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Abstract: Titanium oxide (TiO2) is a potential photocatalyst for removing toxic NOx from the
atmosphere. Its practical application is, however, significantly limited by its low absorption into
visible light and a high degree of charge recombination. The overall photocatalytic activity of TiO2

remains too low since it can utilize only about 4–5% of solar energy. Nitrogen doping into the TiO2

lattice takes advantage of utilizing a wide range of solar radiation by increasing the absorption
capability towards the visible light region. In this work, N-doped TiO2, referred to as TC, was
synthesized by a simple co-precipitation of tri-thiocyanuric acid (TCA) with P25 followed by heat
treatment at 550 degrees C. The resulting nitrogen doping increased the visible-light absorption and
enhanced the separation/transfer of photo-excited charge carriers by capturing holes by reduced
titanium ions. As a result, TC samples exhibited excellent photocatalytic activities of 59% and 51% in
NO oxidation under UV and visible light irradiation, in which the optimum mass ratio of TCA to
P25 was found to be 10.

Keywords: N-doped TiO2; precipitation; NOx removal

1. Introduction

Atmospheric pollution resulting from photochemical oxidants, such as nitrogen oxides
(NOx; NO+NO2) and ozone, has been considered one of the critical concerns in urban
areas. [1]. NOx, a by-product resulting from fossil fuel incineration and photochemical
conversion in nature, is mainly considered a dominant contributor to environmental
problems such as photochemical smog, acid rain, haze, etc. [2,3]. The atmospheric NOx
concentration (annual mean concentrations of 0.01–0.05 ppm in urban areas over the
world [4]) has drastically increased over the past few decades due to industrial genesis
and automobile development [2]. NOx has stimulating effects on the environment, human
and animal health, and plant vegetation [5]. Consequently, over the past few decades, the
demand to mitigate the detrimental effects of NOx has increased in light of sustainable
climate policy, and this has inspired increased focus on NOx efficacy. Therefore, researchers
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have manifested various schemes such as direct decomposition [6], selective catalytic/non-
catalytic reduction [7], solid–liquid adsorption [8], plasma-assisted catalytic reduction [9],
and photocatalytic oxidation (PCO) for effective removal of NOx from the atmosphere.
However, most of those propositions are not commercially feasible for NOx removal at
low concentration levels and require intricate devices, engineering, or relatively high
temperatures.

Among various approaches, PCO is a potential and cost-effective method to manage
atmospheric pollutants [10]. The PCO of NOx is an effective process due to its ability
to use enormous, inexhaustible solar energy, moderate reaction conditions appropriate
for cheap and large-scale application [11,12]. TiO2 has gained significant attention as a
photocatalyst with the breakthrough of photocatalytic water splitting capability. What
is more, TiO2 features a strong photocatalytic oxidation competence, photostability, non-
toxicity, and cost-effectiveness [13]. Usually, from theoretical and experimental studies, it
has been demonstrated that the dominant anatase facets have better photoactivity than
rutile [14]. Under UV light irradiation, TiO2 generates electrons and holes in the conduction
band and valence bands, respectively, facilitating the oxidation-reduction (redox) reactions
for pollutant degradation [15,16]. However, the photocatalytic activities of anatase TiO2
are restricted by their large energy bandgap (~3.6 eV) and immediate recombination
of photogenerated e−/h+ pairs [17]. Consequently, typical TiO2 primarily exhibits low
quantum efficiency under UV irradiation with a wavelength of <387 nm. Therefore, TiO2
can utilize a maximum of 4–5% of the solar radiation during photocatalysis [17], mostly
wasted for recombination in their bulk phase. So far, researchers have proposed many
strategies for the improvement of photocatalytic activity of TiO2 in NO oxidation by varying
their crystal phase [18], engineering the energy bandgap to shift its absorption edge into
the visible region [19,20], increasing specific surface area via porosity introduction [21],
and doping of anions such as nitrogen and carbon in TiO2 [22–24].

