

Supplementary Materials

Strong Solvent Effects on Catalytic Transfer Hydrogenation of Ketones with [Ir(cod)(NHC)(PR₃)] Catalysts in 2-Propanol-Water Mixtures

Krisztina Orosz 1.2, Gábor Papp 1, Ágnes Kathó 1, Ferenc Joó 1.3 and Henrietta Horváth 3,*

- ¹ Department of Physical Chemistry, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary; orosz.krisztina@science.unideb.hu (K.O.); papp.gabor@science.unideb.hu (G.P.); katho.agnes@science.unideb.hu (Á.K.); joo.ferenc@science.unideb.hu (F.J.)
- ² Doctoral School of Chemistry, University of Debrecen, H-4002 Debrecen, Hungary
- ³ MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, P.O. Box 400, H-4002 Debrecen, Hungary
- * Correspondence: henrietta.horvath@science.unideb.hu

Contents

Table S1:	Transfer hydrogenation of ketones catalyzed by complexes $1-6$ and 9 .	S 3			
Figure S1.	Effect of various bases on the transfer hydrogenation of acetophenone catalyzed				
by [Ir(cod)(e	emim)(<i>m</i> tppms)] (6).	S4			
Figure S2.	The effect of substrate concentration on the transfer hydrogenatio	n of			
acetophenon	e catalyzed by [Ir(cod)(emim)(<i>m</i> tppms)] (6).	S5			
Figure S3.	The effect of increasing catalyst amount on the conversion on the transfer				
hydrogenatio	on of acetophenone catalyzed by [Ir(cod)(emim)(<i>m</i> tppms)] (6).	S 6			
Figure S4.	Infrared spectrum of [IrCl(cod)(Bnmim)] (3).	S7			
Figure S5.	Infrared spectrum of [IrCl(cod)(emim)(PPh ₃)] (5).	S 8			
Figure S6.	Infrared spectrum of [Ir(cod)(Bnmim)(<i>m</i> tppms)] (9).	S9			
Figure S7.	Infrared spectrum of [emimH][<i>m</i> tppms].	S10			
Figure S8.	¹ H NMR spectrum of [IrCl(cod)(Bnmim)] (3).	S 11			
Figure S9.	¹³ C{ ¹ H} NMR spectrum of [IrCl(cod)(Bnmim)] (3).	S12			
Figure S10.	¹ H NMR spectrum of [Ir(cod)(emim)(PPh ₃)]Cl (5).	S13			
Figure S11.	³¹ P{ ¹ H} NMR spectrum of [Ir(cod)(emim)(PPh ₃)]Cl (5).	S14			
Figure S12.	¹³ C{ ¹ H} NMR spectrum of [Ir(cod)(emim)(PPh ₃)]Cl (5).	S15			
Figure S13.	¹ H NMR spectrum of [emimH][<i>m</i> tppms].	S16			
Figure S14.	³¹ P{ ¹ H} NMR spectrum of [emimH][<i>m</i> tppms].	S17			
Figure S15.	¹³ C{ ¹ H} NMR spectrum of [emimH][<i>m</i> tppms].	S18			
Figure S16.	¹ H NMR spectrum of [Ir(cod)(Bnmim)(<i>m</i> tppms)] (9).	S19			
Figure S17.	³¹ P{ ¹ H} NMR spectrum of [Ir(cod)(Bnmim)(<i>m</i> tppms)] (9).	S20			
Figure S18.	¹³ C{ ¹ H} NMR spectrum of [Ir(cod)(Bnmim) (m tppms)] (9).	S21			
Experimental details for solid state structure determinations of 1, 3, and 6 by single crystal					
X-ray diffra	ction.	S22			

Table S2.Summary of crystallographic dataS22

Entry	Substrate	Product	Catalyst	Conversion ^a (%)
	CH3		1	87
			2	88
		CH ₃	3	91
1			4	48
			5	89
			6	90
			9	93
			1	86
		OH I	2	84
2			4	63
			5	91
			6	90
	CI CH ₃		1	94
		CI CH3	2	91
3			4	59
			5	92
			6	93
		ОН	1	92
			2	84
4			4	74
			5	99
			6	100
		ОН	1	27
			2	24
5			4	8
			5	63
			6	53

Table S1. Transfer hydrogenation of ketones catalyzed by complexes 1–6 and 9.

