that P1 has no advantage in deviating from σT f T ; by a similar
analysis, the same holds for P2 and hence, the proof is completed.

Corollary 1. The duel NE conditions (8) and (10) are the same. In other words,
(
σD, σD) is an

NE of Γ(a, b, p) iff
(

σT f T , σT f T
)

is an NE of Γ(a, b, p).

Let us compare the stationary and non-stationary NE. Initially, we made no assumption
regarding the relative size of an and bn (although we did assume they are both positive).
In other words, an − bn may be positive (Pn sets more value in surviving), negative (Pn
hates their opponent so much that they value killing them more than surviving) or zero.
However, even when an > bn for both n, if the players limit themselves to using stationary
strategies, then the only Nash equilibrium consists of both players shooting at each other
with probability one (by Proposition 1); for the more desirable outcome of both players
surviving to be (another) Nash equilibrium, they must use non-stationary strategies.

6. Conclusions

We have defined a turn-based duel game with terminal payoffs and shown that it has
both stationary and non-stationary Nash equilibria. The non-stationary equilibria that we
have established are the grim cooperation and Tit-for-Tat pairs. These are of the same form as
the synonymous strategies used in the iterated Prisoner’s Dilemma; we were motivated to
use these in the duel by the previously explained similarity between the payoff structure of
our duel game and that of the IPD.

In addition to their independent interest, the above results have potential application
to the truel and nuel problems. As we have pointed out, to the best of our knowledge, the
literature on truel and nuel is limited to the study of stationary strategies. In the case of
the duel, in addition to stationary NE, we also have non-stationary NE. We reported here
two such non-stationary NE (

(
σG, σG) and

(
σT f T , σT f T

)
), and it is not hard to construct

additional ones, using an approach similar to that used in the study of repeated games [35].
We conjecture that, using the methods of the current paper, it is also possible to establish
a plethora of non-stationary NE for the general, N-player nuel; we intend to pursue this
research direction in the future.

Several variants of the duel can be formulated and are worth exploring. In addition
to the variant described in this paper, we have explored a variant in which each player
receives some discounted payoff for every turn in which they stay alive. Including those
results (and the techniques required for their proof) would increase the size of the current
paper inordinately; hence, they will be reported in a separate publication. Further variants
to be explored in the future include:

1. sequential play, in which a single player is allowed to shoot in each turn;
2. random play, in which the player allowed to shoot in each turn is chosen randomly

and equi-probably.

In addition, in the future we intend to study the use of non-stationary strategies in truels
and nuels.
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Notes
1 It should also be noted that an extensive literature on a quite different type of duel games exists, which essentially are games of

timing [22–24]. However, this literature is not relevant to the game studied in this paper.
2 In the sequel we use the standard game theoretic notation by which s−1 = s2, s−2 = s1. The same notation is used for players,

actions etc.
3 Several parts of this paper require rather involved algebraic calculations. We have always performed these using the computer

algebra system Maple and afterwards verified the results by hand.
4 We should clarify at this point that, despite the use of the terms “cooperation” and “cooperative”, the duel is not a cooperative

game in Shapley’s sense [34]. In other words, it does not involve external enforcement of cooperative behavior. Instead, the duel is
a non-cooperative game and “cooperation” is used in the same sense as in the Prisoner’s Dilemma literature; i.e., “cooperation”
is understood as a spontaneous emergence of coordinated moves due to the players’ selfish behavior, rather than due to an
explicit alliance mechanism.
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