In this study, nitrogen is considered to be an effective dopant because of its similar
size (155 pm) to oxygen (152 pm) as well as similar ionization energy (first ionization
energy 1402.3 kJ/mol) compared to oxygen (first ionization energy 1313.9 kJ/mol) [25].
N-doped TiO2 also has an improved photocatalytic activity in the visible light region,
similar to oxidation of CO, C2H6, and ethylene [26,27]. It is well established that the
doping of nitrogen into the TiO2 lattice produces a narrower band gap by coupling N 2p
states with O 2p states and creates donor states over the valence band (VB). This process
attenuates the energy band gap of TiO2 and generates oxygen vacancy, both of which
enhance the absorbance of visible light [28]. Therefore, in this study, N-doped TiO2 powder
was fabricated by a simple co-precipitation of TCA and TiO2 P25, followed by calcination at
550 ◦C for 4 h in N2 atmosphere. This is the novel strategy to synthesize N-doped TiO2 from
TCA as a nitrogen precursor. In general, the substitution of nitrogen with oxygen in TiO2
happens above 675 ◦C under N2 atmosphere using cyanamide, melamine, and melem as
nitrogen sources. Nevertheless, in this study, using TCA lowers the temperature to 550 ◦C
since the SH group acts as a leaving group, and at lower temperatures polycondensation
takes place, which facilitates doping of nitrogen into TiO2 [29,30]. The synthesized N-
doped TiO2 materials showed a pronounced ability to absorb visible light and improved
the bandgap structure with more negative (0.73 eV) conduction band (CB) potential than
O2/·O2

− potential of −0.33 eV for NO oxidation. Thus, with such a narrow energy
bandgap and broad absorption ability of visible light, the synthesized N-doped TiO2
materials exhibited enhanced photocatalytic oxidation of NO under both UV and visible
light irradiation. This study governs a new method for fabricating N-doped TiO2 for
efficient photocatalytic degradation of noxious atmospheric NOx.

2. Results and Discussion

The crystal phase structure of the prepared materials was investigated using XRD.
Figure 1a compares the XRD patterns of pure TiO2 P25 and all the prepared N-doped
TiO2 materials (TCX; TC means N-doped TiO2, X is wt% of TCA on TiO2). It showed that
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both the anatase phase (JCPDS21-1272) and the rutile phase (JCPDS21-1276) of TiO2 were
present in pure TiO2 as well as N-doped TiO2 materials. This is consistent with the biphasic
structure of commercial TiO2 P25. The XRD patterns also indicate that there were no other
characteristic peaks from impurities. To further investigate N doping effects on crystallite
size, the calculated crystal size of pure TiO2 P25 and the synthesized N-doped TiO2 are
given in supporting information in Table S1. The crystal size of synthesized materials was
determined from half-width of (101) peak using Scherrer’s formula. The crystallite size of
pure TiO2 P25 was found at 16.60 nm [31]. The crystallite size increased up to 18.54 nm with
doping of larger atomic radius nitrogen (N3− 170 Å) into oxygen (O2− 140 Å) [32]. In this
study, though the shifting of peak position was not observed significantly, the crystallite
size increased with nitrogen doping. This phenomenon can be explained by the fact that
the nitrogen doping may sharpen the XRD peak by enhancing the growth rate of crystal
and increase the crystallite size.
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Figure 1. (a) XRD patterns and (b) FT-IR spectra of pure TiO2 P25 and the synthesized N-doped TiO2 materials (TCX; TC
means N-doped TiO2, X is wt% of TCA on TiO2).

FT-IR spectra of pure TiO2 P25 and the synthesized N-doped TiO2 materials are
illustrated in Figure 1b. The absorption peak in the region between 650 cm−1 and 800 cm−1

was identified for the Ti–O and O–Ti–O bond vibrations for both the N-doped TiO2 and
pure TiO2 P25 [33]. The broad absorption peak between 3000 cm−1 and 3600 cm−1 was
attributed to the N-H stretching vibration of the residual N-H group or O-H of absorbed
H2O [34]. The small absorption peak at 1050 cm−1 for the N-Ti-O bond was observed for
all the synthesized N-doped TiO2 materials, confirming the nitrogen incorporation into
TiO2 P25 [35].

