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Abstract: Under the current double challenge of energy and the environment, an effective nitrogen
reduction reaction (NRR) has become a very urgent need. However, the largest production of
ammonia gas today is carried out by the Haber–Bosch process, which has many disadvantages,
among which energy consumption and air pollution are typical. As the best alternative procedure,
electrochemistry has received extensive attention. In this paper, a catalyst loaded with Fe3 clusters
on the two-dimensional material C2N (Fe3@C2N) is proposed to achieve effective electrochemical
NRR, and our first-principles calculations reveal that the stable Fe3@C2N exhibits excellent catalytic
performance for electrochemical nitrogen fixation with a limiting potential of 0.57 eV, while also
suppressing the major competing hydrogen evolution reaction. Our findings will open a new door
for the development of non-precious single-cluster catalysts for effective nitrogen reduction reactions.

Keywords: C2N-supported Fe3 catalyst; nitrogen reduction reaction (NRR); density functional
theory (DFT)

1. Introduction

Ammonia (NH3) is an important chemical in agriculture and industry [1], and the direct reduction
of nitrogen to ammonia is still considered to be one of the most important and challenging chemical
transformations [2]. Dinitrogen (N2), as the component with the largest volume fraction (78.08%) in the
Earth’s atmosphere, is the main source of nitrogen [3]. Therefore, ammonia can be directly synthesized
from the Earth’s abundant nitrogen resources. Usually, the Haber–Bosch process (N2 + 3H2 = 2NH3)
is used to synthesize ammonia on large scales. In this process, iron and ruthenium-based metal
catalysts are used to convert atmospheric nitrogen (N2) into NH3 by reacting with hydrogen (H2) [4,5];
the adsorbed N2 molecule is firstly dissociated on specific active sites of the catalysts [6–8], and
then the dissociated N species are hydrogenated, which is known as the dissociation mechanism [9].
However, extreme reaction conditions are usually required, such as high pressure (~100 bar) and high
temperature (~700 K) [10]; as the reaction proceeds, a large amount of carbon dioxide is emitted, and
the energy consumed each year is huge. On the other hand, the conditions of high temperature and
pressure may not be necessary because the reaction is actually exothermic [10]. For this reason, it is of
significance to search for a green and cost-effective method for the production of ammonia [11].

With continuous efforts, scientists have found that the electrochemical nitrogen reduction reaction
(NRR, N2 + 6H+ + 6e− = 2NH3) [12] under environmental conditions is extremely attractive because of
its greatly reduced energy input and good environmental compatibility. Here, the electrocatalyst is
the core component for reducing the reaction limit potential and increasing the reaction speed and
the selectivity of NH3 [13]. For NRR, one of the key challenges is the activation of nitrogen, which is
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due to the highly stable N≡N bond [14]. The capability of N2 adsorption strongly depends on the
electronic structure of the elements in the catalysts, since only the elements possess unoccupied d
orbitals; d orbitals with an appropriate symmetry can accept the electrons of N2, and the occupied d
orbitals of these elements can back donate to the π orbitals of N2, thus weakening the N≡N bond [15].
Suitable and active catalysts can break the N≡N bond, and hence, the single nitrogen atoms react with
hydrogen to form ammonia. In recent years, not only single-atom catalysts (SACs) [12–21] have been
emerging as a novel strategy for designing effective electrocatalysts for NRR: the catalytic performance
of double atomic catalysts (DACs) [21–24] and triple atomic catalysts (TACs) [25,26] for NRR has also
been explored both experimentally and theoretically.

