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Abstract: This review recounts the development by the authors of the Pd-catalyzed procedures
devoted to various kinds of oxidation. Starting with reactions assisted with UV light, the
research has explored reactions under light-free conditions: allylic oxidation, alcohol oxidation,
etherification, Wacker oxidation and dehydrogenations with, always, accompanying efforts towards
mechanism determination.
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1. Introduction

Our initial studies on Pd-catalyzed oxidations results from our observation in the early
1980s of the formation of unsaturated carbonyl compounds from irradiation with UV light of
bis(µ-chloro)bis(η3-allyl)dipalladium complexes in oxygenated acetonitrile (Scheme 1) [1]. That
result urged us to look for such reactions under catalytic conditions. This activity progressively led
us to study a variety of Pd-catalyzed oxidations under light-free conditions. The aim of the present
account is to highlight the main results that we obtained in the area over the years.
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Our initial studies on Pd-catalyzed oxidations results from our observation in the early 1980s of 
the formation of unsaturated carbonyl compounds from irradiation with UV light of bis(µ-
chloro)bis(η3-allyl)dipalladium complexes in oxygenated acetonitrile (Scheme 1) [1]. That result 
urged us to look for such reactions under catalytic conditions. This activity progressively led us to 
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is to highlight the main results that we obtained in the area over the years. 
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Scheme 1. Photocatalyzed oxidation of bis(µ-chloro)bis(η3-allyl)dipalladium complexes  

2. UV-Light-Assisted Oxidation 

2.1. Ethylenic Compounds 

The easy formation at room temperature of η3-allylpalladium complexes from alkenes and 
Pd(OCOCF3)2 reported by Trost and Metzner [2] urged us to use this Pd salt as a catalyst for the 
photo-assisted oxidation of alkenes [3,4]. For an example, the reaction of 1-eicosene (1) in 
MeCN/CH2Cl2 afforded a mixture of saturated and unsaturated ketones 2 to 4 (Equation (1)). Some 
migration of the double bond of 1 was a competing reaction [5,6]. In contrast to the isomerization, 
ketones 2 to 4 were not produced in the absence of light. Switching to acetone as the solvent increased 
the ketone yields. Similar results were obtained using [(η3-CH2CHCHC3H7)Pd(OCOCF3)]2 as the 
catalyst whereas the turnover number was inferior to 1 with Pd(OAc)2 [4]. Under alkene-free 
conditions, monitoring the irradiation of an acetone solution of Pd(OCOCF3)2 showed the adsorption 
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2. UV-Light-Assisted Oxidation

2.1. Ethylenic Compounds

The easy formation at room temperature of η3-allylpalladium complexes from alkenes and
Pd(OCOCF3)2 reported by Trost and Metzner [2] urged us to use this Pd salt as a catalyst for the
photo-assisted oxidation of alkenes [3,4]. For an example, the reaction of 1-eicosene (1) in MeCN/CH2Cl2
afforded a mixture of saturated and unsaturated ketones 2 to 4 (Equation (1)). Some migration of the
double bond of 1 was a competing reaction [5,6]. In contrast to the isomerization, ketones 2 to 4 were
not produced in the absence of light. Switching to acetone as the solvent increased the ketone yields.
Similar results were obtained using [(η3-CH2CHCHC3H7)Pd(OCOCF3)]2 as the catalyst whereas the
turnover number was inferior to 1 with Pd(OAc)2 [4]. Under alkene-free conditions, monitoring the
irradiation of an acetone solution of Pd(OCOCF3)2 showed the adsorption of oxygen [4]. That led us to
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suspect the formation of peroxydic species. Nevertheless, ketones 2 to 4 were also produced from the
reaction of 1 in the presence of radical and 1O2 traps [4].
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The process was used for the oxidation of allylsulfones [7]. Under the above conditions, 5 led to 
a mixture of unsaturated aldehyde 6 and alcohol 7 (Equation (2)). The yields were improved with a 
cocatalyst such as Cu(OCOCF3)2 or Co(OCOCF3)2. 