The morphological structure of pure TiO2 P25 and N-doped TiO2 was assessed to
determine whether the particle size changed with nitrogen doping using SEM and HR-
TEM (Figure 2). There was no particular particle size change on nitrogen doping until
TC50 compared to TiO2 P25, where the spherical nanoparticles were observed (Figure 2a–e).
Though the change of particle size was not clearly observable from SEM images, the surface
area was investigated by an N2 adsorption desorption isotherm (Figure S2). The BET
surface area and the pore volume for pure TiO2 P25 and synthesized N-doped TiO2
materials are given in Table S1. From N2 adsorption desorption isotherm it is clearly seen
that the surface area decreased with nitrogen doping, suggesting the doping of nitrogen
into TiO2. Figure 2f depicts the HR-TEM image of TC10. The lattice fringe with d-spacing
of 0.350 nm and 0.240 nm was observed due to the anatase (101) lattice planes of TiO2
nanoparticles and 0.320 nm due to the rutile (110) lattice plane of pure TiO2 P25 [36].
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XPS was carried out to investigate the surface chemical composition and the electronic
state of each element. The XPS survey scan spectra and elemental composition of pure
TiO2 P25, TC10, and TC50 are provided in Supporting Information Figure S1 and Table S2.
The photoelectron peaks on the survey spectra at around the binding energies of 285, 399,
459.5, and 530.5 eV were assigned to C1s, N1s, Ti2p, and O1s, respectively, indicating the
presence of nitrogen in the N-doped TiO2 materials. Here, the nitrogen contents increased
with increasing TCA contents in Table S2, suggesting incorporating nitrogen into TiO2
lattice. The N1s spectrum in Figure 3a consists of three peaks at 399.6, 397.3, and 395.8 eV.
The peak at around 399.6 eV is characterized by the absorbed NHx at the surface of the
particle. The peak at 397.3 eV is assigned to Ti-O-N bond; it is due to the interstitial position
of N into TiO2 lattice. Furthermore, around 395.8 eV peaks are attributed to the Ti-N-Ti
bond due to N substitutional doping on the oxygen site into the TiO2 lattice [37]. Figure 3b
shows the O1s spectra of pure TiO2 P25, TC10, and TC50. The peak at 529.4 eV is marked
for the Ti-O bond [38]. The minor peak at 531.3 eV is possibly characterized by the impurity
hydrocarbon C=O bond [39]. The substitutional Ti-N-Ti bond was also confirmed from the
Ti2p XPS spectrum. Figure 3c illustrates the Ti2p spectra of pure TiO2 P25 compared to
as-prepared samples of TC10 and TC50. For pure TiO2 P25, at 463.9 eV and 458.3 eV the
peak positions confirm the Ti2p1/2 and Ti2p3/2, which affirms the presence of Ti in the Ti4+

