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Abstract: This paper departs from the standard profit-maximizing model of firm behavior
by assuming that firms are motivated in part by personal animosity–or respect–towards their
competitors. A reciprocal firm responds to unkind behavior of rivals with unkind actions
(negative reciprocity), while at the same time, it responds to kind behavior of rivals with
kind actions (positive reciprocity). We find that collusion is easier to sustain when firms
have a concern for reciprocity towards competing firms provided that they consider collusive
prices to be kind and punishment prices to be unkind. Thus, reciprocity concerns among
firms can have adverse welfare consequences for consumers.

Keywords: Fairness; Reciprocity; Collusion; Repeated Games
JEL: D43, D63, L13, L21

1. Introduction

The assumption that individuals behave as if maximizing their material payoffs, despite its central role
in economic analysis, is at odds with a large body of evidence from psychology and from experimental
economics. Economic agents often pursue objectives other than actual payoff maximization. Many
observed departures from material payoff maximizing behavior arise through actions that favor fairness
or reciprocity.
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Fairness and reciprocity have been shown to explain behavior in bargaining games and in trust games.
For example, in ultimatum games offers are usually much more generous than predicted by subgame
perfect equilibrium and low offers are often rejected. These offers are consistent with an equilibrium in
which proposers make offers knowing that responders may reject allocations that appear unfair.

The same effect is observed in markets. [1] show that a Stackelberg leader finds it hard to exploit his
advantage in experimental markets. The reason is that the Stackelberg follower acts more aggressively
than predicted by the subgame perfect equilibrium. In fact, followers punish the leader by supplying a
higher quantity than their most profitable response to the leader’s quantity. This behavior is in line with
the observed negative reciprocity of responders in the ultimatum game when the proposer tries to exploit
his first-mover advantage.

The impact of fairness and reciprocity on market outcomes is an active area of research. [2] and [3]
show that fairness concerns on the part of consumers can improve consumer welfare. For example, [2]
finds that a monopolist ought to set a price lower than “the monopoly price” if consumers have concerns
about fairness.

In this paper we ask whether reciprocity may help to sustain collusive behavior. For instance,
if a collusive agreement is seen by the parties as a kind outcome, then if one party reneges on the
agreement and undercuts the price (or boosts its output), its rivals may be offended and hence punish
the deviator aggressively (even at extra cost to themselves). Thus, because negative reciprocity induces
more aggressive punishments for deviating, it could help sustain collusion relative to situations in which
firms care only about their own profits.

[4] present evidence–real world and experimental–that firms (or experimental subjects playing the
role of firms) sometimes depart from the profit-maximizing paradigm. For example, CEOs may be
overly optimistic about the profitability of mergers or other actions they undertake; managers might face
incentives which induce them to care about relative rather than absolute profits; and firms might punish
rivals who behave “unfairly” towards them.

[4] argue that sometimes managers are motivated in part by personal animosity–or respect–towards a
rival. Thus, firms might punish rivals who behave “unfairly” towards them. For example, firms might
sometimes care when their rivals obtain an “unfair” share of industry profits, by, for instance, cheating
on a collusive agreement. Also, many experiments find that collusion can still be observed even when
there is a known fixed number of periods; a finding that goes against the prediction of rational play.

To model reciprocity we follow [5] and assume that players in a strategic environment have
preferences not only over the outcomes but also the strategies. A player’s utility is additively separable
in monetary and fairness payoffs. Monetary payoffs are revenues minus costs and fairness payoffs are
a weighted average of the rivals’ monetary payoffs where the weights depend on the expected play of
the rivals. If a player expects a rival to play a kind (mean) strategy, then he places a positive (negative)
weight on that rival’s monetary payoff.

In a standard setting, collusion can be sustained as an equilibrium by self-interested players if they
interact infinitely often and are sufficiently patient. A player is said to be patient if his discount factor
is sufficiently close to one. In order to determine whether collusion is or is not facilitated by reciprocity
we compare the minimal discount factor that allows the same collusive outcome to be sustained when
players are reciprocal and when they are self-interested.
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We find that reciprocity facilitates collusion under dynamic price competition if players consider
collusive prices to be kind and punishment prices to be unkind. This happens because the future losses of
deviating from collusion are higher for reciprocal players than for self-interested ones and the short-run
deviation gain of a reciprocal player is less than the short-run deviation gain of a self-interested one. The
intuition behind this result is as follows.

If players expect the collusive prices to be played and consider those prices to be kind, then collusion
is a positive reciprocity state,i.e., a state where players place a positive weight on their rivals’ monetary
payoffs. Additionally, if players expect punishments to happen and consider that punishment prices
are unkind, then the punishment phase is a negative reciprocity state, i.e., a state where players place
a negative weight on their rivals’ monetary payoffs. These two effects imply that the future losses of
deviating from collusion are higher for reciprocal players than for self-interested ones.

If a player considers the collusive prices of the rivals as kind, then when he deviates from collusion
he attains a lower monetary payoff than a self-interested player because he cares about the monetary
payoffs of his rivals and so he is less willing to undercut the collusive price. Additionally, when a
reciprocal player deviates from collusion he suffers a loss in fairness payoffs because he lowers the
monetary payoffs of his rivals. These two effects imply that the short-run deviation gain of a reciprocal
player is less than the short-run deviation gain of a self-interested one.

