

Supplementary Materials

Fe₃ Cluster Anchored on the C₂N Monolayer for Efficient Electrochemical Nitrogen Fixation

Bing Han,¹ Haihong Meng,¹ Fengyu Li,^{1,*} Jingxiang Zhao^{2,*}

- ¹ Physical School of Science and Technology, Inner Mongolia University, Hohhot, China, 010021
- ² College of Chemistry and Chemical Engineering, Key Laboratory of Photonic and Electronic Bandgap
- Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China
- * Correspondence: fengyuli@imu.edu.cn (F.L.); zhaojingxiang@hrbnu.edu.cn (J. Z.)

Figure S2. The magnetism distribution of the Fe₃@C₂N.

Figure S3. Density of states (DOS) of C_2N (a) and $Fe_3@C_2N$ (b).

Figure S4. The energy diagram of dissociation mechanism on the Fe₃@C₂N.

Figure S5. The energy diagram of the surface hydrogenation mechanism on the Fe₃@C₂N.

Figure S6. The reaction pathway of the potential limiting step of the enzymatic mechanism (a) and the consecutive mechanism (b).

Figure S7. The energy diagram of HER on the Fe₃@C₂N.

Molecules	ZPE	TS
N_2	0.17	0.60
NH ₃	0.93	0.60
H_2	0.33	0.41

Table S1 The calculated zero-point energy (ZPE, in eV) and entropy (T = 298.15 K, in eV, taken from the NIST-JANAF thermodynamics table [S1]) of the gas molecules.

Table S2 The calculated E(DFT), ZPE and TS of intermediates on different paths (in eV).

Consecutive	E(DFT)	ZPE	TS
* N 2	-1.45	0.19	0.09
*NNH	-0.08	0.51	0.09
*NNH2	0.46	0.85	0.10
*NNH ₃	-1.74	1.12	0.18
*N	0.83	0.09	0.03
*NH	-1.12	0.40	0.04
* NH 2	0.24	0.72	0.07
* NH ₃	0.18	0.99	0.12
NH₃(g)	0.55		
Enzymatic	E(DFT)	ZPE	TS
Enzymatic *N2	E(DFT) -1.45	ZPE 0.19	TS 0.09
Enzymatic *N2 *NNH	E(DFT) -1.45 -0.08	ZPE 0.19 0.51	TS 0.09 0.09
Enzymatic *N2 *NNH *HNNH	E(DFT) -1.45 -0.08 -0.37	ZPE 0.19 0.51 0.82	TS 0.09 0.09 0.09
Enzymatic *N2 *NNH *HNNH *H2NNH	E(DFT) -1.45 -0.08 -0.37 0.20	ZPE 0.19 0.51 0.82 1.17	TS 0.09 0.09 0.09 0.11
Enzymatic *N2 *NNH *HNNH *H2NNH *H2NNH2	E(DFT) -1.45 -0.08 -0.37 0.20 -1.99	ZPE 0.19 0.51 0.82 1.17 1.38	TS 0.09 0.09 0.09 0.11 0.19
Enzymatic *N2 *NNH *HNNH *H2NNH *H2NNH2 *H2NNH3	E(DFT) -1.45 -0.08 -0.37 0.20 -1.99 -0.14	ZPE 0.19 0.51 0.82 1.17 1.38 1.66	TS 0.09 0.09 0.09 0.11 0.19 0.26
Enzymatic *N2 *NNH *HNNH *H2NNH *H2NNH2 *H2NNH3 *NH2	E(DFT) -1.45 -0.08 -0.37 0.20 -1.99 -0.14 0.96	ZPE 0.19 0.51 0.82 1.17 1.38 1.66 0.72	TS 0.09 0.09 0.11 0.19 0.26 0.07
Enzymatic *N2 *NNH *HNNH *H2NNH *H2NNH2 *H2NNH3 *NH2 *NH3	E(DFT) -1.45 -0.08 -0.37 0.20 -1.99 -0.14 0.96 0.18	ZPE 0.19 0.51 0.82 1.17 1.38 1.66 0.72 0.99	TS 0.09 0.09 0.11 0.19 0.26 0.07 0.12

Consecutive	T = 300 K	T = 800 K
*NN + H \rightarrow *NNH	$1.98 \times 10^{-5} k_0$	$1.72 \times 10^{-2} k_0$
*NNH + H \rightarrow *NNH ₂	$1.14 \times 10^{-14} k_0$	5.91×10 ⁻⁶ k ₀
$*NH + H \rightarrow *NH_2$	$8.48 \times 10^{-10} k_0$	$3.96 \times 10^{-4} k_0$
*NH ₂ + H \rightarrow * NH ₃	$4.06 \times 10^{-8} k_0$	$1.69 \times 10^{-3} k_0$
Enzymatic	T = 300 K	T = 800 K
Enzymatic *NN + H → *NNH	T = 300 K $1.98 \times 10^{-5} k_0$	T = 800 K $1.72 \times 10^{-2} k_0$
Enzymatic *NN + H → *NNH *HNNH + H → *H2NNH	T = 300 K $1.98 \times 10^{-5} k_0$ $2.66 \times 10^{-10} k_0$	T = 800 K $1.72 \times 10^{-2} k_0$ $2.57 \times 10^{-4} k_0$
Enzymatic *NN + H \rightarrow *NNH *HNNH + H \rightarrow *H ₂ NNH *H ₂ NNH ₂ + H \rightarrow *H ₂ NNH ₃	T = 300 K $1.98 \times 10^{-5} k_0$ $2.66 \times 10^{-10} k_0$ $1.42 \times 10^{-2} k_0$	T = 800 K $1.72 \times 10^{-2} k_0$ $2.57 \times 10^{-4} k_0$ $2.03 \times 10^{-1} k_0$

Table S3 The estimated reaction rate of each step on different paths (k_0 is the prefactor of the estimated reaction rate $k = k_0 \exp(-\Delta G/kT)$).

Reference

S1. Chase, M. W. NIST-JANAF Thermochemical Tables. American Chemical Society, New York, 1998.