species [33]. At 463.6 eV and 458.2 eV, minor peaks in N-doped TiO2 are mainly due to
Ti2p1/2 and Ti2p3/2 of Ti2O3, which are usually found due to oxygen vacancy creation on
the lattice structure [39]. In comparison to pure TiO2 P25, the N-doped TiO2 had a shift
of binding energy to higher energy for both O1s and Ti2p peaks due to the interaction
between titanium and nitrogen [40].
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Photoluminescence (PL) analysis of pure TiO2 P25 and the prepared N-doped TiO2
for different nitrogen contents was performed at an excitation wavelength (266 nm) to
investigate the rate of recombination and separation efficiency of photo-excited electrons
and hole pairs. The PL intensity mainly resulted from the recombination of e−/h+ pairs.
The lower intensity suggests a lower recombination rate and higher separation efficiency
of e−/h+ pairs [41]. Figure 4a demonstrates the PL spectra of pure TiO2 P25 and the
synthesized N-doped TiO2. The PL peaks were found at around 522 nm for pure TiO2 P25,
possibly due to the partially reduced titanium ion, surface nitrogen species, and oxygen
vacancies [42]. In pure TiO2, usually the energy levels of oxygen vacancies are below the CB
of TiO2. The photogenerated electrons in the CB of TiO2 can fall into the oxygen vacancies
by the non-irradiation process and then are easily recombined with photogenerated holes
on the VB generated by fluorescence emissions [43]. In this study, the PL intensity of
N-doped TiO2 decreased and, thus, increased the separation efficiency of photogenerated
e−/h+ pairs due to capturing of the photogenerated holes by reduced titanium ion (Ti3+).
UV–Vis DRS spectroscopy analysis was performed to determine the estimated energy
bandgap of pure TiO2 P25 and synthesized N-doped TiO2 materials. Figure 4b illustrates
the absorbance spectra of TiO2 and N-doped TiO2 for different nitrogen contents. In this
study, the N-doped TiO2 materials compared to pure TiO2 showed yellow color (Figure 2b),
suggesting the ability to absorb light in the visible region [40]. The N-doped TiO2 with
increasing nitrogen content exhibited a significant red-shift of the absorption edge into
the visible light region. This result suggests that nitrogen doping into the TiO2 lattice can
successfully narrow the bandgap energy due to modifying the band structure [44].
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The energy bandgaps of the pure TiO2 P25 and synthesized N-doped TiO2 materials
with different nitrogen contents were determined using the Kubelka–Munk function (F(R)).
Extrapolating (F(R)hυ)1/2 vs. hυ plot is used to calculate the indirect semiconductor energy
bandgap. The estimated energy band gaps were 3.25, 3.22, 3.18, 3.14, and 3.10 eV for
pure TiO2 P25, TC7.5, TC10, TC25, and TC50, respectively (Figure 5a). The estimated
energy bandgap also revealed the substitutional doping of nitrogen into the TiO2 lattice
since interstitial nitrogen doping narrows the energy bandgap significantly more than
substitutional doping does [45]. Figure 5b demonstrates the Mott–Schottky plot of pure
TiO2 P25 and N-doped TiO2 with different nitrogen contents at 495.16 Hz. In this study, the
flat-band potential (Efb) was determined by the Mott–Schottky plot as conduction band
minimum (CBM), and the valence band maximum (VBM) was estimated based on the
difference from the CBM using the “optical bandgap energy” determined by the Tauc plot.
The Schottky formula can be applied to measure the flat-band potentials and the conduction
band edge of pure TiO2 and N-doped TiO2, since thin compact TiO2 film behaves similarly
to conventional macroscopic semiconductor electrode [46]. TiO2 is an n-type semiconductor,
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where vacancies act as electron donors. In Mott–Schottky measurements, a semiconductor
is in contact with a solution where a redox couple is present. An electron exchange can
then occur to match the two Fermi energies (Ef and Eredox). Such electron flow induces a
band bending. The flat band potential (Efb) is a counter-potential that flattens the potential
back again by compensating the migrated charge capacity effects, which is measured from
the M-S plot. Here, the measured flat band potential represents the lower edge of the
conduction band, which is approximately the Fermi energy value, on an electrochemical
scale [47]. The figure shows that the increase in nitrogen content resulted in a steady shift
of the estimated flat-band potentials towards more negative values. The calculated CB and
VB potential values are given in Table S3, and the synthesized sample energy diagrams
are given in Figure 6a. The potentials were recalculated vs. NHE at pH 7 by the following
equations [46].

VCB ≈ VFB(NHE, pH 7) = VFB(Ag/AgCl, pH 5.8) + V − 0.059 ∗ (7 − 5.8)
VVB = VCB + Eg/e,

(1)
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The N-doped TiO2 with different nitrogen contents showed the steady shift of CB and
VB potentials towards more negative and less positive directions (Figure 6a). The nitrogen
incorporation into TiO2 lattice had the advantage to form new energy states since the N 2p
position is more negative than the O 2p state, which thus decreases the energy bandgap of
TiO2 and shifts the optical absorption towards the visible light region. Therefore, under
visible light irradiation, the possibility of electron migration from the valence band to the
conduction band increased, which leads to the activity of N-doped TiO2 materials into
visible light [45,48].

A proposed schematic for the oxidation of NO is depicted in Figure 6b. The TiO2
incited under photo irradiation and generated e−/h+ pairs. The photogenerated e− can
immediately reduce adsorbed O2 to ·O2

− on CB, and the h+ can directly oxidize H2O/OH−

to ·OH radicals on VB. Such ·O2
− and ·OH radicals are the fundamental elements for the

successful oxidation of NO to neutral component NO3
− [49]. The more negative the CB

band potential is (than the O2/·O2
− potential of −0.33 eV) and the more positive the VB

band potential is (than OH−/·OH potential of 1.99 eV), the greater the oxidation of NO [33].
The reactions correspond to the formation of radicals, and a feasible pathway for NO
oxidation is as follows [49]:

photocatalyst + hυ→ e− + h+ (2)

O2 + e− → ·O2
− (3)

OH− + h+ → ·OH (4)

NO + ·O2
− → NO3 (5)

