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Abstract: In the paper, mesopores and macropores are introduced inside the crystals of micrometer
microporous titanium silicate-1 (TS-1) to solve the problem of active site coverage and mass transfer
during extrusion. Hierarchically porous titanium silicalite-1 (HPTS-1) was acquired by treating
micrometer microporous TS-1 with TPABr and ethanolamine. Extruded HPTS-1 maintained greatly
superior catalytic performance and possessed high mechanical strength. Characterization results
showed that extruded HPTS-1 possessed macroporous, mesoporous structure inside the crystals.
These abundant pores are not only beneficial for diffusion reactants, but also make Ti-peroxo species
(η2), active oxidation sites in TS-1/H2O2 system become much more reactive. The formula of extruded
HPTS-1 was optimized using an orthogonal experiment. The maximum strength of extruded HPTS-1
was up to 200 N/cm, the highest yield of propylene oxide was 92.5% and the specific rate was up
to 41.9%. The research provides a scientific basis for producing extruded catalysts with excellent
catalytic performance and high mechanical strength in industrial applications.

Keywords: mesopores and macropores inside the crystals; extruded catalysts; TS-1; propylene epoxi-
dation

1. Introduction

Propylene oxide (PO) is a crucial intermediate of the chemical industry for produc-
ing polyurethane plastics, polyether polyols, unsaturated resins, surfactants and other
products [1–8]. Traditional processes of producing PO are the chlorohydrin method, co-
production method and hydrogen peroxide direct oxidation method (HPPO) [9–14]. In
recent years, the HPPO process, based on titanosilicate catalysts (TS-1), has attracted many
scholars’ attention due to it being green, low-investment and high-efficiency [15–20].

TS-1 was widely used in selective oxidation reaction with hydrogen peroxide, such
as partial oxidation of alkanes [21], epoxidation of alkenes [22], hydroxylation of aromat-
ics [23], ammonia oxidation of ketones [24], partial oxidation of alcohol [25] and partial
oxidation of organic sulfide [26]. The powder TS-1 applied in industrial production has
some defects such as clogging up pipes, difficult separation and other problems. There-
fore, shaping is necessary for the powder TS-1 catalyst in order to decrease the pressure
drop, achieve a moderate mechanical strength and have a good tolerance to plugging
by dust. The current shaping is molded as follows: particles, spheres, extrudates and
so on [27,28]. Extrusion molding is a very important shaping technology for producing
solid catalysts [29,30]. Large amounts of binder such as silica sol are often added into the
extrusion process to make the catalysts possess excellent mechanical strength. While, the
addition of binder not only makes the effective composition of catalysts decrease but also
blocks some pores and covers active sites. Therefore, the catalytic performance of extruded
catalyst is often sharply reduced. It is still a challenge to produce extruded catalysts with
excellent catalytic performance and high mechanical strength.
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It is reported that adding binders of large particle size can improve the porosity and
mass transfer efficiency of the extruded catalyst [31]. Small particle size TS-1 can provide
shorter channels and larger external surface and can effectively reduce the binder coverage
in the extrusion process. Zuo reported that a small-crystal TS-1 with 600 × 400 × 250 nm
was extruded, and the conversion of H2O2 and the yield of PO could reach 90–95% and
81%, respectively [32]. In addition, introducing the mesopore is also an effective method
to reduce the binder coverage in the extrusion process. Wu et al. studied extrusion of
hierarchically porous ZSM-5 and the influence of several process factors on the strength and
textural properties [33]. Zuo and his co-workers also treated TS-1 extrudates using TPAOH
to introduce the mesopore, and the final extrudates reached the strength of 150 N/cm and
gained good catalytic performance in propylene epoxidation [34].

In this paper, to solve the problem of active site coverage and mass transfer during
extrusion, mesopores and macropores are introduced inside the crystals of micrometer mi-
croporous TS-1. TS-1 was prepared by the hydrothermal method using cheap silica sol and
tetrabutyl titanate (TBT) in the TPABr-ethanolamine system. Additionally, hierarchically
porous titanium silicalite-1 (HPTS-1) was obtained by the modification of TS-1. HPTS-1
and TS-1 were both extruded by mixing with their powder, silica sol and other additives,
respectively. An orthogonal experiment was also designed to examine the effect of some
factors such as binder (silica sol), forming-pore agent (sesbania powder), water-retaining
agent (polyvinyl alcohol, abbreviated as PVA) and lubricant (starch) on the strength of
extruded HPTS-1 catalysts and the yield of PO.