Conditions: n(catalyst) = 0.01 mmol, n(acetophenone) = 1.0 mmol, n(t-BuOK) = 0.05 mmol, T = 80 °C, t = 30 min, V(2-PrOH) = 1.0 mL; [S]/[C]/[B] = 100/1/5. ^a Determined by gas chromatography.

Figure S1. Effect of various bases on the transfer hydrogenation of acetophenone catalysed by [Ir(cod)(emim)(mtppms)] (6). Conditions: n(catalyst) = 0.01 mmol, n(acetophenone) = 1 mmol, T = 80 °C, t = 1 h, V(2-PrOH) = 1.0 mL; [S]/[C] = 100/1.

Figure S2. The effect of substrate concentration on the transfer hydrogenation of acetophenone catalyzed by [Ir(cod)(emim)(*m*tppms)] (6).

Conditions: *n*(catalyst) = 0.01 mmol, *n*(*t*-BuOK) = 0.05 mmol, *T* = 80 °C, *t* = 30 min, *V*(2-PrOH) = 1.0 mL; [S]/[C] = 100–500, [C]/[B] = 1/5

Figure S3. Effect of increasing catalyst amount on the transfer hydrogenation–of acetophenone catalyzed by [Ir(cod)(emim)(*m*tppms)] (6).

Conditions: *n*(acetophenone) = 5 mmol, *n*(*t*-BuOK) = 0.1 mmol, *T* = 80 °C, *t* = 30 min, *V*(2-PrOH) = 1.0 mL. [S]/[C] = 250–1000

Figure S4. Infrared spectrum of [IrCl(cod)(Bnmim)] (3).

Figure S5. Infrared spectrum of [IrCl(cod)(emim)(PPh₃)] (5).

Figure S6. Infrared spectrum of [Ir(cod)(Bnmim)(*m*tppms)] (9).

Figure S7. Infrared spectrum of [emimH][*m*tppms].

Figure S8. ¹H NMR spectrum of [IrCl(cod)(Bnmim)] (3).

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum of [IrCl(cod)(Bnmim)] (3).

Figure S10. ¹H NMR spectrum of [Ir(cod)(emim)(PPh₃)]Cl (5).

Figure S11. ³¹P{¹H} NMR spectrum of [Ir(cod)(emim)(PPh₃)]Cl (5).

Figure S12. ¹³C{¹H} NMR spectrum of [Ir(cod)(emim)(PPh₃)]Cl (5).

Figure S13. ¹H NMR spectrum of [emimH][*m*tppms].

Figure S14. ³¹P{¹H} NMR spectrum of [emimH][*m*tppms].

Figure S15. ¹³C{¹H} NMR spectrum of [emimH][*m*tppms].

Figure S16. ¹H NMR spectrum of [Ir(cod)(Bnmim)(*m*tppms)] (9; Ar=C₆H₄-*m*-SO₃⁻).

Figure S17. ³¹P{¹H} NMR spectrum of [Ir(cod)(Bnmim)(*m*tppms)] (**9**; Ar=C₆H₄-*m*-SO₃⁻).

Figure S18. ¹³C{¹H} NMR spectrum of [Ir(cod)(Bnmim)(*m*tppms)] (**9**; Ar=C₆H₄-*m*-SO₃⁻).

Experimental details for solid state structure determinations of 1, 3, and 6 by single crystal X-ray diffraction

Suitable crystals were mounted on Mitegen loops and fixed with high density paraffin oil. X-ray diffraction data were collected using a Bruker-D8 Venture diffractometer equipped with INCOATEC IµS 3.0 dual (Cu and Mo) sealed tube microsources and Photon II Charge-integrating Pixel Array detector. Mo K α (λ = 0.7107 Å) radiation was used for all compounds. Diffraction data collection and integration of the frames were performed by APEX3 packages [S1]. Using the Olex² [S2] and WinGX suites [S3], the structures were solved with the SIR-2014 [S4] or the SHELXT [S5] structure solution programs and refined by full-matrix least-squares method of *F*². Non-hydrogen atoms were refined with anisotropic thermal parameters using the SHELXL package [S6] and hydrogen atoms were placed into their geometric positions. [Ir(cod)(emim)(*m*tppms)], **6** contains two disordered CHCl₃ molecules. The publication materials (figures) were prepared by the WINGX [S3], PublCIF4 [S7] and the Mercury [S8] programs.

