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Abstract: Recent studies have highlighted the therapeutic and ergogenic potential of the ketone body
ester, (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate. In the present work, the enzymatic synthesis of
this biological active compound is reported. The (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate has been
produced through the transesterification of racemic ethyl 3-hydroxybutyrate with (R)-1,3-butanediol
by exploiting the selectivity of Candida antarctica lipase B (CAL-B). The needed (R)-1,3-butanediol
was in turn obtained from the kinetic resolution of the racemate achieved by acetylation with vinyl
acetate, also in this case, thanks to the enantioselectivity of the CAL-B used as catalyst. Finally, the
stereochemical inversion of the unreacted (S) enantiomers of the ethyl 3-hydroxybutyate and 1,3-
butanediol accomplished by known procedure allowed to increase the overall yield of the synthetic
pathway by incorporating up to 70% of the starting racemic reagents into the final product.

Keywords: ketone body ester; lipase; kinetic resolution; asymmetric synthesis; configuration inver-
sion

1. Introduction

The ketone bodies (R)-3-hydroxybutyrate and acetoacetate, are short chain acids
produced by the liver from the free fatty acids released from adipose tissue. The blood
ketone bodies concentration normally ranges below 1 mM [1] increasing up to 5–7 mM
during prolonged fasts [2]. Under this metabolic condition, known as ketosis, ketone
bodies efficiently replace glucose as respiratory substrate, furnishing a higher adenosine
triphosphate (ATP) yield with respect to pyruvate, the end-product of glycolysis [3]. This
explain why a mild ketosis is beneficial for muscle and brain during prolonged physical
exercise [4–6]. Furthermore, significant results in the treatment of patients affected by
neurodegenerative diseases [1,7–9] and epilepsy [10] have been obtained through the in-
creasing of blood ketone bodies induced by consumption of a ketogenic diet. However, a
nutrition devoid of carbohydrate and rich of saturated fats is scarcely tolerated by most
of the patients, and increases plasma cholesterol and free fatty acids, both known risk
factors for several pathologies [11,12]. On the other hand, administration of therapeutically
relevant amounts of the ketone bodies as free acids or sodium salts resulted in dangerous
acidosis or sodium overload, respectively [13]. The oral assumption of ketone bodies esters
has been demonstrated as a successful alternative to induce beneficial levels of ketosis
avoiding the increase of blood levels of cholesterol and fatty acids as well as the risk of
acidosis or sodium overloading [14]. The most employed ketone body ester is the palatable
and nontoxic (R)-3-hydroxybutyl (R)-3-hydroxybutyrrate [15,16] which is cleaved in vivo
to (R)-3-hydroxybutyrate and (R)-1,3-butanediol. The former is the most abundant ketone
body of the entire circulating pool (about 70%) [4], the latter is converted to acetoacetate
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and (R)-3-hydroxybutyrate in the liver [17]. The (R)-3-hydroxybutyl (R)-3-hydroxybutyrate
has been produced by enzymatic reduction of 3-oxobutyl acetoacetate (in turn obtained
by transesterification of diketene with 4-hydroxybutan-2-one) [18]. The fermentative pro-
duction by means of metabolically engineered anaerobic microorganisms has been also
reported [19]. The simplest strategy for producing this ketone body ester is the lipase-
catalyzed transesterification of ethyl (R)-3-hydroxybutyrate with (R)-1,3-butandiol [20].
This approach requires enantiopure reagents. The (R)-3-hydroxybutyrate can been obtained
by enzymatic kinetic resolution of the racemate [21] as well as by alcoholysis of polyhy-
droxybutyrate, a polyester produced on large scale by bacterial fermentation [22]. Recently,
(R)-3-hydroxyburate and (R)-1,3-butandiol have been respectively obtained by acid cat-
alyzed ethanolysis or sodium borohydride reduction of (R)-β-butyrolactone deriving from
enzymatic hydrolysis of the corresponding racemate (Scheme 1) [23,24]. Herein we report
a new enzymatic approach which, starting from both racemic ethyl 3-hydroxybutyrate and
1,3-butandiol, affords the ketone body ester (R)-3-hydroxybuthyl (R)-3-hydroxybutyrate.
The overall yield of the synthetic pathway was pushed up to 70% thanks to the recycling of
the (S) reagents by stereochemical inversion.
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Scheme 1. Synthesis of (R)-hydroxybuthyl (R)-3-hydroxybutyrate 4 starting from racemic β-butyrolactone 1 following the
methodology reported in reference 24. Reaction conditions: Step (a) racemic-1 (50 mmol), H2O (30 mmol), methyl tert-butyl
ether (MTBE) (250 mL), Candida antarctica lipase B (CAL-B) (0.3 g), 25 ◦C, 2 h; Step (b) (R)-1 (23 mmol), ethanol (50 mL),
H2SO4 (0.2% v/v), 25 ◦C, 48 h; Step (c) (R)-2 (20 mmol), (R)-3 (20 mmol), CAL-B (0.2 g), 30 ◦C, 80 mm Hg, 6 h. Yields of (R)-2
and (R,R)-4 referred to the isolated products; the yield of compound (S)-2 was deduced from the CG analysis of the crude
reaction mixture.