2. Results
2.1. Characterization of Extruded TS-1 and HPTS-1 Samples

Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM)
images of TS-1 and HPTS-1 are present in Figure 1. Both ends of TS-1 are relatively
smooth, exhibiting round-boat shape and the crystal size around 1.22 × 0.58 × 0.22 µm.
HPTS-1 gave coffin morphology because the etching is carried out and the phenomenon
of dissolution and recrystallization occurs on its surface during the alkaline treatment of
TS-1. The crystal size of HPTS-1 is around 1.46 × 0.58 × 0.23 µm. Figure 1b,d shows that
there were many mesopores and macropores inside HPTS-1 crystals. What is more, the
size of these meso and macropores is over 30 nm, in agreement with the results of pore
size distribution.
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The powder X-ray diffraction (XRD) patterns of extruded TS-1 and HPTS-1 samples
are showed in Figure 2a. All the samples have five characteristic peaks of MFI topology
structure located at 7.8◦, 8.8◦, 23.0◦, 23.9◦ and 24.4◦ [35–37]. This indicates that the extru-
sion shaping did not change the framework structure of TS-1 zeolite. First, the relative
crystallinity of HPTS-1 decreased because TS-1 was etched by alkaline ethanolamine in the
modification process. Then, the relative crystallinity of all extruded catalysts decreased.
This is attributed to some amorphous SiO2 introduced by binder during extrusion process.
The relative crystallinity of E-TS-1-1 and E-TS-1-2 decreased significantly compared to
that of TS-1. However, the relative crystallinity of E-HPTS-1-4 and E-HPTS-1-8 decreased
slightly compared to that of HPTS-1, although the extrusion formulas are the same as TS-1
series samples. This indicated that the surface of TS-1 crystal is covered by binder much
more intensely for E-TS-1 series (E-TS-1-1 and E-TS-1-2) in the extrusion process.
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Figure 2. (a) XRD, (b) UV-Vis Diffuse Reflectance Spectra (UV-Vis DRS), (c) N2-absorption isotherms
and (d) pore size distribution of extruded TS-1 and HPTS-1 samples.

UV-Vis spectroscopy has played a key role in the elucidation of the structure of Ti(IV)
species in TS-1. All samples have three absorption peaks at 210, 270 and 320 nm, attributed
to tetracoordinated framework titanium, hexacoordinated non-framework titanium and
anatase TiO2, respectively [32]. The peak around 320 nm of HPTS-1 series samples (HPTS-1,
E-HPTS-1-4 and E-HPTS-1-8) is larger than for TS-1 series samples (TS-1, E-TS-1-1 and
E-TS-1-2). The reason was that HPTS-1 samples were etched and some framework titanium
transferred to anatase TiO2 during the modification process.

N2-absorption isotherms of extruded TS-1 and HPTS-1 samples are demonstrated
in Figure 2c. All samples showed remarkable transitions in a low relative pressure
(P/P0 < 0.2), showing the microporous structure existing [37]. For TS-1 series samples
(TS-1, E-TS-1-1 and E-TS-1-2), with the increase of binder dosage, the hysteresis loops
have an increasing trend. This result proved that the formation of mesopores between
crystals were introduced in the extrusion process and there was a positive correlation with
the content of silica sol. Larger hysteresis loops assigned to the type-IV isotherms were
observed at P/P0 from 0.45 to 1 in the series of HPTS-1 samples (HPTS-1, E-HPTS-1-4
and E-HPTS-1-8). This revealed that large amounts of mesopores and macropores are
present in the series of HPTS-1 samples. The hysteresis loops of extruded HPTS-1 shrunk
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a little because the effective components of extruded HPTS-1 were only 70–80 wt% after
the addition of binder. However, with the increase of binder dosage from 20 to 30 wt%,
E-HPTS-1-8 has larger hysteresis loops than E-HPTS-1-4.