 

(2) 

Under both Pd(OCOCF3)2 catalysis and UV light, allylsulfones substituted with a trimethylsilyl 
group underwent cleavage of the allyl-Si bond. Thus, full conversion of 8 occurred in 38 h leading to 
6 in 95% yield (Equation (3)) [8]. Lower conversions were mediated by other Pd catalysts.  

 

(3) 

The mechanism of the reaction of allylsilanes was studied using l-phenyl-3-(trimethylsilyl)-l-
propene (9) and l-phenyl-1-(trimethylsilyl)-2-propene (10) as substrates, and comparison with the 
reactivity of corresponding allylpalladium chloride 11 [9]. The latter would be dissymmetric due to 
the different substitution of the allyl unit extremities [10–12]. Cinnamaldehyde (12) was selectively 
obtained from irradiation of either 9 and 10 in the presence of catalytic Pd(OCOCF3)2, or 11 (Scheme 
2). That contrasts from oxidations of the free phenylallyl radical which gave mixtures of oxidation 
products in 1- and 3-position [9,13,14]. Consequently, the regiospecificity of the reactions of 9, 10 and 
11 excluded the formation of the free phenylallyl radical. The formation of η3-allylpalladium 
complexes from allylsilanes and PdII salts is known [15]. Thus, a common intermediate, which would 
be a dissymetric η3-allylpalladium complex, has been proposed (Scheme 3). Light-mediated cleavage 
of the longer C–Pd bond would lead to intermediate 3A [16,17] which reacts with oxygen to afford a 
peroxopalladium complex. The latter evolves towards aldehyde 12, liberating HOPdX which would 
be involved in the subsequent catalytic cycle. 

(1)

The process was used for the oxidation of allylsulfones [7]. Under the above conditions, 5 led to
a mixture of unsaturated aldehyde 6 and alcohol 7 (Equation (2)). The yields were improved with a
cocatalyst such as Cu(OCOCF3)2 or Co(OCOCF3)2.
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Under both Pd(OCOCF3)2 catalysis and UV light, allylsulfones substituted with a trimethylsilyl
group underwent cleavage of the allyl-Si bond. Thus, full conversion of 8 occurred in 38 h leading to 6
in 95% yield (Equation (3)) [8]. Lower conversions were mediated by other Pd catalysts.

Catalysts 2020, 10, x FOR PEER REVIEW  2 of 22 

 

of oxygen [4]. That led us to suspect the formation of peroxydic species. Nevertheless, ketones 2 to 4 
were also produced from the reaction of 1 in the presence of radical and 1O2 traps [4]. 
 

 

(1) 

The process was used for the oxidation of allylsulfones [7]. Under the above conditions, 5 led to 
a mixture of unsaturated aldehyde 6 and alcohol 7 (Equation (2)). The yields were improved with a 
cocatalyst such as Cu(OCOCF3)2 or Co(OCOCF3)2. 

 

(2) 

Under both Pd(OCOCF3)2 catalysis and UV light, allylsulfones substituted with a trimethylsilyl 
group underwent cleavage of the allyl-Si bond. Thus, full conversion of 8 occurred in 38 h leading to 
6 in 95% yield (Equation (3)) [8]. Lower conversions were mediated by other Pd catalysts.  

 

(3) 