Our paper is an additional contribution to the literature on the factors that help or hinder collusion. It
is now well known that concentration, barriers to entry, cross-ownership, symmetry and multi-market
contracts facilitate collusion–see [6]. We provide sufficient conditions under which fairness and
reciprocity facilitate collusion. We show that if a collusive agreement is seen as a positive reciprocity
state, then the parties internalize part of the harm they impose on rivals when deviating from it. This
effect is similar to the impact of partial cross ownership on incentives to collude analyzed in [7]. We also
show that if mutual punishments are seen as a negative reciprocity state, then the parties to a collusive
scheme are willing to impose harsher punishments on rivals following a deviation.

The main policy implication of our paper is that if firms have reciprocal preferences this can have
adverse welfare consequences for consumers. In contrast, [2] and [3] find that fairness concerns
on the part of consumers can increase consumer welfare. Thus, social preferences in imperfectly
competitive markets might lead to different outcomes depending on who has such preferences (producers
or consumers) and what the comparison group is.

The rest of the paper proceeds as follows. Section 2 sets-up the model. Sections 3 and 4 analyze
the impact of fairness and reciprocity on static and dynamic price competition, respectively. Section 5
consists of an example that illustrates our findings. Section 6 concludes the paper. The appendix contains
the proofs of the results.

2. Set-up

The existing theories of social preferences can be classified into three broad categories. The first
one is the distributional preference approach where social preferences only depend on the distribution
of material payoffs. This includes [8] and [9]. These models are highly tractable and capture a wide
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range of phenomena but fail to explain the fact that preferences depend on more than outcomes, namely,
intentions also matter.

The second category consists of intention-based models and includes [2], [10], and [11], among
others. These models assume that reciprocity depends on overall strategies and beliefs (and beliefs
about beliefs) building on [12] theory of psychological games. In [2] utility is additively separable in
monetary and fairness payoffs and the weight a player places on rivals’ monetary payoffs depends on
his perception of the rivals’ intentions, which are evaluated using (i) beliefs about the rivals’ strategy
choices, and (ii) beliefs about the rivals’ beliefs about his strategy. [10] develop a theory of reciprocity
for extensive form games where players update beliefs about intentions as the game unfolds and make
a choice accordingly. [11] model reciprocity in incomplete information games. Intention-based models
have two major weaknesses: they use specific functional forms and use complex belief structures
(see [13]).

The third category explores the axiomatic foundations that generate utility functions that display
social preferences. [14] proposes a preference axiom which leads to a foundation of [8] inequity aversion
model. [5] provide an axiomatic foundation for interdependent preferences that can reflect reciprocity,
inequity aversion, altruism and spitefulness. The key innovation of their approach is that in addition
to conventional preferences over outcomes, players in a strategic environment also have preferences
over strategy profiles. This allows one to study situations where a player’s preference is affected by the
behavior of other players.

We apply [5] approach to a dynamic price competition game where N players play the same stage
game over an infinite horizon. More precisely, given common knowledge of preferences and a price
profile p describing how the game is expected to be played, in each stage player i chooses price pi, given
its rivals are expected to play p−i = (p1, ..., pi−1, pi+1, ..., pN), and his payoff in that stage is

ui(pi, p−i, wi) = πi(pi, p−i) +
∑
j 6=i

wi(pj)πj(pi, p−i), (1)

where wi = (wi(p1), ..., wi(pi−1), wi(pi+1), ..., wi(pN)) is the vector of weights i places on the monetary
payoffs of his rivals when the rivals are expected to play p−i.

The first term on the right-hand side of (1) is the monetary payoff of player i, given by

πi(pi, p−i) = (pi − ci)Di(pi, p−i),

where ci is the constant marginal cost of production of player i and Di(pi, p−i) is the demand faced by
player i. We assume that Di(·) is twice differentiable, is strictly decreasing in pi. and strictly increasing
in every pj with j 6= i. The second term on the right-hand side of (1) is the fairness payoff, where
wi(pj) specifies the weight player i attaches to rival j’s monetary payoff when player i expects rival j to
set price pj . 1 We assume that if player i expects rival j’s price to be kind, then the weight is positive,
wi(pj) > 0, capturing positive reciprocity. If player i expects rival j’s price to be unkind, then the weight

1 We assume that the weight player i places on the monetary payoff of player j only depends on the expected play of
player j. In contrast, [5] assume more generally that the weight player i places on the monetary payoff of player j can depend
on the full vector of expected play (including the expected play of player i). Allowing for the weight that player i places
on the monetary payoff of player j to depend on the expected play of player i would make the analysis substantially more
complicated since player i would need to take into account this additional effect when setting his price.
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is negative, wi(pj) < 0, capturing negative reciprocity. If player i expects rival j’s price to be neither
kind nor unkind, then the weight is zero, wi(pj) = 0. Finally, we assume that the weight player i attaches
to rival j’s monetary payoff is an increasing and differentiable function of pj , i.e., dwi/dpj > 0.