Many transition-metal (TM) species, such as Fe, Ru, Co and Mo-based complexes, have been
used for nitrogen fixation, because the occupied d orbitals of these metals can donate electrons to the
empty π*-orbital of N2 and accept electrons from its σ-orbital, thereby enhancing the adsorption of
N2 [23]. Among the transition metals, Mo and Fe were considered to be the most promising metal
species because, based on density functional theory (DFT) calculations, Mo and Fe were located at
the top of the volcano map [27], and Fe has received the most attention because of its robustness and
low cost [16]. For example, in 2018, Li’s group proposed that Fe3@Al2O3 as a catalyst for NRR has
superior catalytic performance [25], and quite recently, Jiang and co-workers’ DFT studies showed that
the Fe3 cluster loaded on a heterostructure of graphdiyne and graphene (GDY/Gra) also had excellent
NRR catalytic activity [28]. Thus, we conceived that the Fe3 clusters should have capable catalytic
performance when supported on a suitable substrate, such as the C2N monolayer. The C2N monolayer
was first fabricated in 2015 [22] and has a unique porous structure originating from a 2D graphene layer,
which provides an ideal support for metal atoms as the active center and has a high surface-to-volume
ratio property that ensures sufficient exposure of TM atoms to interact with reactant molecules [29].
Thus, we explored the stability of Fe3 clusters anchored on the C2N monolayer (Fe3@C2N) and the
electrocatalysis of NRR by means of density functional theory (DFT) computations. Our calculations
show that Fe3@C2N is a stable metal and has excellent catalytic performance for the N2 reduction
reaction with the supported Fe3 cluster serving as the active center.

2. Results and Discussion

2.1. The Geometry, Stability and Electronic Properties of the Fe3@C2N

Two-dimensional (2D) C2N is a porous material similar to graphene, and the hexagonal lattice
parameter of the C2N unit cell was calculated to be 8.32 Å, which matches well with previous studies [29].
The optimized geometric structure of C2N is given in Figure 1a. In the C2N monolayer, the C6 rings
are connected by N atoms, resulting in a six-membered nitrogen pore with a para-N distance of 5.51 Å;
the pores provide desired sites to anchor metal atoms or clusters. Previous theoretical studies [30,31]
showed that adding the second Fe atom to Fe1@C2N is energetically favored: the binding energy of the
second Fe atom is comparable to that of the first one, and Fe2@C2N maintains its original structure
throughout a 10 ps molecular dynamics simulation at 800 K [30]. Based on the porous structural
feature in the C2N monolayer and the stable Fe2@C2N complex [30,31], we conjectured that adding
one more Fe atom to Fe2@C2N, i.e., Fe3@C2N, may also have good thermodynamic and thermal
stability. According to our computations, the lowest-energy supported Fe3 cluster adopts a buckled
triangle structure, with each Fe bonded to two N atoms, and the buckling height of the Fe3 structure
is 1.29 Å, while the C2N support almost maintains its flat configuration (Figure 1b), similar to the
model proposed by Pei et al. [32]. The Fe−Fe and Fe−N bond lengths are in the range of 2.28~2.32 Å
(slightly shorter than the 2.48 Å in the bulk phase) and 1.97~2.01 Å, respectively. The average binding
energy per Fe atom is −4.12 eV, which is slightly lower than the value of −4.84 eV per Fe atom in
the bulk phase at the same level of theory, indicating the good thermodynamic stability of Fe3@C2N.
Furthermore, a first-principles molecular dynamics (FPMD) simulation in an NVT ensemble with
the temperature controlled by the Nosé–Hoover method [33] was performed, and the structure of
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Fe3@C2N was well kept through a 10 ps FPMD with a time step of 0.5 fs at 800 K (Figure S1). Thus,
Fe3@C2N is extraordinarily stable.
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Figure 1. Top and side views of C2N (a) and Fe3@C2N (b), as well as their corresponding band
structures (c,d).

Good electrical conductivity is required for fast charge transfer during efficient electrocatalytic
processes. Compared to the semiconducting C2N monolayer, whose band gap was calculated to be
1.68 eV (Figure 1c), in line with a previous report [29], Fe3@C2N is a ferromagnetic (each Fe atom
carries the magnetic moment of ~3 µB, Figure S2) metal (Figure 1d), and the metallic feature originates
from the states that have crossed the Fermi level, which is dominatingly attributed to the Fe-d orbitals
(Figure S3). The charge transfer between the Fe3 cluster and C2N is 2.12 |e|, indicating the high activity
of the Fe3 cluster.

