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Abstract: In certain critical infrastructures, correlations between cyber and physical components can
be exploited to launch strategic attacks, so that disruptions to one component may affect others and
possibly the entire infrastructure. Such correlations must be explicitly taken into account in ensuring
the survival of the infrastructure. For large discrete infrastructures characterized by the number of
cyber and physical components, we characterize the cyber–physical interactions at two levels: (i) the
cyber–physical failure correlation function specifies the conditional survival probability of the cyber
sub-infrastructure given that of the physical sub-infrastructure (both specified by their marginal
probabilities), and (ii) individual survival probabilities of both sub-infrastructures are characterized
by first-order differential conditions expressed in terms of their multiplier functions. We formulate
an abstract problem of ensuring the survival probability of a cyber–physical infrastructure with
discrete components as a game between the provider and attacker, whose utility functions are
composed of infrastructure survival probability terms and cost terms, both expressed in terms of
the number of components attacked and reinforced. We derive Nash equilibrium conditions and
sensitivity functions that highlight the dependence of infrastructure survival probability on cost terms,
correlation functions, multiplier functions, and sub-infrastructure survival probabilities. We apply
these analytical results to characterize the defense postures of simplified models of metro systems,
cloud computing infrastructures, and smart power grids.

Keywords: networked systems; cyber–physical infrastructures; aggregated correlations functions;
sum-form, product-form, and composite utility functions

1. Introduction

The operation of critical infrastructures such as metro systems, smart power grids,
high-performance computing complexes, and cloud computing infrastructures requires the continued
functioning of cyber components such as signals, servers, supervisory control and data acquisition
(SCADA) systems, routers, and switches, and also physical components such as tracks, power lines,
fiber lines, cooling systems, and power systems. Components of both types must be operational
as individual units, and must also be available (i.e., accessible to other infrastructure components).
The individual components are subject to direct attacks in that cyber attacks will disable individual
cyber components and physical attacks will disable individual physical components, when the
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components have not been reinforced. Furthermore, critical correlations or inter-dependencies exist
between cyber and physical components, which may be exploited to launch strategic component attacks
that propagate the disruptions to several others. To counter such attacks, infrastructure providers have
to explicitly account for the underlying cyber–physical correlations and adopt strategies that ensure
the continued operation of both cyber and physical sub-infrastructures.

In this paper, we consider a discrete component model of infrastructures with a large number of
cyber and physical components, such as a metro system with hundreds of signals and sensors, a cloud
computing infrastructure with thousands of servers, or a power grid with hundreds to thousands
of sensors. The notations for various quantities are provided in Table 1. The attacker launches yC
cyber or yP physical component attacks but not both, and the provider reinforces xC cyber and xP
physical components. The cyber–physical interactions may render the otherwise operational components
unavailable, whether they are reinforced or not. For example, a physical attack on a fiber connection
to a server site of a cloud computing infrastructure shown in Figure 1 may disconnect all servers
(thousands in some cases) from the network, even if they are all fortified against cyber attacks.

Figure 1. Cloud computing infrastructure.

In addition to component-level characterizations, the cyber and physical sub-infrastructures
can be separately identified in several cases. Indeed, they may be operated by different domain
experts. For example, in a power grid, SCADA systems are maintained by operations staff, and
the power routes are maintained by power engineering staff. We consider the cyber and physical
sub-infrastructures consisting entirely of cyber and physical components, respectively. Disruptions
to either could disrupt the entire infrastructure. Let PCP denote the survival probability of the
infrastructure, and PC and PP denote the marginal survival probabilities of cyber and physical
sub-infrastructures, respectively. The cyber–physical failure correlation function f (PC, PP) is the failure
probability of cyber sub-infrastructure given the other’s failure, and is estimated using the structural
properties of the infrastructure. Furthermore, we consider that PC and PP satisfy first-order differential
conditions based on the multiplier functions [1] of cyber and physical sub-infrastructures, denoted by
ΛC and ΛP, respectively, which are derived based on their component-level considerations. Together,
these two characterizations [2,3] generalize the linearity and statistical independence conditions used
in previous works [4,5] for this class of infrastructures with discrete cyber and physical components.
The multiplier functions depend on xC, xP, yC, and yP, and also on additional infrastructure parameters
(e.g., the number of power lines controlled by a SCADA system), and they provide an insightful
abstraction. They appear in the estimates of survival probabilities of sub-infrastructures at Nash
equilibrium (NE) and provide insights into the defense posture of the infrastructure.
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Table 1. Notation.

Symbol Explanation

xC, xP number of cyber and physical components reinforced, respectively

yC, yP number of cyber and physical components attacked, respectively

PCP (xC, xP, yC, yP) survival probability of the infrastructure

PC, PP marginal survival probabilities of cyber and physical sub-infrastructures,
respectively

f (PC, PP) failure correlation function (i.e., the failure probability of cyber
sub-infrastructure given the other’s failure)

ΛC(xC, xP, yC, yP), ΛP(xC, xP, yC, yP) multiplier functions of cyber and physical sub-infrastructures

UD (xC, xP, yC, yP), UA (xC, xP, yC, yP) provider’s and attacker’s composite utility function, respectively

FD,G(xC, xP, yC, yP), FD,L(xC, xP, yC, yP) provider’s reward and cost multiplier functions, respectively

FA,G(xC, xP, yC, yP), FA,L(xC, xP, yC, yP) attacker’s reward and cost multiplier functions, respectively

gD (xC, xP, yC, yP) reward for rendering the infrastructure operational in the provider’s
sum-form utility function

LD(xC, xP), LA(yC, yP) provider’s and attacker’s total cost of cyber and physical attacks,
respectively

GD(xC, xP, yC, yP), GA(xC, xP, yC, yP) provider’s and attacker’s reward, respectively

aC, bC coefficients in the linear correlation function

pC|R, pC|N conditional survival probability of a cyber component with and without
reinforcement, respectively

pP|R, pP|N conditional survival probability of a physical component with and
without reinforcement, respectively

pi
C|R, pj

P|R survival probabilities of reinforced cyber component of type i and
reinforced physical component of type j, respectively

pi
C|N , pj

P|N survival probabilities of cyber component of type i and physical
component of type j without reinforcement, respectively

Ni
C, N j

P number of type i cyber components and type j physical components,
respectively

ξ coefficient of inherent robustness of cyber component

α coefficient representing a partial effect of cyber–physical correlation

NL number of trains running on a line, or the number of sensors connected
using a communication node

NS number of servers connected through a fiber

fP normalization factor in the survival probability of metro system and
smart power grid infrastructure

fC normalization factor in the survival probability of cloud computing
infrastructure

LD
G,L(xC, xP, yC, yP) composite gain–cost term

FD,B
G,L (xC, xP, yC, yP) provider’s gain–cost gradient with respect to xB, where B = C, P, for

cyber and physical components, respectively

ΘC (·), ΘP (·) cyber and physical scaled gain–cost gradients, respectively

xT
C, xS

C number of reinforced control centers and signals in metro system,
respectively

xS
C, xR

C number of reinforced servers and routers in cloud computing
infrastructure, respectively

xS
C, xM

C number of reinforced communication nodes and smart meters in smart
power grid infrastructure, respectively

PS
A, PM

A probabilities of an attack on a communication node and smart meter in
smart power grid infrastructure, respectively
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We formulate a game between the provider and attacker with the following considerations:

(a) knowledge about the infrastructure is available to the attacker which is sufficient to launch
component attacks;

(b) costs of attacks and reinforcements of components, denoted by LA(yC, yP) and LD(xC, xP),
respectively, are not available to the other player;

(c) components chosen by the provider to reinforce, and by the attacker to attack, are not revealed; and
(d) incidents and results of attacks on components are known to the provider and attacker.

The information in items (a) and (d) is available to both the provider and attacker, and that in
item (b) is private. The provider and attacker minimize their respective utility functions, which are
based on both types of information.

