

Supplementary materials

Flower-Shaped C-dots/Co₃O₄{111} Constructed with Dual-Reaction Centers for Enhancement of Fenton-Like Reaction Activity and Peroxymonosulfate Conversion to Sulfate Radical

Zhibin Wen 1,⁺, Qianqian Zhu 1,⁺, Jiali Zhou 1, Shudi Zhao 1, Jinnan Wang 1,^{*}, Aimin Li 1, Lifang Chen 2 and Weilin Bian 2

Figure S1. Co2p peaks of (a) flower-shape C-dots/Co₃O₄{111} before reaction, (b) flower-shape C-dots/Co₃O₄{111} after reaction (c) flower-shape Co₃O₄{111} before reaction, (d) flower-shape Co₃O₄{111} after reaction.

Figure S2. TPR results of flower-like Co₃O₄ doped with different carbon quantum dots.

Figure S3. Influence of different conditions on ENR degradation over flower-shape C-dots/Co₃O₄{111}: (a) catalyst dosage(pH = 7.00, 0.3 mM PMS, 25 °C), (b) PMS dosage(pH = 7.00, 0.05 g/L catalyst dosage, 25 °C), (c) temperature(pH = 7.00, 0.3 mM PMS, 0.05 g/L catalyst dosage), (d) pH (0.3 mM PMS, 0.05 g/L catalyst dosage, 25 °C).

Figure S4. Co leaching during different pH conditions in flower-shape C-dots/Co₃O₄{111}/PMS/ENR system.

Figure S5. Density functional theory (DFT) calculations of PMS on different crystalline planes of Co₃O₄.

Figure S6. Frontier electron densities of OTC and ENR calculated by Gaussian.

Figure S7. Iron spectra at different retention time (RT) of OTC catalysis sample.

Figure S8. Iron spectra at different retention time (RT) of ENR catalysis sample.

Figure S9. TOC removal under different reaction conditions.

Figure S10. EPR spectra in various conditions. Center field: 34,800 G; microwave frequency: 9.849 GHz; modulation frequency: 100 kHz; and power: 20.17 mW.

Figure S11. The turnover numbers(TONs) of different catalysts prepared (Firstly, 10 mM potassium iodide (KI) solution was prepared to dilute the PMS sample 50 times. Then the solution was shaken for 5 minutes and detected with UV–vis spectrometer at λ = 352 nm).

 $Figure \ S12. \ Schematic \ of \ synthesize \ process \ of \ flower-shape \ C-dots/Co_3O_4\{111\}.$

Table S1. The pseudo-first-order kinetic equations, rate constants (K) and regression coefficients (R^2) of degradation of OTC/ENR over different catalysts.

antibiotics	Catalyst	Kinetic equation	K	R^2
	Flower-shape C-dots/Co3O4{111}	$-ln(C/C_0) = 0.0215t$	0.0215	0.9882
OTC	Flower-shape Co ₃ O ₄ {111}	$-ln(C/C_0) = 0.0056t$	0.0056	0.9875
	Spherical Co ₃ O ₄ {110}	$-ln(C/C_0) = 0.001t$	0.001	0.9698
	Flower-shape C-dots/Co ₃ O ₄ {111}	$-ln(C/C_0) = 0.513t$	0.513	0.9663
ENR	Flower-shape Co ₃ O ₄ {111}	$-ln(C/C_0) = 0.0757t$	0.0757	0.9075
	Spherical Co ₃ O ₄ {110}	$-ln(C/C_0) = 0.0046t$	0.0046	0.9098

Table S2. Operating conditions for HPLC about OTC and ENR.

	OTC	ENR	
	A [Ultrapure water:methanol:H ₃ PO ₄	C [Tetrabutyl ammonium bromide (0.015M,	
Mobile phase	(85wt%) = 500:25:2]; B (acetonitrile)	H ₃ PO ₄ adjust pH = 3.0)]; D (acetonitrile)	
	Mobile phase of mixture $(A/B = 7/3)$	Mobile phase of mixture $(C/D = 9/1)$	
chromatographic column	4.6 × 250 mm, 5 μm	4.6 × 250 mm, 5 μm	
Flow rate	1.0 ml/min	1.0 ml/min	
Detector temperature	303 K	309 K	
Detection wavelength	λ = 354 nm	λ = 278 nm	