2.2. N2 Adsorption on Fe3@C2N

Previous investigations proposed the following criteria for an efficient electrocatalyst for NRR:
(1) the catalyst can facilitate the chemisorption of N2 molecules to sufficiently activate the inert N≡N
triple bonds, and (2) the catalyst can selectively stabilize N2H* and (3) destabilize NH2* species to lower
the limiting potential [12]. In the electrochemical synthesis of ammonia, the adsorption of nitrogen is
considered to be the first step, and the initial nitrogen adsorption configuration plays an important role
in subsequent reactions [9]. On pristine C2N, the adsorption of N2 is very weak, and the adsorption
energy (Eads) is only −0.01 eV, which indicates that the pristine C2N monolayer cannot effectively
activate nitrogen. Zhao’s theoretical group also found that N2 adsorption on C and N atoms is rather
weak (Eads < −0.20 eV), or the N2 molecule is spontaneously trapped by the central TM atoms after
structural optimization on TM@C2N [34]. In our work, we considered two adsorption configurations,
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namely, end-on and side-on structures of N2 on the Fe3 cluster anchored on C2N (Figure 2), and the
adsorption energies of the two configurations are −1.08 and −1.45 eV, respectively. The Eads values are
sufficiently strong to capture and activate N2, as indicated by the elongated N≡N lengths of 1.16 and
1.26 Å (the isolated N≡N length was calculated to be 1.11 Å) and a charge transfer of −0.57 and −1.14
|e| for the end-on and side-on configurations, respectively. Compared to the maximum vibrational
frequency of free N2 (2420 cm−1), the maximum vibrational mode of the adsorbed N-N in the side-on
(end-on) configuration is 1380 (2011) cm−1. The remarkably reduced frequency in the side-on structure
suggests an apparent elongation/weakening in the N-N bond upon N2 being adsorbed on Fe3@C2N.
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2.3. N2 Reaction on Fe3@C2N

Considering the energetically preferred side-on configuration and the greater charge transfer
between N2 and Fe3@C2N, as well as the much longer stretched N≡N length, we selected the N2

adsorption with the side-on structure as the starting state for NRR.
Previous studies revealed that the N2 molecule could dissociate directly on the specific iron

surface, such as Fe(111) and Fe(211) surfaces [35,36]; we first examined the dissociative mechanism.
However, our computations showed that the dissociated NN state on Fe3@C2N is not energetically
favored, since it is 2.67 eV higher in energy than the N2 adsorbed state (Figure S4), suggesting a very
high activation energy barrier (>2.67 eV) of N2 dissociation. For comparison, the calculated barrier of
N2 dissociation is as high as 1.89 eV on Fe3/θ-Al2O3(010) [25]. Thus, the dissociative mechanism of
NRR over Fe3@C2N was not further studied in our work. Quite recently, Wang’s theoretical group
proposed a new mechanism for NRR, namely, a surface-hydrogenation mechanism [37], where the
surface hydrogenation can drive the N2 reduction reaction. We also tested the surface-hydrogenation
mechanism of NRR on Fe3@C2N; nevertheless, N2 adsorption on the hydrogenated Fe3 cluster is
endothermic at 2.41 eV (Figure S5), indicating an unfavorable pathway for NRR. Therefore, we focused
on the associative mechanism in the following experiment.

For the associative mechanism, we compared the enzymatic (*→ *N2 → *NNH→ *HNNH→
*HNNH2→ *H2NNH2→ *H3NNH2→ *NH2→ *NH3→ NH3(g)) and consecutive (*→ *N2→ *NNH
→ *NNH2→ *NNH3→ *N→ *NH→ *NH2→ *NH3→ NH3(g)) pathways [38] for NRR (Figure 3a),
and the free energy change for each step is illustrated in Figure 3b,c. The difference between the
two mechanisms is that in the enzymatic mechanism, the proton–electron pair (H+ + e−) alternately
attacks two N atoms, while in the consecutive mechanism, the proton–electron pair first continuously
approaches one N atom to generate the first NH3 and then attacks the other N atom to generate the
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second NH3 [39]. The free energy difference for each elementary step in the enzymatic (consecutive)
route is −0.92, 0.28, −0.02, 0.57, −1.82, 0.11, 0.54, 0.44 and 0.01 (−0.92, 0.28, 0.83, −1.51, 0.28, −0.78,
0.57, 0.44 and 0.01) eV, respectively, and accordingly, the potential limiting step *HNNH→ *HNNH2