2. Results and Discussion
2.1. Synthesis of (R)-3-Hydroxybutyl (R)-3-Hydroxybutyrate from Enantioenriched
(R)-3-Hydroxybutyrate

To produce (R)-3-hydroxybutyl (R)-3-hydroxybutyrate on a gram scale, we followed
the procedure recently proposed by Ulrich and coworkers [24]. In this procedure, the
racemic β-butyrolactone (compound 1, Scheme 1) was kinetically resolved by Candida
antarctica lipase B (CAL-B) catalyzed hydrolysis. After aqueous workup to remove the
(S)-3-hydroxybutanoic acid, the resulting (R)-β-butyrolactone was transesterified with
ethanol to give ethyl (R)-3-hydroxybutyrate 2 (steps a) and b), Scheme 1). In our results,
these reaction sequences gave (R)-2 with 85% enantiomeric excess (ee). The lower optical
purity with respect to the literature data (>99%) [24], was probably due to an incomplete
hydrolytic step. Despite this, we submitted the enantioenriched (R)-2 to the CAL-B-
catalyzed transesterification with (R)-1,2-butandiol 3 (step c), Scheme 1). Following the
reaction course by chiral phase gas chromatographic analysis, we noted that, once the
complete conversion of (R)-2 to the desired (R)-3-hydroxybuthyl (R)-3-hydroxybutyrate
(R,R)-4 was reached, the small amount of (S)-2 (7.5%) present in the starting ethyl ester
remained unreacted. This prompted us to investigate the possibility to directly use racemic-
2 for the enantioselective synthesis of the ketone body ester (R,R)-4.

2.2. Synthesis of (R)-3-Hydroxybutyl (R)-3-Hydroxybutyrate from Racemic 3-Hydroxybutyrate

The possibility to produce the ketone body ester (R,R)-4 starting from the racemic ethyl
ester 2 was verified by reacting (R)-1,3-butandiol (3) with two equivalents of racemic-2 in
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the presence of CAL-B without the addition of any solvent. The reaction was gently shaken
at 30 ◦C under reduced pressure (80 mmHg) in order to remove of the coproduced ethanol.
The formation of product 4, as well as its stereochemistry, were periodically checked by
chiral phase GC analysis. After 5 h, the diol 3 was completely converted to the expected
(R,R)-4 leaving the ethyl ester (S)-2 unreacted (Scheme 2, route a). After removing the
enzyme by filtration, the crude reaction mixture was distillated under vacuum to recover
(S)-2 (40% yield, >91% ee) as the distillate and (R,R)-4 (48% yield, >20/1 dr) as the residue.
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The transesterification reaction between both the racemic 2 and 3, was attempted
as well (Scheme 3, route b). However, in this case, because of the distance between the
reactive hydroxyl group and the chiral carbon (C3) both the enantiomers of the diol 3
reacted with comparable rates. As a result, a 1:1 mixture of (R,R)- and (R,S)-4 was obtained
(see Supplementary Materials).
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2.3. CAL-B Catalyzed Kinetic Resolution of the 1,3-Butandiol

Once we ascertained the possibility to use ester 2 as racemate, as well as the needing of
enantiomerically pure (R)-3, we engaged the study on the kinetic resolution of the racemic
diol 3.

The structural resemblance of diol 3 and ester 2, suggested us to attempt the kinetic
resolution of the former, through an enzymatic approach developed for the later [21].
On the other hand, a precedent study reported the lipase mediated kinetic resolution
of racemic-3 with ChirazymeTM[25]. The reaction, once again catalyzed by CAL-B, was
performed in a solvent-free system with 1.5 equivalents of vinyl acetate as the acylating
agent. The time course of the reaction monitored by chiral phase CG analysis (Figure 1)
showed the not stereoselective esterification of the primary alcoholic group leading to the
complete conversion of the racemic diol 3 to (R)- and (S)-3-hydroxybutyl acetate 5 within
the first half-hour. After this, the concentration of (S)-5 remained almost unvaried, while
(R)-5 was quickly converted to (R)-1,3-butandiol diacetate 6. The reaction performed on
preparative scale (1 g of racemic-3) gave after 2.5 h the complete conversion of the racemic
diol 3 to an almost equimolar mixture of (S)-5 and (R)-6 (Scheme 3). After removing the
vinyl acetate by evaporation, the crude reaction mixture was chromatographed on silica
gel to separate (S)-5 (45% yield, 90% ee) from (R)-6 (48% yield, >95% ee).
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The diacetate was then subjected to ethanholysis in the presence of CAL-B. The reac-
tion was conducted in cyclohexane as the solvent since the use of pure ethanol was reported
as detrimental for the stability of the enzyme [21]. After evaporation of cyclohexane, excess
of ethanol and ethyl acetate coproduct, the (R)-3 was obtained in 95% yield (>95 % ee) and
used without further purification for the synthesis of (R,R)-4.