The composite utility function [1] to be minimized by the provider is the sum of two terms,
representing the reward for keeping the infrastructure operational and the corresponding cost,
respectively. It is given by

UD (xC, xP, yC, yP) = FD,G(xC, xP, yC, yP)GD(xC, xP, yC, yP) + FD,L(xC, xP, yC, yP)LD(xC, xP),

where FD,G and FD,L are the reward and cost multiplier functions, respectively, of the provider,
GD represents the reward of keeping the infrastructure operational, and LD is the total cost of
reinforcing cyber and physical components. The composite utility function to be minimized by
the attacker is given by

UA (xC, xP, yC, yP) = FA,G(xC, xP, yC, yP)GA(xC, xP, yC, yP) + FA,L(xC, xP, yC, yP)LA(yC, yP),

where FA,G and FA,L are the reward and cost multiplier functions, respectively, GA is the reward for
rendering the infrastructure non-operational, and LA is the total cost of cyber or physical attacks.
These utility functions can be specialized to capture different provider and attacker considerations
as shown in Table 2, in particular by expressing them in terms of the survival probability of the
infrastructure PCP(xC, xP, yC, yP). The sum-form utility [2] for the cyber–physical infrastructure
provider is given by

UD+ (xC, xP, yC, yP) = [1− PCP(xC, xP, yC, yP)] gD + LD(xC, xP),

where PCP(xC, xP, yC, yP)gD is the expected reward in return for the reinforcement cost LD(xC, xP) of
cyber and physical components. In certain infrastructures, players focus on the cost term only, and the
reward of operating the infrastructure is not explicit. In such cases, the product-form utility [3] of the
provider is given by

UD× (xC, xP, yC, yP) = [1− PCP(xC, xP, yC, yP)] LD(xC, xP),

which represents the expected cost under infrastructure failure and thus represents the “wasted” effort.

Table 2. Gain and cost terms for sum-form and product-form utilities of the provider.

FD,G GD FD,L

sum-form: UD+ [1− PCP] gD 1
product-form: UD× 0 0 [1− PCP]

The NE of this game represents the state of the infrastructure under the reinforcement and attack
actions of the provider and attacker that attempt to minimize their respective utility functions based
on their individual information (from which neither has a motivation to unilaterally deviate [6]).
The choices of provider and attacker, given by (xC, xP) and (yC, yP), respectively, can be obtained
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using various available methods [6,7], which typically involves exploiting the scenario-specific
details. Indeed, because of the large-scale and complexity feature of cyber–physical infrastructures,
most game models obtain Nash equilibrium using numerical methods. Our objective in this paper
is to show that critical insights about the infrastructure survival can be gained by deriving estimates
of survival probabilities in terms of various correlations and multiplier functions, without requiring
explicit solutions for (xC, xP) and (yC, yP). To this end, we derive NE conditions that highlight the
dependence of PCP on the cost terms, correlation function, multiplier functions, and cyber and physical
sub-infrastructure survival probabilities, as well as their partial derivatives. Indeed, the effects of
infrastructure parameters will be reflected in estimates of PCP via the multiplier functions, while the
correlation effects are “separated” from them. In particular, the impacts of the two players’ strategies
are captured using the composite gain–cost terms and gain–cost gradients that depend on gain and cost
terms and their derivatives with respect to xC and xP (yC and yP), respectively, which are specialized
versions of those proposed for systems of systems [1]. The NE conditions reveal a direct dependence
of PCP on the parameters of cyber and physical components and sub-infrastructures, as well as a close
coupling between them through the correlation function. We also estimate the sensitivity functions of
PCP using the partial derivatives of parameters LA(·), LD(·), PC, PP, and f (PC, PP) that indicate their
relative importance in the defense posture of the infrastructure.

The contributions of this paper are as follows. We unify the analysis of previously separate
sum-form [2] and product-form [3] formulations, and provide a deeper treatment of NE, including
second-order conditions which are not considered in prior work. Although a special case of a
system of systems [1], our formulation provides a more focussed treatment of cyber and physical
sub-infrastructures. Our results provide insights into the defense postures of (simplified models) three
infrastructures, including metro systems and smart power grids (new here), and cloud computing
infrastructures from [8]. We first consider cases where both cyber and physical components are
uniform (Section 3.2), namely, signals and trains of metro systems, servers and fiber connections for
cloud infrastructures, and SCADA system and power lines for smart power grids. Then, we consider
different types of cyber components (Section 5), namely signals and the centralized traffic controls for
a metro system, servers and routers for the cloud infrastructure, and SCADA system components and
smart meters for the smart power grid. We explicitly derive NE conditions and sensitivity functions
for these scenarios.

The organization of this paper is as follows. We compare our formulation with other related work
in Section 2. In Section 3, we present a discrete component model for cyber–physical infrastructures,
and discuss the failure correlation function and the differential conditions on sub-infrastructure
survival probabilities. We present the game theoretic formulation in Section 4, and derive NE conditions
and sensitivity estimates. We also describe two special cases, OR systems in Section 4.2 and statistically
independent sub-infrastructures in Section 4.3, wherein the cyber–physical correlation effects are
somewhat simplified. We discuss NE conditions for applications of metro systems, cloud computing
infrastructures, and smart power grids in Section 5. We conclude in Section 6.

2. Related Work

Critical infrastructures are vital to national security [9], and there are numerous published
reports, books, and studies on identifying [10] and securing [11–14] critical infrastructures. A detailed
scientific analysis of critical infrastructures is provided in [15]. The author draws insights that critical
infrastructures are complex systems, and their architecture is the most crucial factor in deciding
their reliability and resilience. Securing cyber–physical networks has been studied extensively from
various perspectives [16–20]. A risk assessment approach is used in [21] to identify and address
the vulnerabilities of a cyber–physical system, without explicitly using the interactions between the
attacker and the provider. Consequently, the quantification of risk and correlations is somewhat
limited. Although cyber–physical networks form an integral part of many critical infrastructures
such as energy, information technology, and transportation systems, these works primarily cater to
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applications on power systems and smart power grids. To our best knowledge, there has not been any
study that rigorously models the correlations between cyber and physical components in a general
system. Our objective is to develop such a general formulation and illustrate its generality by using
models of various applications, such as metro systems, cloud computing infrastructures, and smart
power grids.

Game-theoretic methods have been extensively applied to capture the interactions between
providers and attackers of critical infrastructures [22] to develop strategies to ensure their continued
operation in the presence of evolving threats. Such interactions are being increasingly analyzed
ever since the 9/11 attacks [23], after which there has been an increased emphasis on protecting
critical infrastructures. Most of these studies use sequential models with the provider as the first
mover and the attacker as the second. This is useful in enabling analysts to draft preemptive
recommendations [24]. Game theory has been used widely in the field of cyber–physical network
security [25–27]. An overview of the game-theoretic models in network security is provided in [28].
However, these works do not consider the physical components that are critical to the functioning of
cyber networks.

Several infrastructures to support power distribution, transportation, and agriculture have
been analyzed using game-theoretic approaches. They typically employ complex dynamic
models of the underlying physical systems [11]—in particular, using partial differential equations.
Both game-theoretic formulations and their solutions are quite extensive for such infrastructures,
including: multiple-period games [29] that address multiple time-scales of system dynamics;
incomplete information games [30–32] that account for partial knowledge about the system dynamics
and attack models; and multiple-target games [33,34] that account for possibly competing objectives.
A comprehensive review of the defense and attack models in various game-theoretic formulations has
been presented in [35].

Game-theoretic methods have been developed specifically to address the system reliability and
robustness for several applications [22], which are particularly applicable to critical infrastructures.
Recently, there have been increasing levels of integration of cyber components, including computing
and networking devices, into several critical infrastructures. This contributes to faster information
transmission and processing, but also lead to unprecedented security vulnerabilities due to the
underlying cyber–physical correlations [36]. While many existing formulations utilize detailed
dynamic infrastructure models, the cyber–physical correlations have only recently been explicitly
addressed, and in a limited way [36]. Because of the large scale and complexity of cyber–physical
systems, most game models obtain Nash equilibrium using numerical methods. The current paper
analytically presents players’ best responses and provides insights for defense strategy at NE.