(*NNH→ *NNH2) has a maximum free energy change of 0.57 (0.83) eV via the enzymatic (consecutive)
mechanism. Thus, the limiting potential (η) of NRR on Fe3@C2N is as low as −0.57 V, lower than the η
values on the Ru (0001) step surface [40] and Fe2@C2N [24] (0.98 eV and 1.23 eV, respectively). Typically,
the potential limiting step on most metal surfaces (such as Re, Ru, Rh and Fe) or two-dimensional
MBenes is either the first hydrogenation (forming *NNH) or the last protonation (*NH3 formation or
NH3 desorption) [9,41]. However, on Fe3@C2N, the free energy change of *N2→ *NNH is only 0.28 eV.
We also calculated the barriers of the potential limiting steps of the two mechanisms, and the barriers
are both 1.11 eV based on the CI-NEB method (Figure S6), lower than the corresponding values (1.24
and 1.31 eV) on Fe3@θ-Al2O3(010) [25]. All of the above results suggest the high activity of Fe3@C2N
for NRR.
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diagram through enzymatic (b) and consecutive mechanisms (c) at different limiting potentials.

In addition to the catalytic activity, another important aspect for the catalytic performance is the
selectivity of NRR [22]. Due to the high content of protons in the acidic solution, the major competitive
reaction of NRR is the hydrogen evolution reaction (HER). The adsorption energy of *H on Fe3@C2N is
−0.94 eV, weaker than Eads of N2 (−1.45 eV), and expectedly, the charge transfer between *H and the
catalyst is smaller (0.43 |e| vs. 1.14 |e|). By comparing the energies of two *H on Fe3@C2N (−1.69 eV)
and the formation of H2 (1.79 eV, illustrated in Figure S7), we found that the reaction energy of HER is
as high as 3.45 eV, indicating that Fe3@C2N has a high ability to suppress the competing HER during
NRR under an acidic environment. The stable and metallic Fe3@C2N not only possesses low NRR
limiting potential but also exhibits high selectivity against HER, and therefore, the low-cost Fe3@C2N
is a highly promising electrocatalyst for NRR.
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3. Materials and Methods

The spin-polarized density functional theory (DFT) calculations were carried out using the Vienna
Ab initio Simulation Package (VASP 5.4.4) [42]. The exchange–correlation functional was described by
the Perdew, Burke, and Ernzerhof (PBE) parameterization of the generalized gradient approximation
(GGA) [43]. The projector augmented-wave (PAW) potential [44] was employed, and an electron
configuration of 3d74s1 was adopted for Fe. According to our tests, we found that the system is
ferromagnetic, with each Fe atom carrying a magnetic moment of ~3 µB (Figure S2), which is quite
similar to the case of a Fe3 cluster on the θ-Al2O3(010) surface [25]. A cutoff energy of 550 eV
was adopted. The van der Waals interactions were described using the empirical correction in the
Grimme scheme (DFT-D2) [45], where the dispersion energy is corrected based on the pairwise atomic
–C/R6 terms. The D2 scheme was widely used in these theoretical studies for the oxygen reduction
reaction [29] and NRR [2]. During the structure relation, the maximum force and energy on each
atom were less than 0.01 eV/Å and 10−5 eV, the width of smearing was chosen as 0.2 eV, and k-points
were sampled using the 5 × 5 × 1 Monkhorst−Pack mesh [46]. To avoid the interaction between
two neighboring surfaces, a vacuum space over 20 Å was used [2,40]. To simulate a C2N monolayer,
a periodic 1 × 1 unit cell (with a lateral dimension of ~8.34 Å) containing 12 carbon atoms and 6
nitrogen atoms was constructed. The barriers of the potential limiting steps were identified by using
the climbing image nudged elastic-band (CI-NEB) method [47].