The mechanism of the reaction of allylsilanes was studied using l-phenyl-3-(trimethylsilyl)-l-
propene (9) and l-phenyl-1-(trimethylsilyl)-2-propene (10) as substrates, and comparison with the 
reactivity of corresponding allylpalladium chloride 11 [9]. The latter would be dissymmetric due to 
the different substitution of the allyl unit extremities [10–12]. Cinnamaldehyde (12) was selectively 
obtained from irradiation of either 9 and 10 in the presence of catalytic Pd(OCOCF3)2, or 11 (Scheme 
2). That contrasts from oxidations of the free phenylallyl radical which gave mixtures of oxidation 
products in 1- and 3-position [9,13,14]. Consequently, the regiospecificity of the reactions of 9, 10 and 
11 excluded the formation of the free phenylallyl radical. The formation of η3-allylpalladium 
complexes from allylsilanes and PdII salts is known [15]. Thus, a common intermediate, which would 
be a dissymetric η3-allylpalladium complex, has been proposed (Scheme 3). Light-mediated cleavage 
of the longer C–Pd bond would lead to intermediate 3A [16,17] which reacts with oxygen to afford a 
peroxopalladium complex. The latter evolves towards aldehyde 12, liberating HOPdX which would 
be involved in the subsequent catalytic cycle. 

(3)

The mechanism of the reaction of allylsilanes was studied using
l-phenyl-3-(trimethylsilyl)-l-propene (9) and l-phenyl-1-(trimethylsilyl)-2-propene (10) as substrates,
and comparison with the reactivity of corresponding allylpalladium chloride 11 [9]. The latter would be
dissymmetric due to the different substitution of the allyl unit extremities [10–12]. Cinnamaldehyde (12)
was selectively obtained from irradiation of either 9 and 10 in the presence of catalytic Pd(OCOCF3)2,
or 11 (Scheme 2). That contrasts from oxidations of the free phenylallyl radical which gave mixtures of
oxidation products in 1- and 3-position [9,13,14]. Consequently, the regiospecificity of the reactions of
9, 10 and 11 excluded the formation of the free phenylallyl radical. The formation of η3-allylpalladium
complexes from allylsilanes and PdII salts is known [15]. Thus, a common intermediate, which would
be a dissymetric η3-allylpalladium complex, has been proposed (Scheme 3). Light-mediated cleavage
of the longer C–Pd bond would lead to intermediate 3A [16,17] which reacts with oxygen to afford a
peroxopalladium complex. The latter evolves towards aldehyde 12, liberating HOPdX which would
be involved in the subsequent catalytic cycle.
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2.2. Alkanes 

Irradiation with UV light of a MeCN solution of adamantane (13) containing trifluoroacetic acid 
and catalytic Pd(OCOCF3)2 afforded adamantanyl acetamides 14 and 15 in quantitative yields versus 
the amount of palladium (Equation (4)) [18]. The reaction became catalytic with Cu(OCOCF3)2 as the 
cocatalyst and provided traces of adamantanyl trifluoroacetates 16. The mechanism of these reactions 
remains obscure, the %14/%15 ratio indicating a radical or electrophilic process [19]. 

 

(4) 

Oxidation of cyclohexane (17) and 3-methylhexane (18) was performed using light and 
peroxopalladium complexes [20]. Thus, [(t-BuOO)Pd(OCOCF3)]4 in air led, from 17, to cyclohexanol 
and cyclohexanone with a slight catalytic character (Equation (5)). A similar result arose with [(t-
BuOO)Pd(OCOCH3)]4. The oxidation of 18 mainly occurred at the level of the tertiary C–H bond. 
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2.2. Alkanes

Irradiation with UV light of a MeCN solution of adamantane (13) containing trifluoroacetic acid
and catalytic Pd(OCOCF3)2 afforded adamantanyl acetamides 14 and 15 in quantitative yields versus
the amount of palladium (Equation (4)) [18]. The reaction became catalytic with Cu(OCOCF3)2 as the
cocatalyst and provided traces of adamantanyl trifluoroacetates 16. The mechanism of these reactions
remains obscure, the %14/%15 ratio indicating a radical or electrophilic process [19].
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and cyclohexanone with a slight catalytic character (Equation (5)). A similar result arose with
[(t-BuOO)Pd(OCOCH3)]4. The oxidation of 18 mainly occurred at the level of the tertiary C–H bond.