3. Static Price Competition

In this section we analyze how fairness and reciprocity change the outcome of static price competition.
Let Γs and Γr denote the static game with self-interested and reciprocal players, respectively. The
first-order conditions of player i respectively in Γs and in Γr are:

Di + (pi − ci)
∂Di

∂pi
= 0, (2)

and
Di + (pi − ci)

∂Di

∂pi
+
∑
j 6=i

wi(pj)(pj − cj)
∂Dj

∂pi
= 0. (3)

The conditions (2) and (3) characterize the static equilibrium prices in Γs and in Γr, respectively. In the
appendix we report the second-order conditions which guarantee the existence of a Nash equilibrium
in Γs and Γr, respectively. We also report the contraction conditions which guarantee that Γs and Γr,
respectively, have a unique Nash equilibrium.

We denote the Nash equilibrium price of a self-interested player i by pnsi and the Nash equilibrium
price profile of Γs by pns = (pns1 , ..., p

ns
N ). Similarly, we denote the Nash equilibrium price of a reciprocal

player i by pnri and the Nash equilibrium price profile of Γr by pnr = (pnr1 , ..., p
nr
N ). We denote by wnij

the weight player i places on j’s material payoff when i expects j to choose pnrj . We denote by wni the
vector of weights player i places on his rivals’ material payoffs when player i expects the rivals to play
according to pnr−i, i.e., when the rivals choose Nash reciprocal prices.

Our first results compares the Nash equilibrium prices in Γs and in Γr.

Proposition 1:
(i) If wnij > 0 for all i and j 6= i, then pnri > pnsi for all i;
(ii) If wnij < 0 for all i and j 6= i, then pnri < pnsi for all i.

This result characterizes the impact of fairness and reciprocity on equilibrium prices under static price
competition. The intuition behind Proposition 1 is as follows: when players expect their rivals to set kind
prices they place a positive weight on the monetary payoffs of the rivals, i.e., wnij > 0 for all i and j 6= i.
In this case the Nash equilibrium is a positive reciprocity state: players expect their rivals to set kind
prices and therefore wish to reward them. The reward consists in setting higher price than the price a
self-interested player would set. In contrast, when players expect their rivals to set unkind prices they
place a negative weight on the monetary payoffs of the rivals, i.e., wnij < 0 for all i and j 6= i. In
this case the Nash equilibrium is a negative reciprocity state: players expect rivals to set unkind prices
and therefore wish to punish them. The punishment consists in setting a lower price than the price a
self-interested player would set.

To analyze the impact of fairness and reciprocity on the Nash equilibrium payoffs we focus on the
symmetric case of Γs and Γr. This requires three symmetry assumptions. First, the demand system is
symmetric, i.e., interchanging the prices of rival goods does not affect the demand for any good, as a
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function of its own price, and any two goods which sell at the same price have the same demand. Second,
marginal costs across firms are symmetric, i.e., c1 = ... = cN = c. Third, the weights reciprocal players
place on the monetary payoffs of their rivals are symmetric, i.e., wnij = wn for all i and all j 6= i. Since
Γs and Γr are symmetric each game will have a unique symmetric Nash equilibrium price profile.

Proposition 2: Let Γs and Γr be symmetric N player games.
(i) If wn ∈ (0, 1), then ui(pnr, wn) > πi(p

ns) for all i;

(ii) If wn ∈ (− 1
N−1 , 0), then 0 < ui(p

nr, wn) < πi(p
ns) for all i.

Proposition 2 part (i) says that if reciprocal players expect their rivals to set kind prices, then they
attain a higher equilibrium payoff than that obtained by self-interested players. This happens because
reciprocal players will choose higher equilibrium prices than self-interested players. This increases
reciprocal players’ monetary payoffs and, in addition, leads to fairness payoff gains due to the rivals’ kind
behavior. In contrast, Proposition 2 part (ii) says that if reciprocal players expect their rivals to set unkind
prices, then they attain a lower equilibrium payoff than that obtained by self-interested players. This
happens because reciprocal players will choose lower equilibrium prices than self-interested players.
This lowers reciprocal players’ monetary payoffs and, in addition, leads to fairness payoff losses due to
the rivals’ unkind behavior.

4. Dynamic Price Competition

In this section we study the impact of fairness and reciprocity on collusion using a dynamic price
competition set-up. More precisely, the symmetric static price games described in the previous section
will be played over an infinite horizon. Let Γr∞ denote the infinitely repeated game with reciprocal
players and Γs∞ the infinitely repeated game of self-interested players. Players discount the future at rate
δ ∈ (0, 1).

Players are able to sustain a collusive outcome when the payoff from collusion is no less than the
payoff from deviation. To understand how fairness and reciprocity influence collusion we compare the
incentives to cooperate of self-interested players in Γs∞ to those of reciprocal players in Γr∞. To do that
we assume that the two games are identical in all respects (monetary payoffs and the number of players)
except that in Γr∞ players have reciprocal preferences whereas in Γs∞ they are self-interested.