The *crystallographic data* (excluding the structure factors) for the **1**,**3**,**6** structures were *deposited* at the *Cambridge Crystallographic Data Centre*, CCDC-1967347, CCDC-1967348, CCDC-1967349

	[IrCl(cod)(emim)], 1	[IrCl(cod)(Bnmim)], 3	[Ir(cod)(emim)(<i>m</i> tppms)], 6
Chemical formula	$C_{14}H_{22}ClIrN_2$	$C_{38}H_{48}Cl_2Ir_2N_4$	$C_{17.50}H_{18}C_{14.25}Ir_{0.50}NO_2P_{0.50}\;S_{0.50}$
FW (g mol ⁻¹)	445.98	1016.1	552.61
T (K)	295(2)	273(2)	293(2)
λ (Å)	0.71073	0.71073	0.71073
Crystal size (mm)	0.073×0.109×0.141	0.4×0.073×0.064	0.113×0.119×0.138
Crystal habit, colour	prism, yellow	needle, yellow	block, orange
Crystal system	monoclinic	monoclinic	triclinic
Space group	$P2_{1}/n$	<i>P</i> 2 ₁ /c	<i>P</i> -1
a (Å)	7.2744(3)	17.9759(11)	10.2957(11)
b (Å)	17.9521(7)	11.1446(6)	10.7135(12)
c (Å)	11.6308(5)	19.6327(10)	20.585(2)
α (°)	90	90	78.888(6)
β (°)	103.313(2)	111.922(2)	83.008(5)
γ (°)	90	90	88.625(6)
V (Å ³)	1478.06(11)	3648.7(4)	2207.4(5)
Z	4	4	4
ρ_{calc} (g/cm ³)	2.004	1.850	1.663
$\mu (mm^{-1})$	9.199	7.466	3.660
Θrange	2.90-25.69	2.20-25.40	2.34-26.11
Index range	$-8 \le h \le 8$	$-21 \leq h \leq 20$	$-12 \le h \le 12$
	$-22 \le k \le 22$	$-13 \le k \le 13$	$-13 \le k \le 13$
	$-14 \le l \le 14$	$-23 \le l \le 23$	$-25 \le l \le 25$
Reflns collected	16544	38714	142890
Independent reflns	2884 [R _{int} =0.0578]	6688 [R _{int} =0.1925]	7229 [R _{int} =0.1151]
Data / restraints / parameters	2884/0/174	6688/0/418	7229/0/526

Table S2. Summary of crystallographic data.

Goodness-of fit on \mathbf{F}^2	1.064	1.028	1.268
R_1 [I>2 σ (I)]	0.0283	0.0542	0.0878
wR_2 [all data]	0.0471	0.1330	0.2203
CSD	1967347	1967348	1967349

Reference:

- [S1] APEX3 v2017.3-0, Bruker AXS Inc., 2017.
- [S2] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann J. Appl. Cryst. 1999, 42, 339-341.
- [S3] L. J. Farrugia: WinGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr. 1999, 32, 837-838.
- [S4] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, J. Appl. Cryst. 2007, 40, 609-613.
- [S5] G. M. Sheldrick: SHELXT Integrated space-group and crystal-structure determination *Acta Cryst.* 2015, *A71*, 3-8.
- [S6] G. M. Sheldrick: A short history of SHELX, Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112-122.
- [S7] S. P. Westrip: PublCIF: Software for editing, validating and formatting crystallographic information files, *J. Appl. Crystallogr.* **2010**, *43*, 920-925.
- [S8] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, *J. Appl. Cryst.* 2008, 41, 466-470.