Catalysts 2020, 10, x FOR PEER REVIEW  4 of 22 

 

 

(5) 

3. Allylic Oxidation 

3.1. 1-(p-Toluenesulfonyl)-2-Propene and 1-(Trimethylsilyl)-1-(p-Toluenesulfonyl)-2-Propene 

The PdII-catalyzed oxidation of allylsulfone 5 was carried out with t-BuOOH or oxygen in 
conjunction with either CuCl or benzoquinone (BQ) (Equations (6) and (7)) [21]. Under the former 
conditions, the main products were alcohol 7 and peroxide 19, which could be produced from a η2-
olefin palladium complex formed from 5 and t-BuOOPdOCOCF3 (Scheme 4) [22]. 

 

 

(6) 

 

(7) 

 
Scheme 4. Pd(OCOCF3)2-catalyzed oxidation of allylsulfone 5 with t-BuOOH. 

Submitting allylsilane 8 to the PdCl2/CuCl or BQ system under oxygen mainly led to the 
desilylated compound 5. (Equation (7)) [21]. Aldehyde 6 and alcohol 7 were concomitantly produced.  

3.2. Terminal Alkenes 

Various conditions have been reported for the synthesis of allylic carboxylates via PdII-catalyzed 
allylic oxidation of olefins in carboxylic acids [23,24]. After the observation of the improvement of the 
Pd(OAc)2-catalyzed allylic acetoxylation of allylbenzene with BQ as the stoichiometric oxidant in the 
presence of base but with inconsistent yields, we performed the efficient, reproducible and 
regioselective allylic acyloxylation of terminal alkenes using lithium hydroxide as the additive and 
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3.1. 1-(p-Toluenesulfonyl)-2-Propene and 1-(Trimethylsilyl)-1-(p-Toluenesulfonyl)-2-Propene

The PdII-catalyzed oxidation of allylsulfone 5 was carried out with t-BuOOH or oxygen in
conjunction with either CuCl or benzoquinone (BQ) (Equations (6) and (7)) [21]. Under the former
conditions, the main products were alcohol 7 and peroxide 19, which could be produced from a
η2-olefin palladium complex formed from 5 and t-BuOOPdOCOCF3 (Scheme 4) [22].
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Scheme 4. Pd(OCOCF3)2-catalyzed oxidation of allylsulfone 5 with t-BuOOH.

Submitting allylsilane 8 to the PdCl2/CuCl or BQ system under oxygen mainly led to the desilylated
compound 5. (Equation (7)) [21]. Aldehyde 6 and alcohol 7 were concomitantly produced.

3.2. Terminal Alkenes

Various conditions have been reported for the synthesis of allylic carboxylates via PdII-catalyzed
allylic oxidation of olefins in carboxylic acids [23,24]. After the observation of the improvement of
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the Pd(OAc)2-catalyzed allylic acetoxylation of allylbenzene with BQ as the stoichiometric oxidant
in the presence of base but with inconsistent yields, we performed the efficient, reproducible and
regioselective allylic acyloxylation of terminal alkenes using lithium hydroxide as the additive and
propionic acid as the solvent (Equation (8)) [25].
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depicted in Scheme 5. Palladium acetate, which is a trimer in the solid state [26], reacts with the in-
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alkenyl intermediate 5B, which evolves towards an η3-allyl complex 5C. Subsequent intramolecular 
acetoxylation delivers the product and Pd0. The reoxidation of Pd0 completes the catalytic cycle. 

 
Scheme 5. Proposed mechanism of the Pd-catalyzed allylic acyloxylation. 
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The reaction of 1-decene was less selective (Equation (8)). The regioselectivity increased with
the more-hindered pivalic acid but to the detriment of the conversion. Improved results were finally
obtained using a BQ/MnO2 mixture as the oxidant (Equation (9)) [25]. This modified procedure was
well adapted to the oxidation of homoallylic alcohols but led to lower yields with allylarenes (compare
Equations (8) and (9)).
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Careful analysis by Electrospray Ionization Mass Spectrometry (ESI–MS) of the allylic acyloxylation
under the above conditions led to identification of different clusters, especially those corresponding to
intermediates having the Pd atom (in mauve color) in the proposed catalytic cycle depicted in Scheme 5.
Palladium acetate, which is a trimer in the solid state [26], reacts with the in-situ formed salt of the
carboxylic acid to afford 5A. Coordination of the substrate to 5A leads to η2-alkenyl intermediate 5B,
which evolves towards an η3-allyl complex 5C. Subsequent intramolecular acetoxylation delivers the
product and Pd0. The reoxidation of Pd0 completes the catalytic cycle.
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4. Alcohol Oxidation