The standard approach to study collusion in infinitely repeated games assumes that players use grim
trigger strategies to punish any deviation from collusion, i.e., following a deviation players switch to a
Nash equilibrium of the stage game forever after. Thus, when self-interested players use grim trigger
punishments in Γs∞, each player i will prefer to play his collusive strategy if the payoff from collusion
is no less than the payoff from defection, which consists of the one period gain from deviating plus the
discounted payoff of inducing Nash reversion forever, i.e.,

1

1− δ
πi(p

c) ≥ πi(R
s
i (p

c
−i), p

c
−i) +

δ

1− δ
πi(p

ns),

or
δ

1− δ
[πi(p

c)− πi(pns)] ≥ πi(R
s
i (p

c
−i), p

c
−i)− πi(pc), (4)
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where pc ≡ (pc1, ..., p
c
n) is the vector of collusive prices that result from joint profit maximization and

Rs
i (p

c
−i) stands for the best response of a self-interested player i to pc−i . Solving (4) for δ we obtain the

critical discount factor above which pc can be sustained by self-interested players:

δs =
πi(R

s
i (p

c
−i), p

c
−i)− πi(pc)

πi(Rs
i (p

c
−i), p

c
−i)− πi(pns)

.

The same reasoning applies when players have reciprocal preferences. A reciprocal player i plays the
collusive price pci in Γr∞ using a grim trigger strategy as long as

1

1− δ
ui(p

c, wci ) ≥ ui(R
r
i (p

c
−i), p

c
−i, w

c
i ) +

δ

1− δ
ui(p

nr, wni ),

or
δ

1− δ
[ui(p

c, wci )− ui(pnr, wni )] ≥ ui(R
r
i (p

c
−i), p

c
−i, w

c
i )− ui(pc, wci ), (5)

where Rr
i (p

c
−i) stands for the best response of reciprocal player i to pc−i and

wci = (wi(p
c
1), ..., wi(p

c
i−1), wi(p

c
i+1), ..., wi(p

c
N)) where wi(p

c
j) is the weight player i places on j’s

monetary payoff when i expects j to choose pcj . Solving (5) for δ we obtain the critical discount factor
above which pc can be sustained by reciprocal players:

δr =
ui(R

r
i (p

c
−i), p

c
−i, w

c
i )− ui(pc, wci )

ui(Rr
i (p

c
−i), p

c
−i, w

c
i )− ui(pnr, wni )

.

Reciprocal players expect the rivals to play collusive prices if no deviation occurs and expect them to
play Nash reciprocal prices after a deviation occurs.

We say that fairness and reciprocity facilitate collusion when the collusive price profile can be
sustained at a lower critical discount factor when players are reciprocal than when they are self-interested.
If the opposite happens we say that fairness and reciprocity make collusion harder.

We are now ready to state the main result of the paper.

Proposition 3: Let Γs and Γr be symmetric N player games. If wc ∈ (0, 1) and wn ∈ (− 1
N−1 , 0], then

the critical (minimum) discount factor needed to sustain collusion at pc in Γr∞ is less than that in Γs∞,
i.e., δr < δs.

This result provides sufficient conditions for collusion to be easier to sustain in the infinitely repeated
price game with reciprocal players than in the infinitely repeated price game with self-interested players.

If collusion is a positive reciprocity state and the punishment phase is a negative reciprocity state, i.e.,
wc > 0 > wn, then the future losses of deviating from collusion for self-interested players–the left-hand
side of ( 4)–are lower than those for reciprocal players–the left-hand side of (5). This happens for two
reasons. First, if collusion is a positive reciprocity state, then reciprocal players’ monetary payoffs from
collusion are the same as those of self-interested players but, in addition, there are fairness payoff gains
since players consider rivals to be kind. Second, if reciprocal players expect the rivals to set unkind Nash
prices in the punishment phase, then they expect to be in a negative reciprocity state following a deviation
from collusion. In this case, reciprocal players wish to punish their rivals for their expected unkindness.
They do it by setting a price lower than the price a self-interested player would set. This reduces players’
monetary payoffs and in addition leads to fairness payoff losses due to the unkind behavior of the rivals.
Hence, the punishment imposed after cheating occurs is more severe.
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If collusion is a positive reciprocity state, i.e., wc > 0, then the short-run deviation gain of
a self-interested player–the right-hand side of (4)–is greater than the short-run deviation gain of a
reciprocal player–the right-hand side of (5). This happens due to two effects. First, a reciprocal player
who deviates from collusion attains a lower monetary gain than a self-interested one since he places
a positive weight on his rivals’ monetary payoffs and so he is less willing to undercut the collusive
price. Second, when a player deviates from collusion he lowers the monetary payoffs of his rivals. A
self-interested player does not care about this effect but a reciprocal player suffers fairness payoff losses
since his rivals are being kind by sticking to their collusive prices.

Proposition 3 follows from two critical assumptions. First, the assumption that players place a positive
weight on the monetary payoffs of the rivals when they expect them to play the collusive prices, i.e.,
wc > 0. Second, the assumption that players place a non-positive weight on the monetary payoffs of the
rivals when they expect them to play the Nash prices, i.e.,wn ≤ 0. If one of these assumptions is violated,
then the impact of fairness and reciprocity on the critical discount factor needed to sustain collusion at pc

is ambiguous. The symmetry assumptions are not critical to this result but greatly simplify the analysis.
To better illustrate the intuition behind Proposition 3 consider the two prisoners’ dilemma (PD) games.