NO + ·OH→ NO2 (6)

NO2 + ·OH→ NO3
− (7)

Figure 7 demonstrates the time profile for NO, NO2, and NOx and the efficiency of NO
removal, NO2 generation, NOx removal, and NO3

− selectivity of pure TiO2 P25 and the
synthesized N-doped TiO2 sample under both UV and visible light irradiation, respectively,
for 1h. All samples compared to pure TiO2 P25 exhibited enhanced NO oxidation. Under
UV irradiation (Figure 7a, Table S4), the TC10 sample exhibited the maximum NO removal
with a superior efficiency of 59% compared to the pure TiO2 P25 (47%), approximately
1.26 times higher. The NOx removal efficiency of the TC10 (34%) was increased by 17%
compared to TiO2 P25 (17%) under UV irradiation. The intensified NO expulsion could
be clarified by the fact the narrow energy bandgap with more negative CB potentials
facilitates the reduction of O2 to ·O2

− radicals and, thus, intensifies the formation of the
photo-oxidation product (i.e., NO3

−). It is further validated by the decreasing trend of the
NO2 generation rate. Here, NO2 generation was decreased (Figure 7c) over TC10 compared
to TiO2, which leads to higher NOx removal.

Under visible light irradiation (Figure 7b, Table S5), all the synthesized N-doped TiO2
materials exhibited significantly enhanced photocatalytic performance in both NO and
NOx removal compared to pure TiO2 P25 samples, though the NO2 generation is relatively
higher than pure TiO2. Among all the samples, TC10 showed maximum NO and NOx
removals of 51% and 29%, respectively, almost 2.55 and 2.23 times higher than the pure TiO2
P25 of 20% and 13%. Nitrogen doping into the TiO2 lattice enhanced the absorption ability
towards the visible light region and narrowed the energy bandgap with more negative CB
potentials, which enhanced the formation of superoxide radicals and, therefore, oxidation
of NO. For practical application, the goal is to produce materials with high selectivity to
NO3

−. Comparing Tables S4 and S5, the selectivity of NO3
− of pure TiO2 significantly

differed and was much higher under visible irradiation (about 64%). This phenomenon
can be explained by the energy band structure of pure TiO2 and N-doped TiO2. As we
mentioned, the more negative the CB band potential than the O2/·O2

− potential (−0.33 eV),
and the more positive the VB band potential than OH−/·OH potential (1.99 eV), the greater
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the oxidation of NO and the formation of NO3
−. For pure TiO2 the more positive valence

band (2.59 eV vs. NHE) than doped TiO2 (<2.53 eV vs. NHE) favors NO3
− formation on

the valence band (favors Equation (7)). However, in case of VIS experiment of TC50, a
superior increase in NO3

− selectivity was shown (77%). This might be due to the direct
conversion of NO to NO3

− on the more negative conduction band (−0.84 eV vs. NHE)
than pure TiO2 (−0.66 eV vs. NHE), which is more favorable for reduction of NO and
formation of NO3

− (favors Equation (5)). Compared to pure TiO2 P25, for the N-doped
TiO2 sample, the generation of NO2 was higher (Figure 7d). This can be explained by
the fact that the N-doped TiO2 showed increased charge transfer/separation efficiency.
Therefore, the formation of OH radicals on the valence band, followed by formation of
NO2, was increased under visible light irradiation. The substitutional nitrogen doping into
the TiO2 lattice can enhance the photocatalytic activity of NO oxidation by enhancing its
absorption ability towards the visible light region, improving separation efficiency of e−/h+

pairs, and narrowing the energy band gaps under both UV and visible light irradiation.
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UV and (d) visible light irradiation, respectively.

Here, NOx removal performance was compared with some other progressive studies
(Figure 8). Nitrogen-doped with P25 using urea as a precursor achieved NOx removal per-
formances of approximately 18% and 8% at UV and visible regions, respectively [19,50–52].
Composite of carbon nitride with anatase TiO2, composite of modified carbon nitride with
TiO2, and composite of hydroxyapatite with TiO2 achieved 18/17, 24/18, and 27/0% NOx
removal proficiencies in the UV/visible region, respectively [19,50–52]. In the present study,
34/28% NOx removal was attained in the UV/visible region, which indicates significant
progress for the NOx removal strategy. The present study can be further improved by
making a composite with carbon nitride with advanced synthesized N-doped TiO2 in the
future.
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3. Materials and Methods
3.1. Preparation of N-Doped TiO2