Due to the wide spectrum of the game-theoretic methods used for critical infrastructures,
we now briefly consider the ones that are directly related to our discrete cyber–physical component
models. These are much simpler than others used in infrastructures such as power distribution,
transportation, and agriculture [11]. For example, partial differential equations that model traffic
dynamics. In terms of overall goals, they belong to formulations that integrate system reliability and
robustness parameters [22], which are applied for example to smart power grids [37], cloud computing
infrastructures [38], and power systems [39]. Within this class, Stackelberg games are an important
subclass, wherein the provider chooses actions based on instantaneous information. They lead to more
reactive and sensitive responses to dynamic disruptions compared to long-term strategies used in
Markov game models [37,40].

Stackelberg formulations have been applied to discrete models of cyber–physical infrastructures
in various forms [36], and an important subset is formulated using the number of cyber and physical
components that are attacked or reinforced. These formulations capture infrastructures with a large
number of components, and are coarser than formulations that consider the attack and defense of
individual cyber and physical components [41]. The correlation function was proposed in [2] to capture
the dependencies between the survival probabilities of cyber and physical sub-infrastructures; this is
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a generalization of simple linear forms studied earlier in [4,5]. First-order differential conditions on
the sub-infrastructure survival probabilities are proposed in [2] as a generalization of the statistical
independence and contest survival functions [42], and the role of multiplier functions on these
conditions has been further expanded in [1].

We now place our formulation and results within the broader context above. The composite
utility functions described in the introduction generalize the sum-form [2] and product-form [3] utility
functions used for infrastructures with discrete components. The composite utility functions have
been applied to more general systems of systems (SOS) in [1,43], and here we customize them to
cyber–physical sub-infrastructures. The resultant NE conditions unify the previous results by using
composite gain–cost terms (Theorem 1), and also provide second-order NE derivative conditions
(Theorem 2), which together enable us to apply them to more detailed and newer (metro system)
infrastructure models. SOS have been studied under a similar formulation [43,44], and also under
additional conditions due to an asymmetric role played by the inter-connection network [1,45,46].
The current paper explicitly targets the cyber and physical sub-infrastructures, provides in-depth
results based on cyber–physical correlations, and also addresses the second-order NE conditions
that have not been addressed in earlier works on cyber–physical infrastructures [2,3]. To make
the presentation self-contained, we provide or re-state definitions of various terms needed for our
formulation (Section 3) from the references.

3. Discrete System Models

A cyber–physical infrastructure (CPI) consists of cyber and physical sub-infrastructures with NC
cyber components and NP physical components. Both components must be operational and available
as parts of the infrastructure, but they can be functionally disabled or operationally disconnected
from the infrastructure through attacks. In particular, cyber attacks may render physical components
unavailable even if they are functional. For example, cyber attacks on a power grid’s SCADA system
might disable power flows on the lines it controls. Physical component attacks may also render cyber
components unavailable, as in the case of fiber cuts in a cloud infrastructure described in the previous
section. We capture these cyber–physical interactions using the survival probabilities of cyber and
physical sub-infrastructures using: (i) the cyber–physical failure correlation function f (PC, PP) that
captures the correlations at the sub-infrastructure level (Section 3.1), and (ii) the differential conditions
on PC and PP using the multiplier functions that capture the component-level correlations (Section 3.2).

3.1. Cyber–Physical Structural Interactions

The failure probabilities of cyber and physical sub-infrastructures are PC̄ = 1 − PC and
PP̄ = 1− PP, respectively. The probability that a CPI is operational is given by

PCP = 1− (PC̄ + PP̄ − PC̄∩P̄) = PC + PP − 1 + PC̄∩P̄.

The joint failure probability PC̄∩P̄ is expressed in terms of the conditional failure probability as
PC̄∩P̄ = PC̄|P̄PP̄, which leads to the following definition.

Condition 1. Cyber–Physical Correlation Function: The survival probability a CPI is given by

PCP = PC + PP − 1 + f (PC, PP) (1− PP),

where f (PC, PP) = PC̄|P̄ is the cyber–physical failure correlation function of cyber and physical
sub-infrastructures.

The failure correlation function captures the dependence of cyber sub-infrastructure failure on
that of physical sub-infrastructure. For example, in a cloud computing infrastructure with NS servers
at each site, disabling the fiber would disconnect all servers at the site, which can be reflected by
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choosing f (PC, PP) = NS(1− PP). This shows that the physical failure rate is amplified by NS in
rendering the servers unavailable. The following are two illustrative forms of f (PC, PP).

(a) OR Systems: A special class called the OR systems are defined in [4,5] to illustrate cases where
cyber and physical parts can be independently analyzed. For these systems, the probability
of failure of cyber or physical sub-infrastructure is PC̄∪P̄ = PC̄ + PP̄ or equivalently PC̄∩P̄ = 0.
That is, the failure of the physical sub-infrastructure is guaranteed not to cause the failure of the
cyber sub-infrastructure. Thus, we have PCP = PC + PP − 1 and f (PC, PP) = 0. These systems
are of mostly academic interest.

(b) Linear Forms: The linear form

f (PC, PP) = aC(1− PC) + bC

expresses the correlation in terms of multiplicative and additive coefficients, denoted by aC and bC,
respectively, and is used in [5] (in [4] only aC is used). Here, aC represents a proportional change
in PC̄ due to the physical sub-infrastructure failure, whereas bC represents an independent factor.
There are two special cases under this form:

(i) Statistical Independence: We have f (PC, PP) = 1− PC. That is, aC = 1 and bC = 0, so that
PC̄∩P̄ = PC̄PP̄ or equivalently PCP = PCPP, and

(ii) Failure Certainty: When physical failures lead to cyber failures with certainty, we have
f (PC, PP) = 1. That is, aC = 0 and bC = 1, such that PCP = PC (i.e., infrastructure survival
probability solely depends on cyber sub-infrastructure).

More generally, if aC > 1 and bC ≥ 0, or aC ≥ 1 and bC > 0, the cyber failures are positively
correlated to physical failures. That is, they occur with higher probability following physical
failures (i.e., PC̄|P̄ > PC̄). If aC < 1 and bC ≤ 0, or aC ≤ 1 and bC < 0, i.e., f (PC, PP) < 1− PC,
cyber failures are negatively correlated to physical failures (i.e., PC̄|P̄ < PC̄).

We now consider that the effects of reinforcements and attacks can be separated at the
sub-infrastructure level such that ∂PP

∂zC
= 0 and ∂PC

∂zP
= 0, where z = x, y. Intuitively, these conditions

indicate that only direct impacts are dominant at the level of sub-infrastructures. For example,
cyber reinforcements contribute to improving the cyber sub-infrastructure but not directly to
physical sub-infrastructure. We capture the sub-infrastructure correlations for the provider using the
following conditions.

Condition 2. De-Coupled Reinforcement Effects: The partial derivatives of PCP in Condition 1 satisfy
the following conditions

∂PCP
∂xC

=

[
1 + (1− PP)

∂ f
∂PC

]
∂PC
∂xC

and
∂PCP
∂xP

=

[
1− f (PC, PP) + (1− PP)

∂ f
∂PP

]
∂PP
∂xP

for the provider.

3.2. Sub-Infrastructure Survival Probabilities

We consider that the sub-infrastructure survival probabilities satisfy the following
differential conditions.

Condition 3. Cyber and Physical Multiplier Functions: The derivatives of survival probabilities of cyber
and physical sub-infrastructures can be expressed as

∂PC
∂xC

= ΛC(xC, xP, yC, yP)PC and
∂PP
∂xP

= ΛP(xC, xP, yC, yP)PP

in terms of the cyber and physical multiplier functions ΛC and ΛP, respectively.
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These multiplier functions capture the underlying details of cyber and physical sub-infrastructures
(specialized systems of [1]) after factoring out the corresponding survival probabilities. They depend
on the the parameters of cyber and physical sub-infrastructures, in addition to game variables xC, xP,
yC, and yP. For example, for the cloud computing infrastructure described in Example 1, ΛC depends
on the number of servers NS at each site, and for the metro system in Example 2, ΛP depends on the
number of lines NL controlled by a signal. These somewhat abstract functions enable us to encapsulate
some of the sub-infrastructure details so that the multiplier functions appear explicitly in various
estimates at NE (including the survival probability estimates in Theorem 1), and provide valuable
insights into the underlying dependencies. These multiplier functions can take simple forms in the
following two important cases, which have been studied extensively in the literature.