Prisoners’ Dilemma with
Self-Interested Players

Prisoners’ Dilemma with
Reciprocal Players

C D

C c, c b, a

D a, b d, d

C D

C c+ wcc, c+ wcc b+ wda, a+ wcb

D a+ wcb, b+ wda d+ wdd, d+ wdd

Each player has the choice between cooperate, C, or defect, D. The game with self-interested players
represents a prisoners’ dilemma if cooperation is a strictly dominated strategy and mutual cooperation is
better than mutual defection. Hence, we assume from now on that a > c > d > b.

A reciprocal player who expects the rival to cooperate places weightwc on the rival’s monetary payoff.
Therefore, according to (1), a reciprocal player who expects the rival to cooperate obtains a payoff of
c + wcc from C and a payoff of a + wcb from D. We assume from now on that a reciprocal player
considers C a kind action and so places a strictly positive weight on the rival’s monetary payoff when he
expects the rival to play C, i.e., wc > 0.2

A reciprocal player who expects the rival to defect places weight wd on the rival’s monetary payoff.
Therefore, according to (1), a reciprocal player who expects the rival to defect obtains a payoff of d+wdd

from D and a payoff of b+wda from C. We leave open the possibility that a reciprocal player can think
of D as either a kind or an unkind action by the rival, i.e., we do not restrict the sign of wd.3

Cooperation is a strictly dominated strategy in the PD game with reciprocal players if wc < a−c
c−b and

wd < d−b
a−d . Mutual cooperation is better than mutual defection in the PD game with reciprocal players if

wd < c−d+cwc

d
. We assume these three conditions hold from now on.

2This assumption implies that mutual cooperation yields a higher payoff to a reciprocal player than to self-interested one
since c + wcc > c. It also implies that defecting when the rival cooperates yields a higher payoff to a reciprocal player than
to a self-interested one since a+ wcb > a.

3If a reciprocal player considers D to be an unkind action, then wd < 0. In this case mutual defection yields a lower
payoff to a reciprocal player than to self-interested one since d+ wdd < d. Additionally, cooperating when the rival defects
yields a lower payoff to a reciprocal player than to a self-interested one since b+ wda < b.
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Now suppose the two PD games are played an infinite number of times and that players discount the
future at rate δ ∈ (0, 1). Cooperation can be sustained in the infinitely repeated PD with self-interested
players as long as

δ

1− δ
(c− d) ≥ a− c. (6)

Solving (6) for δ we obtain the critical discount factor above which cooperation can be sustained with
self-interested players:

δs =
a− c
a− d

.

Similarly, cooperation can be sustained in the infinitely repeated PD with reciprocal players as long as

δ

1− δ
(c− d+ wcc− wdd) ≥ a− c− wc(c− b). (7)

Solving (7) for δ we obtain the critical discount factor above which cooperation can be sustained with
reciprocal players:

δr =
a− c− wc(c− b)
a− d+ wcb− wdd

.

The critical discount factor above which cooperation can be sustained with reciprocal players is lower
than the one with self-interested players if and only if

wd

wc
< 1 +

(a− b)(c− d)

(a− c)d
. (8)

Inequality (8) is a necessary and sufficient condition for cooperation to be easier to sustain in the infinitely
PD game with reciprocal players than in the infinitely repeated PD game with self-interested players. The
inequality tells us that reciprocity facilitates cooperation in the infinitely repeated PD game if and only
if the weight a reciprocal player places on his rival’s monetary payoff when he expects the rival to play
D is not too high compared to the weight he places on the rival’s monetary payoff when he expects the
rival to play C.

A sufficient condition for (8) to hold is wc ≥ wd > 0, i.e., a reciprocal player considers C and D
as kind actions and places a weakly higher weight on the rivals’ monetary payoff when he expects the
rival to play C than when he expects the rival to play D. Another sufficient condition for (8) to hold is
wc > 0 > wd, i.e., a reciprocal player considers C a kind action and D an unkind action.4 This example
shows that the result of Proposition 3 might also extend to the case where players consider the Nash
prices as kind in the punishment phase and wc ≥ wd.

5. Example

In this section we present an example that illustrates our results. Two identical firms operate in the
market, selling possibly differentiated final products. Each firm faces the following inverse demand
function (see [15]):

pi = 1− qi − γqj, i 6= j (9)

4Condition (8) can also be satisfied with wd > wc > 0 as long as wd is not too large relative to wc. We don’t consider
this case to be relevant since it is reasonable to assume a reciprocal player considers C to kinder than D, i.e., wc > wd.
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in which γ ∈ (0, 1) measures the degree of substitutability. By inverting (9), the direct demand function
obtains:

qi = Di(pi, pj) =
1

1 + γ
− pi

1− γ2
+

γpj
1− γ2

, i 6= j.

Marginal production cost is constant and normalized to zero. Hence, the static payoff of a self-interested
player is given by

πi(pi, pj) =
pi

1 + γ
− p2i

1− γ2
+

γpipj
1− γ2

, i 6= j. (10)

We see from (10) that prices are strategic complements in the game with self-interested players since
∂2πi/∂pi∂pj = γ/(1− γ2) > 0.