The transformation of alcohols into the corresponding carbonyl compounds with metal oxides
and metal salts may occur through three pathways (Scheme 6). Instead of the term “oxidation” used
for reactions following paths a and b, those arising via path c are often called “dehydrogenation” or
“oxidative dehydrogenation”. Most Pd-catalyzed oxidation of alcohols occur via paths b and c [27]. As
shown below, we have developed procedures for such reactions using various species to regenerate
the catalyst.
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4.1. With Sodium Percarbonate

Despite its name, sodium percarbonate (SPC) is not a persalt. SPC, which is a versatile oxidizing
agent for organic synthesis [28,29], is the association of sodium carbonate with hydrogen peroxide
with the formula Na2CO3,1.5 H2O2. In the course of the screening of metal chlorides for the catalytic
oxidation of 1-indanol (20) by SPC in 1,2-dichloroethane (DCE) in the presence of Adogen 464 [30],
we discovered that the reaction with PdCl2 effectively occurred even in the absence of SPC. That led
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us to the procedure documented in Section 4.2. In contrast, SPC is required with solvents such as
acetonitrile, hexane and benzene, leading selectively to 1-indanone (21) from 20 (Equation (10)) [31].
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4.2. With 1,2-Dichloroethane

The PdCl2-catalyzed oxidation of alcohols in DCE containing sodium carbonate and catalytic
amounts of Adogen 464 (Equation (11)) involves the regeneration of active Pd species by the solvent,
leading to the formation of ethylene. The formation of the latter has been highlighted by its reaction
with iodine, giving 1,2-diiodooethane [32]. The method is efficient for saturated and benzylic secondary
alcohols. Some overoxidation of primary alcohols occurred leading to acids which react with the
solvent to afford esters. Isomerization of secondary allylic alcohols to saturated ketones may compete
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As the plausible mechanism, we initially suspected the insertion of Pd0 into a C–Cl bond of DCE
to afford ClCH2CH2PdCl which would undergo β-Cl elimination leading to ethylene and PdCl2 [32].
According to a theoretical study, ClCH2CH2PdCl would rather be the active species reacting with the
alcohol [33]. The process is, however, carried out in the presence of Adogen 464 which reacts with
PdCl2 to afford the soluble palladium salt [PdCl4]2− [34]. These remarks led us to propose the catalytic
cycle depicted in Scheme 7. Hydridopalladium 7A formed after the first alcohol oxidation leads to Pd0

species 7B via elimination of HCl. Insertion of 7B into DCE affords 7C. Coordination of the alcohol to the
latter gives 7D. Subsequent elimination of ethylene and HCl leads to an alkoxypalladium intermediate.
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The PdCl2/Adogen 464/DCE procedure effected the lactonisation of various 1,4- and 1,5-diols
except that of cis-endo-2,3-bis(hydroxymethyl)bicyclo [2.2.1]hept-5-ene (22) which led to lactol 23 (96%
selectivity) (Equation (12)) although the corresponding saturated diol 25 provided lactone 26 (Equation
(13)) [35]. Oxidation of lactol 23 into lactone 24 did not occur under the Pd conditions, but arose
using pyridinium dichromate in CH2Cl2 (83% yield [36]) [37] or the Swern oxidation method [38]. The
PdCl2/Adogen 464/DCE procedure is however able to oxidize α lactol such as 27 (Equation (14)).Catalysts 2020, 10, x FOR PEER REVIEW  8 of 22 
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The above results clearly demonstrated that the lack of formation of 24 from 22 under Pd-conditions
was attributable to the C=C bond. Analysis of both the plausible intermediates of the process and
literature [39–41] led to the proposal of Scheme 8. The reaction of hydroxyaldehyde 8B obtained via 8A
leads to alkoxypalladium intermediate 8C. Subsequent intramolecular reaction occurs through the
stereoselective approach of the alkoxypalladium moiety to one face of the aldehyde to afford 8D. In
contrast to the intermediate obtained from 25, 8D undergoes a ligand exchange leading to palladacycle
8E. The syn relationship between O-Pd and C-H bonds, which would allow a β-H elimination leading
to the carbonyl unit [42,43], is prevented in 8E. That favors alkoxyde exchange with diol 22 to afford 8F.
The latter is in equilibrium with 8B which evolves towards 23, that is, the more stable isomer [44–46].
The apparent absence of 23 evolution under the PdCl2/Adogen 464/DCE conditions would be a “no