(a) Statistically Independent Components: Let pC|R and pC|N denote the conditional survival probability
of a cyber component with and without reinforcement, respectively. Under the assumption of
statistical independence of component failures, the probabilities that the cyber and physical parts
survive the attacks are given by [4]

PC = pxC
C|R pNC−xC

C|N and PP = pxP
P|R pNP−xP

P|N ,

respectively. In this case, we have ∂PC
∂xC

= PC ln
( pC|R

pC|N

)
.

(b) Contest Survival Functions: The contest survival functions are used to characterize PC and PP
in [42] such that PC = ξ+xC

ξ+xC+yC
, for which we have

∂PC
∂xC

= PC

[
yC

(ξ + xC + yC)(ξ + xC)

]
.

We now describe three simplified illustrative cyber–physical infrastructure models for which
we derive estimates for the multiplier functions ΛB(·), where B = C, P under uniform selection of
components to reinforce and attack. We will expand further on these examples in Section 5 by taking
additional details into account.

Example 1. Cloud Computing Infrastructure: A cloud computing infrastructure (Figure 1) consisting
of multiple sites can be simply modeled with NS servers at each site. Cyber attacks may bring down the
individual servers, and the communication fiber routes to the sites may be physically cut. Reinforcements to
these components may be in the form of replicated stand-by servers, and redundant physically-separated fiber
routes. Since a physical fiber cut disconnects all servers at the site from the network, a first-order model is
f (PC, PP) = NS(1− PP), which indicates the multiplicative effect of physical attacks. There are [yP − xP]+
non-reinforced fiber connections that are vulnerable to physical attacks, where [·]+ represent the non-negative
part. That is, [z]+ = z for z > 0, and [z]+ = 0 otherwise. Under a uniform distribution of attacks and
reinforcements, the probability that a cyber-reinforced server survives yP fiber attacks is estimated by

pC|R =
fC

1 + NS[yP − xP]+
,

where 0 ≤ fC ≤ 1 is an appropriately chosen normalization factor. This estimate decreases with higher values
of [yP − xP]+. If a server is not reinforced, it will be brought down by a direct cyber attack, or disconnected
through a fiber attack. Thus, the survival probability of such a non-reinforced server is

pC|N =
fC

1 + yC + NS[yP − xP]+
,
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which reflects a decrease due to yC compared to a reinforced server. For example, in an infrastructure with 10,000
servers at each site with a non-reinforced fiber, a single fiber attack has an effect similar to 10,000 individual
server cyber attacks. Using these formulae, we have

ΛC(xP, yC, yP) = ln
(

1 +
yC

1 + NS[yP − xP]+

)
for the cyber sub-infrastructure, which interestingly does not depend on cyber xC but depends on physical xP.

Example 2. Metro System: A metro system (Figure 2) consists of many components, including trains, tracks,
perway, telecommunication systems, and electrical systems. The system operates normally when trains are
running smoothly, being controlled by the signals located along the lines. A simplified model of a metro system
may be based on abstracting its signaling system. The model consists of NS signals along the tracks and the
actuators on NT trains, which are centrally controlled. The communication between the signals and the control
center may be interrupted through cyber means, while the actuators on trains may be damaged physically.
Reinforcements to these components may be in the form of redundant communication routes for the signals and
better physical protection of the actuators on trains. Since a cyber attack on a signal along the tracks partially
disrupts the smooth running of all the trains running the line through that signal, a first-order model is given by
PP̄|C̄ = αNL(1− PC), which captures the multiplicative effect of cyber attacks, where 0 < α < 1 is properly
chosen to represent a partial effect and NL indicates the number of trains running on a line.

Then, by using the Bayes formula PC̄|P̄ = PP̄|C̄PC̄/PP̄, we have f (PC, PP) =
αNL(1−PC)

2

(1−PP)
. Typically, NL is

on the order of tens, whereas NS in the previous example could be in the thousands.
We now consider that the attacker and provider choose components to attack and reinforce, respectively,

according to uniform distribution. Then, there are [yC − xC]+ non-reinforced signals. The probability that a
reinforced actuator survives the cyber attacks is estimated by

pP|R =
fP

1 + αNL[yC − xC]+
,

where 0 ≤ fP ≤ 1 is a normalization factor. This estimate reflects that cyber attacks are more likely to disrupt
the actuator functioning for higher values of [yC − xC]+, and the physical attacks have no effect on a reinforced
actuator. If the actuator is not reinforced, it will be brought down by a direct physical attack, or indirectly
through a cyber attack. Thus, we estimate its survival probability as

pP|N =
fP

1 + yP + αNL[yC − xC]+
,

which is inversely proportional to the number of physical attacks yP. Using these formulae, we have

ΛP(xC, yC, yP) = ln
(

1 +
yP

1 + αNL[yC − xC]+

)
for the physical sub-infrastructure, which interestingly does not depend on physical xP but captures the
dependence on cyber xC. Note that the roles of cyber and physical components are switched in this example
compared to the cloud computing infrastructure.
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Figure 2. Metro system.

Example 3. Smart Power Grid Infrastructure: A power grid infrastructure (Figure 3) is controlled by a
SCADA system using information collected by a network of sensors that monitor transmission and distribution
lines. The sensors are placed at strategic locations for effective flow control, and they have good connectivity to
the SCADA system via communication nodes. We assume that each communication node relays information
from sensors of NL lines to the SCADA system, and it may be disabled by a direct cyber attack, which will
disrupt the information flow from all NL lines. Typically, NL is of the order of tens. When the monitoring
information of a line is lost, the SCADA system may assume the line to be down for safety reasons, and hence
disrupting a node will also disrupt the power flow on all NL lines. By using reasoning analogous to the previous
two examples, we have PP̄|C̄ = NL(1− PC). Then, by using the Bayes formula PC̄|P̄ = PP̄|C̄PC̄/PP̄, we have

f (PC, PP) =
NL(1−PC)

2

(1−PP)
. We then estimate the survival probability of a reinforced line, which can be disconnected

by [yC − xC]+ cyber attacks, as

pP|R =
fP

1 + NL[yC − xC]+
,

where 0 ≤ fP ≤ 1 is appropriately chosen under uniform attack and reinforcement distributions. Meanwhile,
a power line can be directly disrupted by physical means if it is not reinforced, and it is more likely to be
unavailable if there are more physical attacks (i.e., higher yP). Thus, an attack on a communication node will
have an amplified effect on power lines compared to direct physical attacks, such that

pP|N =
fP

1 + yP + NL[yC − xC]+
,

which provides an estimate of the probability of survival of a non-reinforced power line. Using the above formulae,
we have

ΛP(xC, yC, yP) = ln
(

1 +
yP

1 + NL[yC − xC]+

)
,

which does not depend on xP as in the case of the metro system.

Figure 3. Smart power grid infrastructure. SCADA: supervisory control and data acquisition.
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4. Game-Theoretic Formulation

The provider’s objective is to make the infrastructure resilient by reinforcing xC and xP cyber and
physical components, respectively, to minimize the utility function. For uniform component reinforcement
costs, we have LD (xC, xP) = cCDxC + cPDxP, where cCD and cPD are reinforcement costs of cyber
and physical components, respectively. The attacker’s objective is to disrupt the infrastructure by
attacking yC or yP cyber and physical components, respectively (but not both), in order to minimize
the utility function. For uniform component attack costs, we use LA (yC, yP) = cCAyC + cPAyP, where
cCA and cPA are the attack costs of cyber and physical components, respectively, and only one of yC
and yP is non-zero.