The static payoff of a reciprocal player is given by

ui(pi, pj, wi) =
pi + wi(pj)pj

1 + γ
−
p2i + wi(pj)p

2
j

1− γ2
+
γ(1 + wi(pj))pipj

1− γ2
, i 6= j, (11)

where wi(pj) represents the weight the player places on the monetary payoff of rival j. We assume that
wi(pj) is increasing and differentiable in pj . We see from (11) that prices are strategic complements in
the game with reciprocal players as long as

∂2ui
∂pi∂pj

=
∂2πi
∂pi∂pj

+ wi(pj)
∂2πj
∂pi∂pj

+
dwi
dpj

∂πj
∂pi

=
γ

1− γ2

[
1 + wi(pj) + pj

dwi
dpj

]
> 0. (12)

Since dwi/dpj > 0, a sufficient condition for (12) to be satisfied is wi(pj) > −1 which we assume
from now on. In addition we assume that wi(pj) < 1, i.e., a reciprocal player places less weight on the
monetary payoff of the rival than on his own.

The best-response function of a reciprocal player is

Rr
i (pj) =

1

2
[1− γ + γ (1 + wi(pj)) pj] , i 6= j. (13)

The Nash price of a reciprocal player is

pnri =
2− γ(1− wni )− γ2(1 + wni )

4− γ2(1 + wni + wnj + wni w
n
j )
.

Assuming symmetry, i.e., wn1 = wn2 = wn, the Nash price of a reciprocal player is

pnr =
1− γ

2− γ(1 + wn)
. (14)

We see from (14) that the Nash price of a reciprocal player is less than the symmetric collusive price of
1/2 given that wn < 1. The static payoff of a reciprocal player under Nash prices is

un =
(1− γ)(1− γwn)(1 + wn)

(1 + γ) (2− γ (1 + wn))2
. (15)

We see from (14) and (15) that if wn = 0, then pnr = pns = 1−γ
2−γ and un = πn = 1−γ

(1+γ)(2−γ)2 . If players
are reciprocal and consider the Nash price to be kind, i.e., wn ∈ (0, 1), then pnr > pns and un > πn.
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Finally, if players are reciprocal and consider the Nash price to be unkind, i.e., wn ∈ (−1, 0), then
pnr < pns and 0 < un < πn. These results illustrate Propositions 1 and 2.

Let us now consider how reciprocity affects collusion. The collusive prices are the solution to
maxp1,p2 π1(p1, p2) + π2(p2, p1). Solving this problem we obtain pc = 1

2
, πc = 1

4(1+γ)
. The collusive

payoff of a reciprocal player is

uc =
1 + wc

4(1 + γ)
. (16)

where wc ∈ [0, 1). A reciprocal player’s optimal price when he deviates from the collusive price and the
rival plays the collusive price is

pdr = Rr
i

(
1

2

)
=

1

2
− γ

4
(1− wc).

The unilateral deviation payoff of a reciprocal player is

ud =
(1− γ)(1 + wc) + 1

4
γ2(1− wc)2

4(1− γ2)
, (17)

and the unilateral deviation payoff of a self-interested player is πd =
1−γ+ 1

4
γ2

4(1−γ2) . Cooperation can be
sustained in the infinitely repeated game with reciprocal players as long as

δ

1− δ
(uc − un) ≥ ud − uc. (18)

Cooperation can be sustained in the infinitely repeated game with self-interested players as long as

δ

1− δ
(πc − πn) ≥ πd − πc. (19)

We know that uc − un > πc − πn since wc ∈ (0, 1) implies uc > πc and wn ∈ (−1, 0] implies un ≤ πn.
From (16) and (17) we have that

ud − uc =
(1− γ)(1 + wc) + 1

4
γ2(1− wc)2

4(1− γ2)
− 1 + wc

4(1 + γ)

=
γ2 [1− (2− wc)wc]

16(1 + γ)
<

γ2

16(1 + γ)
= πd − πc.

Since uc − un > πc − πn and ud − uc < πd − πc, condition (18) can be satisfied with a lower δ than
condition (19). Hence, we have shown that if wc ∈ (0, 1) and wn ∈ (−1, 0], then δr is less than δs, i.e., it
is easier to sustain collusion with reciprocal players than with self-interested ones. This result illustrates
Proposition 3.5

5 The results in this section would also hold for quantity competition with quantitites as strategic substitutes, the dual of
price competition with prices as strategic complements. Reciprocity facilitates collusion under quantity competition when
each player places a strictly positive weight on the monetary payoff of a rival who produces the collusive output and a
nonpositive weight on the monetary payoff of a rival who produces the Nash output. The intuition behind this result is similar
to that behind Proposition 3.
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6. Conclusion

This paper contributes to the literature on the effect of fairness and reciprocity on market outcomes.
Most of this literature has focused on the impact of fairness concerns by consumers on welfare. Here we
focus on the role fairness and reciprocity play for firms’ incentives to collude.

We depart from the standard model of firm behavior by assuming that firms are motivated in part by
personal animosity–or respect–towards a rival. Hence, firms might punish rivals who behave “unfairly”
towards them and reward rivals who behave “fairly.”

We find that collusion is easier to sustain when firms have a concern for reciprocity towards competing
firms provided that they consider collusive prices to be kind and punishment prices to be unkind.