Catalysts 2020, 10, 111 9 of 23

reaction” reaction [47,48], which involves 8B, 8C, 8D, 8E, alcoholysis and equilibration regenerating
the starting substrate.
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As depicted in Equation (11), the PdCl2/Adogen 464/DCE procedure efficiently oxidizes 1-indanol
(20) into 1-indanone (21). The oxidation was also effective using the soluble catalyst (n-Bu4N)2PdCl4.0.5
H2O (92% conversion, 90% yield) instead of the PdCl2/Adogen 464 association [31]. Surprisingly,
soluble (MeCN)2PdCl2 produced di(1-indanyl) oxide (28) in high yields, even in the absence of the
base (Equation (15)) [49].Catalysts 2020, 10, x FOR PEER REVIEW  9 of 22 
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4.3. With Aryl Bromide 

The Yoshida procedure of oxidation of alcohols used a Pd catalyst with an aryl halide as 
hydrogen acceptor and a base (Scheme 10) [55,56]. We used this procedure for the oxidation with 
high yields of benzyl-protected sugar hemiacetals into lactones (Equation (16)) [57]. 
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(15)

We rationalized the formation of 21 and 28 through two competitive pathways catalyzed with
L2PdCl2 (L = Cl− or RCN), that is with [PdCl4]2− and (RCN)2PdCl2, respectively (Scheme 9) [49]. In
contrast to the anionic catalyst (L = Cl-), the neutral catalyst (L = RCN) is electrophilic [50–53]. Exchange
of ligand between L2PdCl2 and 20 affords 9A. The evolution of 9A depends on the electrophilicity
of the L2PdCl2. Transition metals having Lewis acid properties mediate the formation of ethers
from alcohols [31,54]. Consequently, 9A formed from the anionic catalyst evolves towards 21 via the
ketonisation pathway [32,33], while 9A formed from (RCN)2PdCl2 undergoes heterolytic cleavage of
the C–OH bond leading to ionic species 9B. The latter reacts with 20 to give ether 28, water and the
starting catalyst.
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4.3. With Aryl Bromide

The Yoshida procedure of oxidation of alcohols used a Pd catalyst with an aryl halide as hydrogen
acceptor and a base (Scheme 10) [55,56]. We used this procedure for the oxidation with high yields of
benzyl-protected sugar hemiacetals into lactones (Equation (16)) [57].
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4.4. Dehydrogenation

Over the last thirty years, growing attention has been devoted to the use of ionic liquids and
molten salts as solvents for organic synthesis [58–60]. The strong interest for catalyzed reactions
is due to the immobilization of the catalyst in the ionic liquid or molten salt that would allow the
recycling of the tandem catalyst/solvent. These unusual solvents have been used for various catalytic
oxidations [61–63]. Our above studies with (n-Bu4N)2PdCl4.0.5 H2O (see Section 4.2) and Heck reaction
in molten n-Bu4NBr [64] urged us to carry out Pd-catalyzed oxidations in this medium.