4.1. Nash Equilibrium Conditions

The Nash equilibrium conditions are derived by equating the corresponding derivatives of the
utility functions (as shown in Section 1) to zero, which yields

∂UD
∂xB

=

(
GD

∂FD,G

∂PCP
+ LD

∂FD,L

∂PCP

)
∂PCP
∂xB

+ FD,G
∂GD
∂xB

+ FD,L
∂LD
∂xB

= 0,

where B = C, P for the provider. We define LD
G,L = GD

∂FD,G
∂PCP

+ LD
∂FD,L
∂PCP

as the composite gain–cost term,

and FD,B
G,L = FD,G

∂GD
∂xB

+ FD,L
∂LD
∂xB

as the gain–cost gradient with respect to xB, B = C, P. For the attacker,
we similarly obtain, for B = C, P,

∂UA
∂yB

=

(
GA

∂FA,G

∂PCP
+ LA

∂FA,L

∂PCP

)
∂PCP
∂yB

+ FA,G
∂GA
∂yB

+ FA,L
∂LA
∂yB

= 0.

4.2. OR Systems

The OR subsystems are a special case where the probability of simultaneous failures of cyber and
physical sub-infrastructures is negligible. [4]. Here, the infrastructure will fail if either of the cyber
or physical sub-infrastructures fail, such that PC̄∪P̄ = PC̄ + PP̄, or equivalently PCP = PC + PP − 1.
In these (theoretical) systems, the dependence of PCP on system parameters at NE is easier to derive
and interpret, since it is determined entirely by Condition 3 without involving f (PC, PP). We have a
much simpler form of Condition 2 given by ∂PCP

∂xC
= ∂PC

∂xC
and ∂PCP

∂xP
= ∂PP

∂xP
. At NE, we have

∂PC
∂xC

= −
FD,G

∂GD
∂xC

+ FD,L
∂LD
∂xC

GD
∂FD,G
∂PCP

+ LD
∂FD,L
∂PCP

= −
FD,C

G,L (xC, xP, yC, yP)

LD
G,L (xC, xP, yC, yP)

= −ΘC (xC, xP, yC, yP) ,

∂PP
∂xP

= −
FD,G

∂GD
∂xP

+ FD,L
∂LD
∂xP

GD
∂FD,G
∂PCP

+ LD
∂FD,L
∂PCP

= −
FD,P

G,L (xC, xP, yC, yP)

LD
G,L (xC, xP, yC, yP)

= −ΘP (xC, xP, yC, yP) ,

wherein ΘC (·) and ΘP (·) are called the cyber and physical scaled gain–cost gradients, respectively.
Using Condition 3, we obtain the following estimates for the survival probabilities of cyber and
physical sub-infrastructures:

P̃C;D (xC, xP, yC, yP) = −
ΘC (xC, xP, yC, yP)

ΛC(xC, xP, yC, yP)
and P̃P;D (xC, xP, yC, yP) = −

ΘP (xC, xP, yC, yP)

ΛP(xC, xP, yC, yP)
.

These estimates for cyber and physical sub-infrastructures depend mainly on the corresponding
scaled gain–cost gradients, and thus represent a “separation” of the cyber and physical parts at this
level. In this sense, OR systems constitute an important analytical case wherein the cyber–physical
correlations between the sub-infrastructures may be ignored. In addition, these estimates provide the
sensitivity information of the survival probabilities of cyber and physical sub-infrastructures, and they
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depend only on the derivatives of the corresponding probabilities. Although they do not involve the
failure correlation function f (PC, PP), the cyber–physical interactions are still captured by ΛC(·) and
ΛP(·) at the component level. Both survival probability estimates P̃C;D and P̃P;D are proportional to the
corresponding weighted cost and reward functions, and are inversely proportional to their weighted
derivatives. This seemingly counter-intuitive trend applies only to the set of Nash equilibria, and not
to the overall system behavior.

4.3. Statistical Independence of Cyber and Physical Sub-Infrastructures

We consider that the cyber sub-infrastructure failures are statistically independent such that
PCP = PCPP and f (PC, PP) = 1− PC. At NE, we have

PP
∂PC
∂xC

= −ΘC (xC, xP, yC, yP) and PC
∂PP
∂xP

= −ΘP (xC, xP, yC, yP) .

We now substitute expressions for ∂PC
∂xC

and ∂PP
∂xP

based on Condition 3, and obtain the system
of equations:

P̄C;D P̄P;D = −ΘC (xC, xP, yC, yP)

ΛC(xC, xP, yC, yP)
and P̄C;D P̄P;D = −ΘP (xC, xP, yC, yP)

ΛP(xC, xP, yC, yP)
.

Qualitatively, at NE, the survival probability estimates of cyber and physical sub-infrastructures
P̄C;D and P̄P;D have an inverse relationship, but their product is determined by ΛC(·) and ΛP(·) in
a manner similar to the individual probabilities P̃C;D and P̃P;D of OR systems. However, unlike OR
systems, statistical independence is not sufficient to decouple the estimates P̄C;D and P̄P;D so that they
depend solely on ΛC(·) and ΛP(·), respectively.

4.4. NE Sensitivity Functions

We now derive estimates for PC and PP at NE using the scaled gain–cost gradients and failure
correlation function to obtain qualitative information about their sensitivities to different parameters
from the provider’s perspective.

Theorem 1. Under Conditions 1, 2, and 3, an estimate of the survival probability of physical sub-infrastructure
at the Nash equilibrium for ∂ f

∂PP
6= 0 is

P̂P;D (xC, xP, yC, yP) =
1− f (PC, PP) +

∂ f
∂PP

2 ∂ f
∂PP

±

√√√√√1− f (PC, PP) +
∂ f

∂PP

2 ∂ f
∂PP

2

− ΘP(xC, xP, yC, yP)

ΛP(xC, xP, yC, yP)
∂ f

∂PP

,

and, for ∂ f
∂PP

= 0, is

P̂P;D (xC, xP, yC, yP) = −
ΘP(xC, xP, yC, yP)

ΛP(xC, xP, yC, yP) [1− f (PC, PP)]
.

An estimate of the survival probability of cyber sub-infrastructure is

P̂C;D (xC, xP, yC, yP) = −
ΘC(xC, xP, yC, yP)

ΛC(xC, xP, yC, yP)
[
1 + (1− P̂P;D)

∂ f
∂PC

] .
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Proof: At NE, we have ∂PCP
∂xC

= −ΘC(xC, xP, yC, yP) and ∂PCP
∂xP

= −ΘP(xC, xP, yC, yP). By using the
formulae in Condition 2, we have[

1 + (1− PP)
∂ f

∂PC

]
∂PC
∂xC

= −ΘC(xC, xP, yC, yP),

[
1− f (PC, PP) + (1− PP)

∂ f
∂PP

]
∂PP
∂xP

= −ΘP(xC, xP, yC, yP).

We now substitute expressions for ∂PC
∂xC

and ∂PP
∂xP

based on Condition 3, and obtain the system
of equations: [

1 + (1− PP)
∂ f

∂PC

]
PC = −ΘC(xC, xP, yC, yP)

ΛC(xC, xP, yC, yP)
,[

1− f (PC, PP) + (1− PP)
∂ f

∂PP

]
PP = −ΘP(xC, xP, yC, yP)

ΛP(xC, xP, yC, yP)
.

The expression for P̂P;D is obtained by solving for PP using the above quadratic equation, and the
expression for P̂C;D follows from the equation above it. �

Compared to OR Systems, there are significant cyber–physical interactions at the
sub-infrastructure level in both P̂P;D (xC, xP, yC, yP) and P̂C;D (xC, xP, yC, yP). In particular,
P̂P;D (xC, xP, yC, yP) depends on both f (·) and its partial derivatives with respect to PP, and the partial
derivatives of GD and LD with respect to xP and ΛP, as expected. Its dependence on PC is implicit
through the failure correlation function f (PC, PP). The qualitative behavior of P̂C;D (xC, xP, yC, yP) is
quite similar with respect to LD, but its dependence on PP is also through f . They are both affected
by ΛC(·) and ΛP(·), and each of them in turn depends on the number of both cyber and physical
component attacks and reinforcements. Thus, the estimates P̂P;D and P̂C;D reflect the correlations
between the sub-infrastructures explicitly through f , as well as those captured by the survival
probabilities of individual sub-infrastructures.