Our results hold provided certain conditions are met. For example, we rule out fairness concerns on
the part of consumers. This assumption was made on methodological grounds, to better isolate the effect
of fairness and reciprocity among firms on collusive outcomes.

We also rule out that firms have fairness considerations with respect to consumers. Contrary to this
assumption, [16] reports that when subjects know that they are playing against human buyers (instead of
simulated demand), collusion rates decrease substantially. This might undermine the effects predicted
by the model.

We study the impact of fairness and reciprocity on collusion when players use Nash reversion to
punish deviations. [17] theory of optimal punishments can be an alternative framework of analysis.
However, neither the players’ incentives, nor the impact of fairness and reciprocity on these incentives
would change by employing optimal punishments. Therefore, the qualitative nature of our results would
remain unchanged.
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Appendix

Existence and Uniqueness: We assume the following second-order conditions of player i in Γs and Γr

are satisfied:

2
∂Di

∂pi
+ (pi − ci)

∂2Di

∂p2i
< 0, (20)

and

2
∂Di

∂pi
+ (pi − ci)

∂2Di

∂p2i
+
∑
j 6=i

wi(pj)(pj − cj)
∂2Dj

∂p2i
< 0. (21)

These two conditions guarantee existence of an equilibrium in Γs and Γr, respectively.6 The game Γs

has a unique equilibrium when the contraction condition ∂2πi
∂p2i

+
∑

j 6=i

∣∣∣ ∂2πi∂pi∂pj

∣∣∣ < 0 is satisfied (see Vives,
1999, pp. 150). With constant marginal costs, this condition is

∂Di

∂pi
+

n∑
j=1

∂Di

∂pj
+ (pi − ci)

[
∂2Di

∂p2i
+
∑
j 6=i

∣∣∣∣ ∂2Di

∂pi∂pj

∣∣∣∣
]
< 0. (22)

6 A sufficient condition for (20) to be satisfied is that Di is concave with respect to pi. A sufficient condition for (21)
to be satisfied is that

∑
j 6=i wi(pj)(pj − cj)

∂2Dj

∂p2
i
≤ 0. When

∑
j 6=i wi(pj)(pj − cj)

∂2Dj

∂p2
i

> 0, the condition is satisfied if∑
j 6=i wi(pj)(pj − cj)

∂2Dj

∂p2
i

<
∣∣∣2∂Di

∂pi
+ (pi − ci)

∂2Di

∂p2
i

∣∣∣ .



Games 2013, 4 63

Similarly, the game Γr has a unique equilibrium when the contraction condition ∂2ui
∂p2i

+
∑

j 6=i

∣∣∣ ∂2ui∂pi∂pj

∣∣∣ < 0

is satisfied, i.e.,

∂Di

∂pi
+

n∑
j=1

∂Di

∂pj
+ (pi − ci)

∂2Di

∂p2i
+
∑
j 6=i

wi(pj)(pj − cj)
∂2Dj

∂p2i

+
∑
j 6=i

∣∣∣∣∣(pi − ci) ∂2Di

∂pi∂pj
+
∑
j 6=i

wi(pj)

(
∂Dj

∂pi
+ (pj − cj)

∂2Dj

∂pi∂pj

)∣∣∣∣∣ < 0. (23)

We assume that (22) and (23) are both satisfied and so the equilibrium in Γs and Γr, respectively, is
unique.

Proof of Proposition 1: If pnr is a Nash equilibrium price profile in Γr, then pnri is defined by

Di(p
nr) + (pnri − ci)

∂Di

∂pi

∣∣∣∣
pnr

+
∑
j 6=i

wnij(p
nr
j − cj)

∂Dj

∂pi

∣∣∣∣
pnr

= 0. (24)

(i) Suppose, by contradiction, that pnri = pnsi for all i. In this case the sum of the first two terms in the
left-hand side of (24) is zero by (2). Additionally, the third term on the left-hand side of (24) is positive
since wnij > 0 for all i and j 6= i, pnrj > cj for all j, and ∂Dj/∂pi > 0, for all j 6= i. Hence, the left-hand
side of (24) is positive, a contradiction to pnri = pnsi being a Nash equilibrium price of player i in Γr.
Now, suppose, by contradiction, that pnri < pnsi for all i. In this case the sum of the first two terms in
the left-hand side of (24) is positive by (2) and (20). Additionally, the third term on the left-hand side
of (24) is positive since wnij > 0 for all i and j 6= i, pnrj > cj for all j, and ∂Dj/∂pi > 0, for all j 6= i.
Hence, the left-hand side of (24) is positive, a contradiction to pnri < pnsi being a Nash equilibrium price
of player i in Γr. Thus, it must be that pnri > pnsi for all i.
(ii) Suppose, by contradiction, that pnri = pnsi for all i. In this case the sum of the first two terms in the
left-hand side of (24) is zero by (2). Additionally, the third term on the left-hand side of (24) is negative
since wnij < 0 for all i and j 6= i, pnrj > cj for all j, and ∂Dj/∂pi > 0, for all j 6= i. Hence, the left-hand
side of (24) is negative, a contradiction to pnri = pnsi being a Nash equilibrium price of player i in Γr.
Now, suppose, by contradiction, that pnri > pnsi for all i. In this case the sum of the first two terms in
the left-hand side of (24) is negative by (2) and (20). Additionally, the third term on the left-hand side
of (24) is negative since wnij < 0 for all i and j 6= i, pnrj > cj for all j, and ∂Dj/∂pi > 0, for all j 6= i.
Hence, the left-hand side of (24) is negative, a contradiction to pnri > pnsi being a Nash equilibrium price
of player i in Γr. Thus, it must be that pnri < pnsi for all i. Q.E.D.