The pore size distribution of extruded TS-1 and HPTS-1 samples (Figure 2d) is very
interesting. When the binder dosage was 20 wt%, the extruded samples (E-TS-1-1 and
E-HPTS-1-4) both gave the similar mesopore distribution from 2 to 20 nm. When the
binder content increased up to 30 wt%, the extruded samples (E-TS-1-2 and E-HPTS-1-8)
also have similar mesopore distribution from 2 to 20 nm. The amount of mesopores from
2 to 20 nm is proportional to the content of silica sol in the extrusion process. It further
verified the formation of mesopores between crystals in the extrusion process. For HPTS-1,
the mesopores were mainly distributed at over 30 nm. It showed that mesopores and
macropores were generated inside the crystals in the modification process.

The formation, upon contact with the H2O2/H2O solution, of a new Ligand-to-Metal
Charge Transfer (LMCT) from the peroxidic moiety to the framework titanium appears
at around 385 nm, attributed to Ti-peroxo species (η2) [38–41]. They are considered the
active oxidation sites in the H2O2-loaded TS-1 sieve [42–46]. Figure 3a,b presents the DRS
UV-Vis spectrum of extruded TS-1 and HPTS-1 samples in the H2O2 and CH3OH system.
The maximum absorption wavelength of TS-1 is located at 381 nm. After extrusion, the
wavelength of E-TS-1-1 and E-TS-1-2 gives rise to a blue shift to 377 nm. The reason may be
that the framework titanium inside the TS-1 framework is covered by binder much more
intensely for the E-TS-1 series (E-TS-1-1 and E-TS-1-2). However, a red shift to 388 nm
appeared for HPTS-1. The maximum absorption wavelength for HPTS-1-4 and HPTS-1-8
shifted to 396 and 395 nm, respectively. Red shift of the maximum absorption wavelength
indicated that Ti-peroxo species (η2) are more reactive. After the introduction of mesopores
and macropores inside the crystals, framework titanium in micropores can be exposed and
the reactants easily get access to framework Ti species, effectively making Ti-peroxo species
(η2) are more reactive.
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Table 1 gives the textural properties of TS-1 and HPTS-1 series samples. Compared
with TS-1, the micropore area and volume of HPTS-1 obviously decreased, but the external
area, total pore and mesopore volume increased markedly. This is due to the large amounts
of mesopores and macropores inside the crystals produced in the modification of TS-1.
In comparison with TS-1, Brunauer-Emmet-Teller (BET) surface area, micropore area and
volume of E-TS-1 series (E-TS-1-1 and E-TS-1-2) fell sharply. The first reason was that the
extrusion process only used 70–80 wt% TS-1 samples. The second reason was that many
more micropores are blocked by binder for E-TS-1 series (E-TS-1-1 and E-TS-1-2) in the
extrusion process. The external surface area, total pore and mesopore volume increased
remarkably due to partial mesopores between the crystals introduced in the extrusion
process. For the series of HPTS-1 samples (HPTS-1, E-HPTS-1-4 and E-HPTS-1-8), the
extrusion process has the same effect on their textural results as for the TS-1 series samples.
BET surface area, micropore area and volume of E-HPTS-1 (E-HPTS-1-4 and E-HPTS-1-8)
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decreased obviously but the total pore and mesopore volume increased. With the increase
in the amount of silica sol in the extrusion process, the trend is much more obvious.

Table 1. Textural properties of extruded TS-1 and HPTS-1 samples.

Samples
SBET Smic Sext Vtot Vmic Vmeso

m2/g cm3/g

TS-1 419 335 83.9 0.197 0.138 0.059
E-TS-1-1 366 258 108 0.252 0.107 0.145
E-TS-1-2 316 166 150 0.273 0.071 0.202
HPTS-1 416 229 186 0.262 0.097 0.164

E-HPTS-1-4 366 178 189 0.306 0.076 0.230
E-HPTS-1-8 345 134 211 0.302 0.059 0.243

2.2. Catalytic Performance of Extruded TS-1 and HPTS-1 Samples in the Batch Reactor

Catalytic performance in propylene epoxidation for TS-1 and HPTS-1 samples have
been researched and the detail results are shown in Table 2. First, after TS-1 was extruded,
H2O2 conversion and PO yield fell sharply, and specific rate decreased from 241 to 214 h−1