Theorem 1 utilizes PC̄|P̄ = f (PC, PP), which captures the failure effects of physical
sub-infrastructure on the cyber sub-infrastructure. Alternatively, we can utilize PP̄|C̄ = g(PC, PP),
which captures the failure effects of cyber sub-infrastructure on the physical sub-infrastructure. In this
case, we obtain a quadratic expression in PC. Then, we can estimate P̂C;D (xC, xP, yC, yP) in terms of
g(PC, PP) by solving the quadratic equation as in Theorem 1. Additionally, results expressed in terms
of f (PC, PP) and g(PC, PP) can be converted between each other using the following expression:

f (PC, PP) = PC̄P̄
/
(1− PP) = PP̄|C̄(1− PC)

/
(1− PP)

= g(PC, PP)(1− PC)
/
(1− PP).

The qualitative effects of f (·) and g(·) on the sensitivity function estimates is quite similar,
and their choice is determined by their functional forms and the accuracy with which they
can be estimated.

The estimates in Theorem 1 are based on the first-order derivatives of utility functions, and their
minimization leads to second-order derivative conditions, which in turn provides an upper bound on
PP as follows:

Theorem 2. Under Conditions 1, 2, and 3, an upper bound on the survival probability of physical
sub-infrastructure at the Nash equilibrium for ∂ f

∂PP
6= 0 is

PP ≤ 1 + [1− f (PC, PP)]

/
∂ f

∂PP
+

1
∂ f

∂xP

[(
LD

G,L
∂2PCP

∂x2
P

+
∂FD,P

G,L

∂xP

)/(
∂LD

G,L

∂xP

)]
.
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Proof: At NE, the first derivative of the utility function is given by

∂UD
∂xB

=

(
GD

∂FD,G

∂PCP
+ LD

∂FD,L

∂PCP

)
∂PCP
∂xB

+ FD,G
∂GD
∂xB

+ FD,L
∂LD
∂xB

= LD
G,L

∂PCP
∂xB

+ FD,B
G,L ,

where B = C, P. The second derivative condition is given by

∂2UD

∂x2
B

= LD
G,L

∂2PCP

∂x2
B

+
∂LD

G,L

∂xB

∂PCP
∂xB

+
∂FD,B

G,L

∂xB
> 0,

which in turn provides a bound on ∂PCP
∂xB

as follows,

∂PCP
∂xB

> −
(

LD
G,L

∂2PCP

∂x2
B

+
∂FD,B

G,L

∂xB

)/
∂LD

G,L

∂xB
.

The upper bound on PP then follows from Condition 2 by using xB = xP and ∂ f
∂PP

∂PP
∂xP

= ∂ f
∂xP

. �

This theorem indicates that the ratio of the correlation function and its derivatives ∂ f
∂PP

and ∂ f
∂xP

could limit the achievable PP. The cost term LD
G,L and

∂FD,P
G,L

∂xP
can counter this effect somewhat, but

∂LD
G,L

∂xP
can add to this effect.

4.5. Sum-Form and Product-Form Utility Functions

The utility functions can be specialized to reflect different aspects of the infrastructure, in particular
explicitly expressing the terms using PCP(xC, xP, yC, yP). Corresponding to the sum-form in Section 1,
the utility of the attacker is given by

UA+ (xC, xP, yC, yP) = [PCP(xC, xP, yC, yP)] gA + LA(yC, yP),

where [1− PCP(xC, xP, yC, yP)]gA is the expected reward for the cost LA(yC, yP) of cyber or physical
attacks. Similarly, the product-form utility of the attacker is given by

UA× (xC, xP, yC, yP) = PCP(xC, xP, yC, yP)LA(yC, yP),

which represents the expected cost when the infrastructure survives the attacks and thus represents
“wasted” effort. The individual terms of the utility functions for sum- and product-forms are simplified
as shown in Table 3 for the provider.

Table 3. Gain and cost terms and their multipliers for sum-form and product-form utilities of the provider.

FD,G GD FD,L LD
∂FD,G
∂PCP

∂GD
∂xB

∂FD,L
∂PCP

sum-form: UD+ [1− PCP] gD 1 LD −1 0 0
product-form: UD× 0 0 [1− PCP] LD 0 0 −1

Special cases of Theorem 1 for sum- and product-forms are presented in [2,4], and the second-order
condition in Theorem 2 provides us with additional conditions on achievable PP. In particular, for the
sum-form utility of the provider, the second derivative condition is

∂2UD

∂x2
B

= −∂2PCP

∂x2
B

gD +
∂2LD

∂x2
B

> 0,
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which provides an upper bound on ∂2PCP
∂x2

B
. And for the product-form utility of the provider, the second

derivative condition is

∂2UD

∂x2
B

= −2
∂PCP
∂xB

∂LD
∂xB
− LD

∂2PCP

∂x2
B

+ (1− PCP)
∂2LD

∂x2
B

> 0,

which provides an upper bound on PCP.

4.6. Survival Probabilities of Sub-Infrastructures

It is instructive to compare the individual survival probabilities of cyber and physical
sub-infrastructures PC and PP, respectively, since the minimum of the two determines the survival
probability of the infrastructure. Using the equations from the proof of Theorem 1, we have[

1 + (1− PP)
∂ f

∂PC

]
PC = − ΘC (xC, xP, yC, yP)

ΛC (xC, xP, yC, yP)[
1− f (PC, PP) + (1− PP)

∂ f
∂PP

]
PP = − ΘP (xC, xP, yC, yP)

ΛP (xC, xP, yC, yP)
.

In this section, for simplicity we denote ΛC (xC, xP, yC, yP), ΛP (xC, xP, yC, yP), ΘC (xC, xP, yC, yP),
and ΘP (xC, xP, yC, yP) by ΛC, ΛP, ΘC, and ΘP, respectively. By dividing the above two equations
by ∂ f

∂PC
and ∂ f

∂PP
, respectively, and eliminating the term (1 − PP) by subtraction, we obtain the

following condition:

(
ΘP

PPΛP

)
−

∂ f
∂PP
∂ f

∂PC

(
ΘC

PCΛC

)
= −

1− f (PC, PP)−
∂ f

∂PP
∂ f

∂PC

 .

Then, by using ∂PC
∂PP

= −
∂ f

∂PP
∂ f

∂PC

, we obtain the following relationship between PP and PC:

PP =
PCΛCΘP

ΛP

{
−PCΛC

[
1− f (PC, PP) +

∂PC
∂PP

]
− ∂PC

∂PP
ΘC

} .

By comparing the right hand side to PC, the condition PP ≥ PC is equivalent to

PC
.
= −

(
ΛC
ΛP

ΘP + ∂PC
∂PP

ΘC

)
ΛC

[
1− f (PC, PP) +

∂PC
∂PP

] ,

where .
= is either ≤ or ≥ based on the sign of the denominator above. If .

= is ≤, then the above
condition is not satisfied if the right hand side is negative, which in turn corresponds to the signs of
the two terms

(
ΛC
ΛP

ΘP + ∂PC
∂PP

ΘC

)
and

[
1− f (PC, PP) +

∂PC
∂PP

]
being the opposite. On the other hand,

if .
= is ≥, then this condition is not true if the right hand side is greater than 1. These two boundary

conditions determine that one of the two conditions PP ≥ PC and PP ≤ PC is true. In the other cases,
this relationship is not that simply determined, and can take a more complicated form.

For the special case f (PC, PP) = aC(1− PC) + bC, we have

PP = − ΘP
ΛP (1− aC + aCPC − bC)

.
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Then, the condition PP ≥ PC leads to a quadratic equation with the following solution:

PC =
−(1− aC − bC)

2a
± 1

2a

√
(1− aC − bC)2 − 4aCΘP

ΛP
.