All the chemicals were used as of analytical grade without further purifications. The
N-doped TiO2 powder was synthesized as follows. Firstly, tri-thiocyanuric acid (TCA,
Sigma-Aldrich, St. Louis, MO, USA; 95.0%) was dissolved into 10 mL dimethyl sulfoxide
(DMSO, Daejung, Siheung, Korea, 99.5%), and TiO2 P25 (Evonik Degussa GmbH, Essen,
Germany) was dispersed into 20 mL of H2O by sonication for 1h. Then, the solution was
mixed and kept for 1 h followed by filtering and drying at 80 ◦C. The dried powders were
then calcined in a tube furnace at 550 ◦C for 4h under an N2 atmosphere. Different TCAs
(50, 25, 10, and 7.5 wt.%.) were mixed with TiO2 P25 and named as TC50, TC25, TC10, and
TC7.5, sequentially, to prepare the N-doped TiO2 powder. The pure TiO2 P25 was named
TiO2.

3.2. Characterization

The crystallinity of synthesized powders was evaluated using the X-ray diffraction
(XRD) technique (Rigaku D/max Ultima III, The Woodlands, TX, USA) with Cu Kα ra-
diation at 40 kV and 40 mA. The synthesized powder surface morphology was assessed
using scanning electron microscopy (FE-SEM, HITACHI, EX-200, Santa Clara, CA, USA).
High-resolution transmission electron microscopy (HR-TEM, TECNAI F20 UT) was used to
examine the N-doped TiO2 morphology’s fine details. A Fourier transform infrared (FT-IR)
spectrometer (FT-IR-4100, Jasco, Portland, OR, USA) was used to identify the synthesized
sample chemical bonds. X-ray photoelectron spectroscopy (XPS) was employed using
MultiLab2000, VG, USA, to identify the synthesized samples’ elements and their chemical
state. The photogenerated e−/h+ pairs recombination rate of the synthesized samples
was evaluated using a photoluminescence (PL) measurement system (Spectrograph 500i,
Acton Research Co., Acton, MA, USA) with an excitation wavelength of 266 nm. A UV–vis
spectrometer (Lambda 365, PerkinElmer, Waltham, MA, USA) equipped with an integrat-
ing sphere accessory was used to obtain the synthesized sample UV–vis spectra within a
range of 200–800 nm. The Kubelka–Munk function (F(R)) was used as follows: F(R) = K/S,
K = (1 − R)2 and S = 2R, where K, S, and R are the molar absorption coefficient, scattering
factor, and reflectance, respectively, to determine the energy bandgap of the synthesized
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samples. The indirect energy bandgap was verified by extrapolation of (F(R)hυ)1/2 vs. hυ
plot. The specific surface area was measured by N2 adsorption–desorption measurements
at 77 K (Micromeritics new Tristar II surface area and porosity analyzer 3020, USA) using
the Branauer–Emmet Teller (BET) method. The samples were degassed at 150 ◦C for 24 h
before measurements.

3.3. Electrochemical Measurements

The electrochemical performance of the synthesized N-doped TiO2 was examined
using Bio-logic VSP potentiostat equipped with a handmade three-electrode cell containing
conductive fluorine-doped tin oxide (FTO) as a working electrode, Pt electrode as a counter,
and Ag/AgCl KCl (3 M) electrode as a reference electrode, respectively. The electrode
materials were prepared by dispersing 50 mg of investigated materials in 2 mL solution
containing 1.8 mL of ethanol (DAEJUNG) and 0.2 mL of Nafion (Sigma Aldrich, St. Louis,
MO, USA 5 wt% in ethanol), followed by sonication and stirring. After that, 100 µL of
the dispersion was cast on the FTO electrode, followed by drying at 60 ◦C for 8 h. The
electrolyte used in the experiment was 0.2 M sodium sulfate (Na2SO4, Sigma Aldrich,
99%, Darmstadt, Germany). Before measurements, N2 gas was purged for 30 min. The
experiment was performed at room temperature. These measurements were performed
to calculate the CB edge potential of synthesized samples. While the CB edge potentials
and flat band potentials practically coincide for n-type semiconductors, the Mott–Schottky
relation can be used for the determination of VFB [46].