2.4. Inversion of Configuration of (S)-3-Hydroxybutyl Acetate 5

The overall yield of the synthetic pathway, including the preparation of the enan-
tiopure diol (R)-3, was 38% (calculated on the starting racemic-3). Therefore, in order to
increase the overall yield as well as the economy of the process, the configuration inversion
of the coproducts ethyl (S)-hydroxybutyrate 2 and (S)-3-hydroxybutyl acetate 5 was then
taken into account. The inversion of (S)- to (R)-2 by mesylation of the hydroxyl group
followed by SN2 with cesium acetate has been recently published [26]. However, a follow-
ing work reported a low selectivity of this procedure because of the formation of ethyl
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3-methylacrylate as elimination by-product (Scheme 4) [24]. For this reason, we focused
alternative inversion strategy, based on the tosylation of the hydroxyl group followed by
SN2 inversion with triethylammonium acetate (Scheme 4) [27]. This approach provided
the expected O-acetylated (R)-2 in 70% yield (88% ee), a result in line with that reported in
the original study. The acetylated product was finally converted to (R)-2 by ethanolysis in
the presence of CAL-B as described [21].
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Scheme 4. Synthetic pathways for the configuration inversion of (S)-2 through mesylation followed by SN2 with cesium
acetate [24] or by means of tosylation followed by SN2 with triethylammonium acetate [27].

Once verified the efficiency of the method as well as its compatibility with the ester
group, the (S)-3-hydroxybutyl acetate 5 was submitted to the same procedure. The reaction
of (S)-5 with p-toluenesulfonyl chloride in pyridine gave the expected tosyl derivative
9 in 96% yield (Scheme 5). The following SN2 was performed by adding compound
9 to a solution of triethylamine and acetic acid in toluene and warming the resulting
mixture for 4h at 80 ◦C. After aqueous workup and solvent evaporation, the residue was
chromatographed to give (R)-6 in 80% yield (88% ee).
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Scheme 5. Inversion of the configuration of the (S)-3-hydroxybutyl acetate 5. Reaction condition:
step (a) (S)-5 (7.5 mmol), p-dimethylaminopyridine (0.38 mmol), pyridine (5 mL), p-toluenesulfonyl
chloride (9.6 mmol, added at 0◦ C), 25 ◦C, 5 h; step (b) (S)-9 (7.2 mmol), triethylamine (2.16 mmol),
AcOH (13.0 mmol), toluene (5 mL), 80 ◦C, 4 h. The yields referred to crude product 9 and isolated
product 6. The ee of compound 9 has not determined (n.d.).

3. Materials and Methods
3.1. General Information

All commercially available reagents were used as received without further purification,
unless otherwise stated. The CAL-B Novozym®435 was purchased from Novozymes
(>Copenaghen, Denmark). Reactions were monitored by TLC on silica gel 60 F254 with
detection by charring with phosphomolybdic acid. Flash column chromatography was
performed on silica gel 60 (230–400 mesh). 1H and 13C nuclear magnetic resonance (NMR)
spectra were recorded on 300 and 400 MHz Varianspectrometers (Palo Alto, CA, USA)
at room temperature using CDCl3 as solvent. Chemical shifts (δ) are reported in ppm
relative to residual solvent signals. Optical rotations were measured at 20 ± 2 ◦C in the
stated solvent; [α]20

D values are given in 10−1 deg cm2 g−1. High-resolution mass spectra
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(HRMS) were recorded in positive ion mode with an Agilent 6520 high performance liquid
chromatography (HPLC)-Chip coupled with a quadrupole/time of fly-mass spectrometer
(Q/TOF-MS) nanospray system unit (Santa Clara, CA, USA) to produce spectra. GC
analyses were performed using a Thermo Focus gas chromatograph (Waltham, MA, USA)
equipped with a flame ionization detector and a Megadex 5 column (25 m × 0.25 mm),
with the temperature programs as specified.