with the increase of binder content. One reason is that many micropores are blocked by
binder so that the reactant cannot get access to the active site. Although the extrusion
process can generate many mesopores, these mesopores occurred between TS-1 crystals,
the reactants still had difficulty touching the active site inside the TS-1 crystals. The other
reason is the blue shift of Ti-peroxo species (η2), the active sites in the propylene oxidation.
E-HPTS-1 samples (E-HPTS-1-4 and E-HPTS-1-8) gave fairly good catalytic performance
and their specific rates increased from 248 to 352 h–1, this is equivalent to an increase of up
to 41.9%. It is due to the fact that many mesopores and macropores inside HPTS-1 crystals
improve the openness and reactivity of Ti-peroxo species (η2). In other words, these results
indicate that binder has a weaker influence on HPTS-1 than TS-1 in extrusion process.

Table 2. Catalytic performance of extruded TS-1 and HPTS-1 samples in propylene epoxidation.

Samples
Binder X(H2O2) Y(PO) S(PO) U(H2O2) Strength Specific Rate

% (N/cm) (h−1)

TS-1 0 97.9 88.9 99.5 91.2 – 241
E-TS-1-1 20 78.9 78.3 99.5 99.7 82.1 243
E-TS-1-2 30 48.7 47.7 99.8 98.0 190 214
HPTS-1 0 99.7 98.4 99.0 99.7 – 248

E-HPTS-1-4 20 99.7 85.6 93.0 92.3 135 310
E-HPTS-1-8 30 99.1 92.5 98.7 94.5 200 352

Reaction condition: 0.24 g catalysts, n(C3H6)/n(H2O2) = 1.95, 24 mL CH3OH, 3 mL 27.5 wt% H2O2, reaction
time = 1 h.

2.3. Orthogonal Experiment Analysis of Extruded HPTS-1 Samples

Characterization and catalytic performance of extruded HPTS-1 in propylene epoxida-
tion are demonstrated in the supporting information (Figures S2–S5 and Tables S1 and S2).
Table 3 gives orthogonal analysis results of extruded HPTS-1 samples. In the range analy-
sis, the strength of extruded HPTS-1 samples and the yield of PO are used as evaluation
indexes. Kij represents the sum of strength of level i (i = A, B, C, D) for factor j (j = 1, 2, 3)
and Kij is the average value of Kij. Lij represents the sum of the yield of PO of level i
(i = A, B, C, D) for factor j (j = 1, 2, 3) and Lij is the average value of Lij. R1j (or R2j) is a range
representing the maximum of Kij (or Lij) minus the minimum of Kij (or Lij). The range is
used to evaluate the importance of indexes (the strength of extruded HPTS-1 and the yield
of PO). Additionally, its value is the larger, the greater of the influence of the factor (A, B, C,
D) corresponding to this range. Taking factor B as an example, the calculation formulas are
as follows:
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Table 3. Orthogonal experiment array L9 (34).

Samples
Binder (wt%) Sesbania

Powder (wt%) PVA (wt%) Starch (wt%) Strength
(N/cm)

YPO
(%) Specific Rate

(h−1)A B C D E F

E-HPTS-1-1 10 1 0 1 33.5 86.7 275
E-HPTS-1-2 10 3 5 3 42.7 90.4 275
E-HPTS-1-3 10 5 10 5 61.2 89.5 275
E-HPTS-1-4 20 1 5 5 135 85.6 310
E-HPTS-1-5 20 3 10 1 151 89.2 310
E-HPTS-1-6 20 5 0 3 143 88.6 310
E-HPTS-1-7 30 1 10 3 186 90.6 354
E-HPTS-1-8 30 3 0 5 200 92.5 352
E-HPTS-1-9 30 5 5 1 171 86.6 340

K1 137 355 377 356
K2 429 394 349 372
K3 557 375 398 396
L1 267 263 268 263
L2 263 272 263 270
L3 270 265 269 268
R1 140 13 16.3 13.3
R2 2.3 3.0 2.0 2.33

KB1= EB1+EB4+EB7
KB2= EB2+EB5+EB9
KB3= EB3+EB6+EB8
LB1= FB1+FB4+FB7
LB2= FB2+FB5+FB9
LB3= FB3+FB6+FB8
KBj = KBj/3(j = 1, 2, 3)
LBj = LBj/3(j = 1, 2, 3)
RB1 = max(KBj)− min(KBj)(j = 1, 2, 3)
RB1 = max(LBj)− min(LBj)(j = 1, 2, 3)

