

Supplementary Materials

Flow-through Macroporous Polymer Monoliths Containing Artificial Catalytic Centers Mimicking Chymotrypsin Active Site

Mariia Stepanova ¹, Olga Solomakha ¹, Daria Ten ¹, Tatiana Tennikova ² and Evgenia Korzhikova-Vlakh ^{1,2}

- ¹ Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia; maristepanova@hq.macro.ru (M.S.); solomanya@bk.ru (O.S.); dvendina@bk.ru (D.T.)
- ² Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 199034, Russia; tennikova@mail.ru (T.T.)
- * Correspondence: vlakh@mail.ru (E.K.-V.); Tel.: +7 (812) 323-04-61

Table S1. Compositions of polymerization mixtures tested for the one-step synthesis of macroporouspolymer monolith containing catalytic centers mimicking chymotrypsin active site. Conditions:monomers/porogens = 25/75 (% v/v), AIBN concentration was 1% from mass of monomers;polymerization time -8 h; temperature -70 °C.

Sample	Content		Composi	tion of mon	omers, mol	Porogens,	Characteristics	
	of CoCl ₂ ,	HEMA	MAA	MA-His	EDMA	PEGDA	vol%	
1	mol%	10	10		70		1 4 1 4 1 1 1/	
1	10	10	10	-	70	-	1,4-butanediol/	
							1-decanol/	
							1-propanol/	Delamination
							toluene =	
2	10	10	10	10		70	59/7/8/26	
2	10	10	10	10	-	70	1,4-butanediol/	
							1-decanol/	
							isopropanol/	Soft polymer
							isooctane =	
2	10	10	10	10		70	21/48/3/28	
3	10	10	10	10	-	70	1,4-butanediol/	
							1-decanol/	Soft polymer
							isopropanol/	
							methanol/ H ₂ O =	
	10	10	10	10	- /		26/52/8/7/7	
4	10	10	10	10	56	14	1,4-butanediol/	
							1-decanol/	Compressed
							methanol/H2O =	under flow rate
							24/36/29/11	
5	10	10	10	-	70	-	1,4-butanediol/	
							1-decanol/	
							isopropanol/	Delamination
							methanol/ H_2O =	
							10/56/20/10/4	
6	10	10	10	-	70	-	1,4-butanediol/	
							1-decanol/	
							methanol/PEG-	Delemination
							200/cyclohexano	Detamination
							$l/H_2O =$	
							19/13/3/32/7/19	
7	10	10	10	-	70	-		Permeability =
							1 4 houtene diel/	(3.6±0.3) × 10 ⁻¹⁴ ,
							1,4-butanediol/	porosity = 92%;
							$\frac{1100}{100} = \frac{100}{100}$	average pore
							<i>33</i> / 4 <i>3</i> /22	size = 1090±85
								nm

Sample	Monomers, mol%			Porogens	s, vol%	Characteristics	
	EDMA	DEGDMA	PEGDA	1-	Toluene	Average pore	Porosity,
				Dodecanol		size, nm	%
1	80	20	-	80	20	1150 ± 60	83 ± 3
2	-	-	100	70	30	830 ± 90	91 ± 10
3	100	-	-	90	10	2230 ± 100	35 ± 12
4	100	-	-	70	30	1580 ± 100	82 ± 5

Table S2. Compositions of polymerization mixtures tested for the synthesis of macroporous monolithic framework. Conditions: monomers/porogens = 20/80 (% v/v), AIBN concentration was 1% from mass of monomers; polymerization time -5 h; temperature -70 °C.

Figure S1. Raman spectra of macroporous polyEDMA synthesized during different polymerization time.

Figure S2. Scheme of catalysis performance in the recirculation mode.

Figure S3. Lineweaver-Burk plots for hydrolysis of Z-Tyr-OPNP by macroporous non-imprinted mimic (NIC) (**A**) and immobilized enzyme (IME) (**B**) monoliths, and hydrolysis of Fmoc-Ala-OPNP by macroporous imprinted mimic (MIC) monolith (*C*).

A

В

Figure S4. Calibration plot for L-His (A) and mixture of amino acids (L-Ala, L-His and L-Ser) (B) determination with the use of TNBS solution. Absorbance measurement was done at λ = 425 nm.

Figure S5. Calibration plot for p-nitrophenol (PNP). Absorbance of PNP measured in the mixture of acetonitrile/0.005M sodium phosphate buffer (pH = 7.8) = 60/40 (% v/v) was measured at 405 nm.