1
C2 =

1
εε0eND

(V− VFB−
kT
e
) (8)

Here, C is the space charge capacitance, ε and ε0 are the dielectric constants of the
semiconductor and free space, e is the charge of the elementary electron, ND is the dopant
density, k is the Boltzmann constant, and T is the absolute temperature. The flat band
potential VFB is determined by intercepting the plot’s linear part with the potential axis.

3.4. Photocatalytic Activity Measurements

The NOx removal efficiencies of pure TiO2 P25 and the synthesized N-doped TiO2
samples were determined using a NOx removal photocatalytic analyzer (KS ISO 22197-
1 standard) under both UV and visible light irradiation. The emission spectra of UV and
visible light sources are given in Figure S3 in the Supporting Information. According
to ISO protocol, the reaction parameters were maintained at 1 ± 0.003 ppm initial NO
concentration, 3 L/min gas flow, relative humidity of 50%, and reaction temperature of
25 ◦C. The samples were prepared by casting a slurry of catalyst powders and water on
a glass plate, and the exposed catalyst surface had an area of 40 cm2. The loading mass
for each sample was 5 mg cm−2. During the measurement procedure, the UV and visible
light intensities were 1.00 ± 0.30 W m−2 and 6000 ± 300 lux. All the experiments were
performed for 100 min, where 20 min was used for adsorption of gas and 60 min for
light irradiation. To measure the NO and NO2 concentrations, a NOx analyzer (Sernius
40, Ecotech, Melbourne, Australia) was fixed at the reactor’s outlet. The rates of NO
removal, NO2 generation, NOx removal, and nitrate (NO−3 ) selectivity were calculated by
the following equations:

NOremoval =
NOin − NOout

NOin
(9)

NO2, generation =
NO2, out − NO2, in

NOin
(10)

NOx, removal =
NOx, in − NOx, out

NOin
(11)

NO−3 selectivity =
NOx, removal

NOremoval
× 100 (12)
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4. Conclusions

In the present study, nitrogen-doped TiO2 was prepared in a straightforward way
by calcination of precipitates from the solution mixture of tri-thiocyanuric acid in DMSO
and TiO2 P25 in H2O. The optimized TC10 materials showed impressive light absorption
capability in the visible region by narrowing the bandgap (TC10: 3.18 eV; TiO2 P25: 3.25 eV).
The ratio of nitrogen doping assisted in tuning the conduction band and valance band
positions. Most significant, the electron and hole separation efficiencies were improved
for nitrogen doping on the titanium oxide. Consequently, the TC10 (N doped TiO2 P25)
removed 51% NO and 28% NOx, which are 2.55 and 2.23 times higher than that for pure
TiO2 P25 in the visible region. Similarly, in the UV region, TC10 removed 59% NO and
34% NOx and was 1.26 and 2 times higher than that for TiO2 P25. N-doped titanium oxide
(TC10) is a unique material that offers excellent potential to remove noxious nitrogen oxide
(NOx) from the environment and maintain sustainable urban life for the well-being of
human continued existence.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/1/109/s1, Figure S1: The broad scan survey spectra of pure TiO2 P25 and N-doped TiO2
samples with 10 wt% and 50 wt% nitrogen contents. Figure S2: N2 adsorption desorption isotherm of
pure TiO2 P25 and synthesized N-doped TiO2. Figure S3: Emission spectra of (a) UV, and (b) visible
light sources. Table S1: Estimated FWHM and crystal size of the prepared samples along with the
anatase (101) plane of TiO2, and BET surface area and pore volume from N2 adsorption desorption
isotherm. Table S2: XPS elemental analysis of purer TiO2 P25 and N-doped TiO2 samples with 10wt%
and 50wt% nitrogen contents. Table S3: The energy band gap, CB and VB edge potential of pure TiO2
P25 and N-doped TiO2 samples. The CB and VB edge potentials was measured vs Ag/AgCl at pH
5.8 and calculated vs NHE at pH 7. Table S4: Photocatalytic efficiency of samples in NO removal,
NO2 generation, NOx removal and NO3

− selectivity under UV irradiation. Table S5: Photocatalytic
efficiency of samples in NO removal, NO2 generation, NOx removal and NO3

− selectivity under
visible light irradiation.
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