As seen in Table 3, range analysis gives the order of R1 as RA1 > RC1 > RD1 > RB1. This
indicates that the binder (factor A) has the most remarkable influence on the strength of
extruded HPTS-1, followed by PVA. With the increase of binder content, the strength of
E-HPTS-1 samples is significantly enhanced. The value of R2 for the four factors is similar
and it proves that these four factors have similar effects on PO yield. Furthermore, the
specific rate was similar when the extruded HPTS-1 catalysts had the same binder content
in Table 3. It is shown that PO yield is directly proportional to the effective amount of
HPTS-1 in extruded catalysts.

The above results indirectly reflect that after introducing meso and macropores inside
the micrometer TS-1, the factor in the extrusion process, especially the binder content,
has little influence on its PO yield, and E-HPTS-1 can still maintain comparatively high
catalytic performance. Therefore, the problem of catalytic degradation caused by active
site coverage in the extrusion process can be solved.

2.4. Stability and Regeneration Performance of Extruded HPTS-1 Samples

The catalytic stability of E-HPTS-1-8 has been investigated in the fixed bed reactor
(Figure 4). At the initial stage of the reaction, fewer than 50 h, the conversion of H2O2
and yield of PO increased gradually. From 50 to 220 h, the catalytic performance is
basically stable.
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Figure 4. The stability of catalytic performance for E-HPTS-1-8 catalyst in fixed-bed reactor. Reaction
conditions: reaction temperature = 42 ◦C; pH of reaction solution = 9.10; n(C3H6)/n(H2O2) = 2.1;
WHSV of propene = 0.64 h−1.

The conversion of H2O2 is above 92% and PO yield is above 90%. When the reaction
time is above 250 h, the yield of PO began to fall. The selectivity of PO was generally
higher than 99% for the entire run time. In general, E-HPTS-1-8 catalyst still maintained a
relatively excellent catalytic performance, even better than the activity shown in the batch
reaction. E-HPTS-1-8 after 250 h reaction was regenerated by simple calcination, and then
the catalytic performance in batch reactor was investigated (Table 4). The results showed
that the catalytic performance of E-HPTS-1-8 was basically recovered after regeneration,
the yield of PO and utilization efficiency of H2O2 are more than those of fresh samples.

Table 4. Catalytic performance of fresh and regenerated E-HPTS-1-8 in batch reactor.

Samples X(H2O2)/% Y(PO)/% S(PO)/% U(H2O2)/%

E-HPTS-1-8 99.14 92.49 98.72 94.51
Re-E-HPTS-1-8 99.60 96.44 98.95 97.86

Reaction condition: 0.24 g catalysts, n(C3H6)/n(H2O2) = 1.95, 24 mL CH3OH, 3 mL 27.5 wt% H2O2, reaction
time = 1 h.

3. Conclusions

In summary, after the mesopores and macropores inside the crystals were introduced
by treating microporous TS-1 with TPABr and ethanolamine, the effect of the extrusion
process on textural properties is weakened remarkably. Specifically, the decrease trend
of the relative crystallinity, total surface area, micropore area and volume significantly
reduce after HPTS-1 samples were extruded. There is a superior catalytic performance
for the extruded hierarchically porous TS-1 than extruded TS-1 in propylene epoxidation.
An orthogonal experiment showed that during the extrusion process, the binder has the
largest influence on the strength of extruded HPTS-1 samples. The PO yield is proportional
to the effective amount of HPTS-1 in extruded catalysts, regardless of other factors in
the extrusion process. In the batch reactor, the conversion of H2O2 for extruded HPTS-1
catalyst is over 99% and the yield of PO is more than 92.5% for E-HPTS-1-8. Furthermore,
the E-HPTS-1-8 sample has always maintained good catalytic stability for 250 h. After
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regeneration by simple calcination, the yields of PO and utilization efficiency of H2O2 are
more than those of fresh samples. This paper provides a method to produce extruded
catalysts with excellent catalytic performance and high mechanical strength.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-434
4/11/1/113/s1, TEM of extruded TS-1 and HPTS-1 (Figure S1), Characterization of extruded HPTS-1
(Figures S2–S5, Table S1) and catalytic performance of extruded HPTS-1 (Table S2).
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