Initial experimentation using 20, catalytic PdCl2 and n-Bu4NBr at 120 ◦C led to a mixture of 21 and
indane. The reductive cleavage of the C–OH bond of 19 indicated in-situ formation of hydrogen [65]
and/or [Pd]H2 species [66]. Addition of cyclohexene as a hydrogen acceptor increased the selectivity
towards 21. Finally, the best result was obtained under a gentle flow of argon which removes hydrogen
gas (Equation (17)) [67]. Under these conditions, the recycling of both catalyst and n-Bu4NBr was
relatively efficient. Secondary benzylic alcohols provided the corresponding ketones in good yields.
The method is less selective for primary benzylic alcohols and is ineffective from allylic and saturated
alcohols. Subsequent experiments showed that recycling was more efficient with Pd(OAc)2 than
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with PdCl2, the yield obtained from 4th reuse of the catalyst/n-Bu4NBr association being 92% (94%
conversion) with the former and 64% (67% conversion) with the latter [68].
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copper-catalyzed allylic oxidations in water [76]. The intramolecular Wacker oxidation of allylphenol
(29) leads to 2-methylbenzofuran [77,78] or 2H-chromene [79] depending on the reaction conditions.
Thus, we were interested in performing such a reaction in aqueous media with a PdII/LH catalytic system.

Treatment of 29 with aqueous H2O2 and catalytic amounts of both Pd(OCOCF3)2 and LH at 50 ◦C
in water afforded diol 30 instead of the cyclization products (Equation (18)) [80]. Reaction in a mixture
of water and methanol led to 30 and hydroxyl methyl ether 31Me. Similar compounds were produced
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The report of Jacobs’ team about the phenol-mediated epoxidation of alkenes by H2O2 under
metal-free conditions [81] led us to propose in 2005 the mechanism depicted in Scheme 11 [80].
Pd-catalyzed isomerization of 29 affords 32 [82]. Activation by the phenolic OH of the epoxidation of
32 provides 11A. The high instability of such a compound [83] brings on spontaneous ring opening
leading to 30 and 31R. However, the strong acceleration of the palladium-catalyzed reaction of 32
(Equation (19)) indicates some participation of Pd(OCOCF3)2/LH in the process [80]. In fact, epoxides
are very sensitive to Pd catalysis [84]. Complementary mechanistic experiments and ESI-MS studies
supported the proposed reaction pathway [85].
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copper salts/O2 or benzoquinone [86]. According to investigations through isotope effects, kinetic,
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ESI–MS monitoring of the reactions showed that dinuclear palladium complexes were more
involved as active catalytic intermediates than mononuclear species. Tests of complexation suggested
a reoxidation of Pd occurring before the decoordination of the product. These studies associated to
kinetic experiments led us to propose the catalytic cycle depicted in Scheme 12, in which intermediates
having the Pd atom in mauve color correspond to clusters detected by ESI–MS.
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7. Cyclohexanone Dehydrogenation

In 1982, we disclosed the room temperature Pd(OCOCF3)2-catalyzed dehydrogenation of
cyclohexanones under oxygen atmosphere (Equation (21)) [96]. Pd procedures were previously
reported but using mainly stoichiometric amounts of PdII [97].Catalysts 2020, 10, x FOR PEER REVIEW  13 of 22 
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Cyclohexenone was selectively produced at low conversion. Increase of the latter led to
over-oxidation giving phenol. The proposed catalytic cycle (Scheme 13) maintains the formal oxidation
state of PdII throughout the reaction. Coordination of cyclohexanone or its enol form to Pd(OCOCF3)2

provides 13A, which led to oxo-η3-allyl palladium complex 13B in liberating CF3CO2H. Hydrogen
abstraction by palladium provides 13C which undergoes insertion of oxygen and ligand exchange
giving 2-cyclohexenone and hydroperoxy complex 13D. The latter leads to H2O2 and either 13B (path
a) or 13A by reacting with CF3CO2H (path b).
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This oxidation process was, in 1982, one of the first reports on the regeneration of active PdII

species using only oxygen [98–100]. The pathway leading to PdOOH from PdH and O2, that is 13D
from 13C remains however a matter of debate [98–101].