Proof of Proposition 2: Since Γs is symmetric the Nash equilibrium price profile, pns, is symmetric,
i.e., pns1 = ... = pnsN = a. Hence, the Nash equilibrium payoff of player i in Γs is

πi(a) = (a− c)G(a), (25)

where G(a) = D(a; a, ..., a) is the demand for simultaneous price movements. Similarly, since Γr is
symmetric the Nash equilibrium price profile, pnr, is symmetric, i.e., pnr1 = ... = pnrN = b. Hence, the
Nash equilibrium payoff of player i in Γr is

ui(b, w
n) = (b− c)G(b) + wn(N − 1)(b− c)G(b), (26)
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where G(b) = D(b; b, ..., b).
(i) We know from Proposition 1 part (i) that if wn > 0, then b > a. Note that if wn = 1, then
ui(b, w

n) = N(b − c)G(b) and the b that maximizes this expression is the symmetric collusive price
pc. Hence, if wn ∈ (0, 1), then b ∈ (a, pc). Concavity of πi(x) in x and b ∈ (a, pc) imply that (b −
c)G(b) > (a − c)G(a). Hence, it follows from (25), (26) and wn ∈ (0, 1) that ui(b, wn) > πi(a), i.e.,
ui(p

nr, wn) > πi(p
ns) for all i.

(ii) Note that if wn ≤ −1/(N − 1) then ui(b, w
n) ≤ 0 and firms would prefer to not to produce.

Therefore, for firms to choose to produce and attain strictly positive payoffs under negative reciprocity
it must be that wn > −1/(N − 1). We know from Proposition 1 part (ii) that if wn < 0, then b < a.
Concavity of πi(x) in x and b < a imply that (b − c)G(b) < (a − c)G(a). Hence, it follows from (25),
(26) and wn ∈ (− 1

N−1 , 0) that 0 < ui(b, w
n) < πi(a), i.e., 0 < ui(p

nr, wn) < πi(p
ns) for all i. Q.E.D.

Proof of Proposition 3: By [18] we know that there is a pc > pns which is a subgame-perfect Nash
equilibrium of Γs∞ and of Γr∞. We want to show that the critical discount factor at which pc can be
sustained using grim trigger punishments in Γr∞ is less than the critical discount factor at which pc

can be sustained using grim trigger punishments in Γs∞, that is, δr < δs. From (4) and (5) sufficient
conditions for δr < δs are

ui(p
c, wc)− ui(pnr, wn) ≥ πi(p

c)− πi(pns), (27)

and
ui(R

r
i (p

c
−i), p

c
−i, w

c)− ui(pc, wc) ≤ πi(R
s
i (p

c
−i), p

c
−i)− πi(pc), (28)

where at least one inequality must hold strictly.
We start by showing that if wc > 0 ≥ wn, then (27) is satisfied. The assumption wc > 0 implies

ui(p
c, wc) = πi(p

c) + wc
∑
j 6=i

πj(p
c) > πi(p

c).

From Proposition 2 we have that wn ≤ 0 implies

0 < ui(p
nr, wn) ≤ πi(p

ns).

Therefore (27) is satisfied as a strict inequality:

ui(p
c, wc)− ui(pnr, wn) > πi(p

c)− πi(pns).

We now show that if wc > 0, then (28) is satisfied. We have that

ui(R
r
i (p

c
−i), p

c
−i, w

c)− ui(pc, wc) = πi(R
r
i (p

c
−i), p

c
−i) + wc

∑
j 6=i

πj(R
r
i (p

c
−i), p

c
−i)

− πi(pc)− wc
∑
j 6=i

πj(p
c) (29)

= πi(R
r
i (p

c
−i), p

c
−i)− πi(pc)

+ wc
∑
j 6=i

(pcj − c)[Dj(R
r
i (p

c
−i), p

c
−i)−Dj(p

c)]

< πi(R
r
i (p

c
−i), p

c
−i)− πi(pc)

< πi(R
s
i (p

c
−i), p

c
−i)− πi(pc)
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The first equality is obtained from (1). The second equality follows from the assumption πi(pi, p−i) =

(pi − c)Di(pi, p−i). The first inequality comes from the assumption that wc > 0 and the assumption that
Dj is increasing with pi which together with Rr

i (p
c
−i) < pci imply Dj(R

r
i (p

c
−i), p

c
−i) −Dj(p

c) < 0. The
second inequality comes from the fact that Rs

i (p
c
−i) is the best-reply to pc−i by a self-interested player.

Hence, (27) and (28) hold strictly when wc > 0 ≥ wn and so δr < δs. Q.E.D.
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