The boundary conditions in this case can be derived as in the general case. However, a different
line of analysis done in this case in [5] provides a much simpler characterization of the relationship
between PC and PP. It yields the following simpler condition:

PC =

(
1− bC

1− aC

)
PP +

dCD − dPD
(1− aC)

,

where dCD = ∂LD
∂xC

/[
gD ln

( pP|R
pP|N

)]
and dPD = ∂LD

∂xP

/[
gD ln

( pC|R
pC|N

)]
. Then, the relationship between

PC and PP is described by 12 different regions determined solely by aC, bC, dCD, and dPD such that in
each region exactly one of the two conditions PP ≥ PC and PP ≤ PC is true.

5. Application Examples

In this section, we expand the three examples from Section 3.2 by taking more component details
into account. First, we consider different types of cyber and physical components such that xi

C, i ∈ AC

is the number of cyber components of type i, and xj
P, j ∈ AP is the number of physical components

of type j. Thus, in terms of the original indices, we have xC = ∑
i∈AC

xi
C and xP = ∑

j∈AP

xj
P. We define

sub-infrastructures consisting of only cyber components of type i and physical components of type j,
with their survival probabilities denoted by Pi

C and Pj
P, respectively. Now we generalize Condition 3

as follows.

Condition 4. The survival probabilities of cyber and physical sub-infrastructures are given by

∂Pi
C

∂xi
C
= hi

C

(
Pi

C, xC, xP, yC, yP

)
= Λi

C(xC, xP, yC, yP)Pi
C

for xi
C, i ∈ AC, corresponding to cyber components of type i, and

∂Pj
P

∂xj
P

= hj
P

(
Pj

P, xC, xP, yC, yP

)
= Λj

P(xC, xP, yC, yP)Pj
P

for xj
P, j ∈ AP, corresponding to physical components of type j.

The component failures are considered statistically independent for different types in [5] such that

PC = ∏
i∈AC

Pi
C = ∏

i∈AC

(
pi

C|R

)xi
C
(

pi
C|N

)Ni
C−xi

C ,

PP = ∏
j∈AP

Pj
P = ∏

j∈AP

(
pj

P|R

)xj
P
(

pj
P|N

)N j
P−xj

P ,

where pi
C|R and pj

P|R denote the probabilities of reinforced cyber component of type i and reinforced

physical component of type j, respectively; pi
C|N and pj

P|N denote the probabilities of cyber component

of type i and physical component of type j without reinforcement, respectively; and Ni
C and N j

P denote
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the number of type i cyber components and type j physical components, respectively. These conditions
in turn lead to the special case of Condition 4: for i ∈ AC, j ∈ AP,

∂PC

∂xi
C
= PC ln

(
pi

C|R

pi
C|N

)
and

∂PP

∂xj
P

= PP ln

 pj
P|R

pj
P|N

 .

We consider that these conditions are satisfied in both of the following examples.

5.1. Cloud Computing Infrastructure

The simple cloud computing infrastructure model of Example 1 in Section 3.2 is expanded
to include a gateway router at each site, which connects to all servers at the site. A cyber attack
on a gateway router will also have essentially the same effect as a physical fiber attack—namely,
disconnecting all servers at the site. A fiber attack requires physical proximity, whereas a router cyber
attack may be remotely launched, thereby representing different types of costs. Cyber components
now belong to two classes, namely, servers and routers, such that xC = xS

C + xR
C where xS

C and xR
C

denote the number of reinforced servers and routers, respectively. Similarly, we have yC = yS
C + yR

C ,
where yS

C and yR
C denote the number of servers and routers attacked, respectively. Then, for the two

cyber sub-infrastructures, we have the failure correlation functions f S (PS
C , PP

)
= NS(1− PP) and

f R (PR
C , PP

)
= (1− PP), wherein the physical failures are amplified by NS for the servers but are the

same for routers. Thus, the composite failure correlation function f (PC, PP) is given as follows:

f (PC, PP) = ∑
B∈{S,R}

PB
C̄|P̄ = f S

(
PS

C , PP

)
+ f R

(
PR

C , PP

)
= (NS + 1)(1− PP).

Then, the survival probabilities of cyber-reinforced components are computed separately for
the servers and routers, which are denoted by pS

C|R and pR
C|R, respectively. The probability that a

cyber-reinforced server survives fiber or router attacks is given by

pS
C|R =

f S
C

1 + NS[yP − xP]+ + NS[yR
C − xR

C ]+
,

which now depends on both physical attacks on fiber and cyber attack on routers. An estimate of the

probability that a cyber-reinforced router survives a physical fiber attack is given by pR
C|R =

f R
C

1+[yP−xP ]+
,

since a cyber attack on a reinforced router has no impact and a fiber attack will disconnect only one

router. If the router is not cyber-reinforced, then we have pR
C|N =

f R
C

1+[yP−xP ]++yR
C

, which additionally

depends on yR
C . By using these estimates for the router, we have

ΛR
C

(
xP, yR

C , yP

)
= ln

(
1 +

yR
C

1 + [yP − xP]+

)
,

which increases in the number of cyber router attacks but decreases in the number of attacks on
non-reinforced routers. If the cyber component, server or router, is not reinforced, it will be brought
down by a direct cyber attack or indirectly by fiber attack, but the latter will have a greater impact.
However, cyber attacks on servers and routers will have different impacts on the availability of the
infrastructure. That is, a server attack will only bring it down, but a router attack will make all NS
servers unavailable. In some current infrastructures, NS could be on the order of thousands. Thus,
for a server that is not cyber-reinforced, we use the estimate

pS
C|N =

f S
C

1 + NS[yP − xP]+ + NS[yR
C − xR

C ]+ + yS
C

,
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which reflects the additional lowering of survival probability inversely proportional to the level of
cyber attack yS

C, and to yR
C but amplified by a factor NS. Thus, for servers, we have

ΛS
C

(
xR

C , xP, yS
C, yR

C , yP

)
= ln

(
1 +

yS
C

1 + NS[yP − xP]+ + NS[yR
C − xR

C ]+

)
,

which increases in the number of server attacks but decreases in the attacks on non-reinforced routers
and fibers.

The survival probabilities of physical fiber components depend on yP such that pP|R = fP and

pP|N = fP
1+yP

. By combining the two formulae for fiber, we have ΛP(yP) = ln (1 + yP) , which increases
in the number of physical attacks. Similar to the case of the metro system, in addition to ΛP(·)
and ΛB

C(·), where B = S, R, the survival probabilities of cyber and physical sub-infrastructures are
determined by the correlation function f (PC, PP), as described in Section 4.6.

5.2. Metro System

We refine the metro system model of Example 2 in Section 3.2 to include multiple traffic control
centers, each connecting to all signals of a single line. A cyber attack on a control center will disconnect
all signals of its line and disrupt all trains running on that line. Now, we separate the cyber components
into two classes, namely, control centers and signals, and xC = xT

C + xS
C such that xT

C and xS
C denote

the number of reinforced control centers and signals, respectively. Similarly, yC = yT
C + yS

C, such that
yT

C and yS
C denote the number of control centers and signals attacked, respectively. Since we focus on

the smooth running of the trains, it is more instructive to carry out the analysis in terms of the failure
correlation function g(PC, PP) = PP̄|C̄. Then, for the sub-infrastructures, we have the failure correlation
functions gT (PT

C , PP
)
= NL

(
1− PT

C
)

and gS (PS
C , PP

)
= αNL

(
1− PS

C
)
, wherein the physical failures

are amplified by NL for control centers and by αNL for the signals. We now estimate the composite
failure correlation function g(PC, PP) as follows:

g (PC, PP) = gT
(

PT
C , PP

) PT
A

PT
A + PS

A
+ gS

(
PS

C , PP

) PS
A

PT
A + PS

A
= NL

(
1− PT

C

) PT
A

PT
A + PS

A
+ αNL

(
1− PS

C

) PS
A

PT
A + PS

A
,

where PT
A and PS

A are the probabilities of a cyber attack on a control center and a signal of the metro

system, respectively, and PT
A

PT
A+PS

A
and PS

A
PT

A+PS
A

are conditional failure probabilities of the control center

and signal, respectively, given that the cyber sub-infrastructure of the metro system failed.
The probability that a physically-reinforced actuator on a train survives cyber attacks on a control

center or signal is given by

pP|R =
fP

1 + NL
[
yT

C − xT
C
]
+
+ αNL[yS

C − xS
C]+

,

which now depends on both cyber attacks on control centers and signals. If the actuator is not
physically-reinforced, then we have

pP|N =
fP

1 + yP + NL[yT
C − xT

C]+ + αNL[yS
C − xS

C]+
,

which additionally decreases with respect to yP. By using these estimates for an actuator, we have