A number of procedures are now available for the Pd-catalyzed dehydrogenation of carbonyl
compounds [102]. Moreover, such a dehydrogenation may be a step of a domino reaction involving
the Heck reaction, decarboxylative Heck reaction or dehydrogenative Heck reaction [103].

8. Dehydrogenative Heck Reaction

Disclosed in 1970, the Heck reaction is traditionally the synthesis of an arylalkene from the
Pd0-catalyzed cross-coupling of an aryl halide with an alkene [104]. Previously, Fujiwara’s team
reported the synthesis of stilbene from the reaction of benzene with styrene and PdCl2, leading to two
turnovers of palladium [105]. Such a cross-coupling, for which we adopted the name “dehydrogenative
Heck reaction” (DHR) [106], may be more respective of the atom economic principle [107], and has
been intensively studied over the last twenty years [108].

Our studies focused on the coupling of furan 34 with styrene. Screening various experimental
conditions initially led to the best results with catalytic Pd(OAc)2 and the BQ/Cu(OAc)2/O2 oxidizing
system (Equation (22)). The method was used for the DHR of various furans and styrenes with high
regio- and stereoselectivities (30 examples, 50%–78% yields) [109].Catalysts 2020, 10, x FOR PEER REVIEW  14 of 22 
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react with the arene leading to ArPdOAc(DMSO)2. Subsequent ligand exchange with BQ could give
the less electron-rich species ArPdOAc(BQ)(DMSO), which would be susceptible to easily coordinate
to electron-rich styrenes [110].
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Catalytic amounts of metallic co-oxidants are often required for efficient DHRs under oxygen [108].
We observed, however, that such additives are not always beneficial. Indeed, the room temperature
Pd(OAc)2-catalyzed reaction of 34 with styrene in oxygenated DMSO/AcOH afforded the cross-coupling
product in higher yield in their absence (Equation (25)). Thus, these mild experimental conditions were
used for the efficient DHR of furans, thiophenes and indoles with styrenes (29 examples, 42%–95%
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yields) [116]. ESI–MS studies of mixtures of Pd(OAc)2 and AgOAc have shown the formation of mixed
species; which could be inactive towards the DHR.
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The reaction of thiophene 37 with a hindered alkene such as methyl cinnamate under conditions
of Equation (24) occurred with 5% conversion leading to traces of DHR product 38 [117]. With AcOH
as the solvent instead of the AcOH/DMSO mixture, the conversion increased to 20%. Testing various
ligands led to an efficient DHR with 4,5-diazafluorenone (Equation (26)). Moreover, increase of the
temperature to 60 ◦C with O2 instead of BQ led to 38 in 90% isolated yield. Consequently, these
conditions have been used for the cross-coupling of furans and thiophenes with various hindered
alkenes (19 examples, 51%–96% yield). According to kinetics and competitive experiments as well
as ESI–MS studies, 4,5-diazafluorenone influences the C–H bond activation, the alkene insertion, the
stereoselectivity and the regeneration of the catalyst [117].
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to a 1:1 mixture of difurylalkanes 40 and 41. Moreover, switching to Pd(OCOCF3)2 as the catalyst
increased the 40 + 41 yield to 94% (Equation (27)).
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9. Conclusions

Starting at the end of the 1970s with oxidations of CH or CH2 units under UV light, our research
evolved towards light-free reactions in various media: organic solvents, water, molten salts, leading
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to alcohol oxidation, dehydrogenation, etherification or formation of C–C bonds. We have always
been strongly focused on the mechanisms; these lead us to various proposals, especially those based
on ESI–MS results. Some reactions and mechanisms have been serendipitously discovered [119], but
nevertheless, in most cases, they were the fruit of deep investigations and reflection, rather than
good fortune.
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