The average binding energy (Eb) of each Fe atom on the C2N substrate in our work is given by

Eb = (EFe3 @C2 N − EC2 N − 3EFe)/3

where EFe3 @C2 N, EC2 N and EFe are the energies of the Fe3@C2N system, the C2N monolayer, and an
isolated Fe atom, respectively.

The adsorption energy (Eads) of the single atom or NRR intermediates was determined according
to the following equation:

Eads = Etot − EFe3 @C2 N − Eadsorbate

where Etot, EFe3 @C2 N and Eadsorbate represent the total energies of the systems containing the Fe3@C2N
catalyst and the adsorbate, Fe3@C2N, and the adsorbate, respectively.

According to the calculated hydrogen electrode (CHE) model proposed by Nørskov and
co-workers [48], the reaction free energy of each basic step ∆G is calculated by

∆G = ∆E − ∆EZPE − T∆S + eU + ∆GpH

In the above equation, ∆E is the reaction energy difference between the products and reactants of
the NRR occurring on the catalyst, which can be directly obtained from DFT computations, and ∆EZPE

is the change in zero-point energies, which was calculated from the vibrational frequencies [12].
The vibrational frequencies were calculated based on the finite differences method, and only the
adsorbed species were included. ∆S is the change in entropy at 298.15 K. Among them, the free energy
correction of pH is expressed by ∆GpH, which is equal to kBT × ln10 × pH, where kB is the Boltzmann
constant. In this study, it is assumed that pH = 0.

The limiting potential (η) of the entire reduction process is determined by the potential limiting
step, which has the most positive ∆G (∆GMax), as computed by η = −∆GMax/e [49].

The reaction rates of the key reaction steps were estimated based on Nørskov’s model [48],
provided that there is no extra barrier: k = k0exp(−∆G/kBT), where ∆G is the free energy change and k0

is the prefactor. The approximated values are given in Table S3.

4. Conclusions

In summary, we designed a supported catalyst, i.e., Fe3 clusters anchored on a two-dimensional
C2N monolayer (Fe3@C2N), to electrocatalyze the reduction of nitrogen to ammonia. Through our
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density functional theory computations, we found that Fe3@C2N is excellent as an electrocatalyst for
NRR owing to the stability at high temperature (800 K), the metallic feature, the absence of precious
metal, the low limiting potential (0.57 eV of the enzymatic mechanism) and the high selectivity against
the competing side reaction, HER. Such superiority can be ascribed to the partially occupied d orbitals
and largely negative charged Fe3 cluster, which is beneficial in activating the inert N≡N triple bond.
Since it was feasible to reach Cu2@C2N using CuCl2 as a metal precursor in a previous theoretical
protocol [50], Fe3@C2N could be synthesized using FeCl2 and other proper iron precursors. We hope
that our work can inspire more experimental and theoretical studies to further explore the potential of
non-precious metal clusters for NRR.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/9/974/s1:
Figure S1: Top and side views of the final structure of Fe3@C2N through a 10 ps FPMD simulation at 800 K;
Figure S2: The magnesium distribution of Fe3@C2N; Figure S3: Density of states (DOS) of C2N and Fe3@C2N;
Figure S4: The energy diagram of N2 dissociation on Fe3@C2N; Figure S5: The energy diagram of NRR via the
surface-hydrogenation mechanism on Fe3@C2N; Figure S6: The reaction pathway of the potential limiting step
of the enzymatic mechanism and the consecutive mechanism; Figure S7: The energy diagram of the hydrogen
evolution reaction (HER0 on Fe3@C2N; Table S1: The calculated zero-point energy (ZPE) and entropy of different
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