ΛP

(
xT

C, xS
C, yT

C, yS
C, yP

)
= ln

(
1 +

yP

1 + NL[yT
C − xT

C]+ + αNL[yS
C − xS

C]+

)
,



Games 2018, 9, 52 20 of 24

which increases in the number of physical attacks on actuators, but decreases in the number of cyber
attacks on control centers and signals. Since the term ΛP appears in the denominator, P̂P;D in Theorem 1
decreases with the number of physical attacks yP, and increases with [yT

C − xT
C]+ and [yS

C − xS
C]+, which

are the number of cyber attacks on the control centers and signals exceeding the reinforcements,
respectively. The latter condition may appear counter-intuitive at the surface, but note that it only
characterizes the states that satisfy NE conditions. An analogous dependence of P̂P;D on the parameters
xC, xP, yC, and yP (shown in Theorem 1) is less direct, since ΛP appears inside the square root but is
qualitatively somewhat similar since they appear in the denominator.

The cyber component survival probabilities are computed separately for the reinforced control
centers and signals, denoted by pT

C|R and pS
C|R, respectively. The survival probabilities of cyber

components are given by pB
C|R = f B

C and pB
C|N =

f B
C

1+yB
C

, where B = T, S. Then we have ΛB
C
(
yB

C
)
=

ln
(
1 + yB

C
)

, where B = T, S, which increases in the total number of cyber attacks on the specific type
of component. Since the term ΛB

C appears in the denominator, P̂C;D in Theorem 1 decreases with the
number of cyber attacks yB

C, where B = T, S.
Note that the net effect of the number of attacks and reinforcements on the survival probabilities

of cyber and physical sub-infrastructures is also determined by the correlation function as described in
Section 4.6, in addition to ΛP and ΛB

C, where B = T, S.

5.3. Smart Power Grid Infrastructure

The power grid model described in Example 3 in Section 3.2 is expanded to include smart meters
on the lines that provide the demand information to generation and distribution control systems.
The smart meters can be attacked by cyber means to manipulate the demand information (e.g., to make
it zero). We group the cyber components into two classes, namely, communication nodes and smart
meters, such that xC = xS

C + xM
C , where xS

C and xM
C are the number of reinforced communication nodes

and smart meters, respectively. Similarly, we have yC = yS
C + yM

C , where yS
C and yM

C are the number
of communication nodes and smart meters attacked, respectively. Since the electricity transmission
in the grid takes place on the physical sub-infrastructure, it is more instructive to carry out the
analysis in terms of the failure correlation function g(PC, PP) = PP̄|C̄. As in the metro system example,
for the sub-infrastructures, we have the failure correlation functions gS (PS

C , PP
)
= NL

(
1− PS

C
)

and
gM (PM

C , PP
)
=
(
1− PM

C
)
, wherein the attacks on communication nodes are amplified by the number

of lines NL controlled by each of them, but are the same for smart meter attacks. Then, we utilize
the estimate

g(PC, PP) =

[
NL

(
1− PS

C

) PS
A

PS
A + PM

A
+
(

1− PM
C

) PM
A

PS
A + PM

A

]
,

where PS
A and PM

A are the probabilities of an attack on a communication node and smart meter,

respectively, and PS
A

PS
A+PM

A
and PM

A
PS

A+PM
A

are conditional failure probabilities of a communication node and

smart meter, respectively, given that the cyber sub-infrastructure failed.
Then, the survival probabilities of cyber components are estimated separately for the

communication nodes and smart meters. The survival probabilities of the power supply lines with
and without reinforcement are denoted by pP|R and pP|N , respectively. A communication node or a
smart meter may be disabled by cyber means, which will disrupt the power flow on the lines so that

pP|R =
fP

1 + NL[yS
C − xS

C]+ + [yM
C − xM

C ]+
,
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for physically-reinforced power lines. Note that cyber attacks on communication nodes are amplified
by NL times compared to attacks on smart meters. Each power line can be directly disrupted by
physical means such that it can be brought down if not reinforced, and thus we have

pP|N =
fP

1 + yP + NL[yS
C − xS

C]+ + [yM
C − xM

C ]+
,

which reflects the amplified effect of cyber attacks on communication nodes compared to physical line
attacks. Combining the two formulae, we have

ΛP

(
xS

C, xM
C , yS

C, yM
C , yP

)
= ln

(
1 +

yP

1 + NL[yS
C − xS

C]+ + [yM
C − xM

C ]+

)
,

which increases in the number of attacks on non-reinforced power lines and decreases in the number
of attacks on non-reinforced communication nodes and non-reinforced smart meters, but the former
effect is amplified NL times. The survival probabilities of cyber components are given by pB

C|R = f B
C

and pB
C|N =

f B
C

1+yB
C

, where B = S, M. Then, we have ΛB
C
(
yB

C
)
= ln

(
1 + yB

C
)

, where B = S, M, which

increases in the total number of cyber attacks. As in the previous examples, the net effect of the number
of attacks and reinforcements on the survival probabilities of cyber and physical sub-infrastructures is
also determined by the correlation function (in addition to ΛP and ΛB

C, where B = S, M) as described
in Section 4.6.

6. Conclusions

We studied a class of infrastructures characterized by the number of discrete components that can
be disrupted by either cyber or physical attacks, and are protected by cyber and physical reinforcements.
We characterized the cyber–physical interactions in these infrastructures at two levels: (i) the failure
correlation function specifies the conditional survival probability of a cyber sub-infrastructure given
that of the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the
individual survival probabilities of both sub-infrastructures are characterized by first-order differential
conditions. We derived Nash equilibrium conditions in terms of partial derivatives of cost terms,
failure correlation function, multiplier functions, and survival probabilities of sub-infrastructures and
their partial derivatives. We then estimated the sensitivity functions that indicate the dependence of
infrastructure survival probability on these parameters. We applied this approach to models of metro
systems, cloud computing infrastructures, and smart power grids at different levels of abstraction when
all have a large number of components. These results generalize previous results using simpler utility
functions in [2–5], and specialize the results on systems of systems in [8,43–48]. Together, our results
enable us to unify the previous results and consider more detailed models of the correlations between
the sub-infrastructures in the metro systems, cloud computing infrastructures, and smart power grids,
with sharpened focus on cyber and physical sub-infrastructures.

Several extensions of this formulation could be pursued in future studies, including the cases
where the effects of attacks and reinforcements of specific components are explicitly accounted
for. In such formulations, xC and xP may be replaced by vectors whose components are Boolean
representing the reinforcement of a component or a fraction representing the probability of
reinforcement. It would also be of future interest to explicitly model various redundancies incorporated
by infrastructures to avoid single-point failures (e.g., abstracted by fiber cuts). Such extensions may
also require a more refined characterizations of attacks (e.g., single- or multiple-fiber attacks) and
defenses, which may lead to their partial successes. Indeed, the attack and defense models can be
extended to include their success probabilities to capture cases wherein the attacks and reinforcements
are not always guaranteed to fully fail or succeed. It would be interesting to study sequential game
formulations of this problem, and cases where different levels of knowledge are available to the attacker
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and provider. Other future formulations could include multiple attackers and hybrid infrastructure
models. For example, physical sub-infrastructure represented by partial differential equations and
cyber sub-infrastructures represented by graphs. Applications of our approach to more detailed
models of metro systems, cloud computing infrastructures, smart power grids, and high-performance
computing complexes would be of future interest.
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