3.2. Gas Chromatographic Analysis

Samples (5 mg) were diluted with ethyl acetate and injected (1 µL). The products
were detected using the following temperature program: 70 ◦C for 15 min, 10◦ C/min
up to 200 ◦C. RT for ester 2: 18.5 min; RT for diol 3: 20.7 min; RT for ketone body ester
(S,R)-4: 22.0 min; RT for ketone body ester (R,R)-4: 22.0 min. For a better separation of the
enantiomers, ester 2 and diol 3 were converted to the corresponding O-acetyl derivatives
before the injection. The sample (5 mg) was diluted with acetic anhydride (20 µL) and
triethylamine (5 µL) and kept at room temperature for two hours. The mixture was diluted
with ethyl acetate (1 mL) and injected (1 µL) using the following temperature program:
from 60 ◦C 2 ◦C/min up to 200 ◦ C. RT for the acetyl derivative of (S)-2: 18.7 min; RT for
the acetyl derivative of (2)-2: 21.3 min. RT for diacetate (S)-6: 23.1 min; RT for diacetate
(R)-6: 25.1 min.

3.3. Synthesis of (R)-3-Hydroxybutyl (R)-3-Hydroxybutyrate 4 From Racemic 3-Hydroxybutyrate

A mixture of racemic ethyl ester 2 (1 g, 7.6 mmol), (R)-1,3 butandiol 3 (0.34 g, 3.9 mmol)
and CAL-B (70 mg) was gently shaken under reduced pressure (80 mmHg) at 30 ◦C for
6 h. The reaction mixture was filtered to remove the enzyme and evaporated under
reduced pressure (80 mm Hg) to separate unreacted ethyl ester (S)-2 as the distillate (0.4 g,
3.0 mmol), 40% yield (91% ee), from the (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (R,R)-4
(0.64 g, 3.6 mmol), 48% yield (>90% dr). 1H NMR (300 MHz, CDCl3) δ 4.34–4.25 (m, 1H,
CHOH), 4.22–4.10 (m, 2H, CH2OCO), 3.93–3.79 (m, 1H, CHOH), 2.45 (dd, J = 16.1, 3.9 Hz,
1H, CH2CO2), 2.39 (dd, J = 16.1, 8.4 Hz, 1H, CH2CO2), 1.82–1.63 (m, 2H, CH2), 1.19 (d,
J = 2.7 Hz, 3H, CH3), 1.18 (d, J = 2.6 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 172.9,
65.1, 54.6, 62.1, 43.1, 37.6, 23.5, 22.6. HRMS (ESI) m/z calcd for C8H17O4

+: 177,1127 [M +
H]+; found: 177,1137.

3.4. Kinetic Resolution of Racemic-1,3-Butandiol 3

A mixture of racemic 1,3-butandiol 3 (1.8 g, 20 mmol), vinyl acetate (2.6 g, 30 mmol)
and CAL-B (0.2 g) was gently shaken at 30 ◦C following the reaction course by chiral phase
GC analysis. The reaction was stopped when the diol 3 was completely converted (about
2.5 h). The mixture was diluted with methylene chloride (10 mL) and filtered to remove the
enzyme. After evaporation of the solvent the residue was chromatographed on silica gel
with cyclohexane-ethyl acetate-methanol (15:4:1) as the eluent. (S)-3-hydroxybutyl acetate
5 (1.19 g, 9.0 mmol), 45% yield, (90% ee); [α]D

20 = + 19.1 (c 2.0, CHCl3), lit + 17.5 (c 1.4) [25].
1H NMR (300 MHz, CDCl3) δ 4.38–4.27 (m, 1H, CHOAc), 4.16 – 4.07 (m, 1H, CHOAc), 3.95–
3.88 (m, 1H, CHOH), 2.05 (s, 3H, Ac), 1.85–1.62 (m, 2H, CH2), 1.22 (d, J = 6.2 Hz, 3H, CH3).
13C NMR (100 MHz, CDCl3) δ 171.4, 64.6, 61.7, 37.8, 23.4, 20.9. HRMS (ESI) m/z calcd
for C6H13O3

+: 133,0865 [M + H]+; found: 133,0858. (R)-1,3-butandiol diacetate 6 (1.67 g,
9.6 mmol), 48 % yield, (>95% ee); [α]D

20 = −25.7 (c 2.0, CHCl3), lit + 23.5 (c 1.4) [25]. 1H
NMR (300 MHz, CDCl3) δ 4.96–4.83 (m, 1H, CHOAc), 4.05–3.95 (m, 2H, CH2OAc), 1.93
(s, 3H, Ac), 1.92 (s, 3H, Ac), 1.86–1.67 (m, 2H, CH2), 1.14 (d, J = 6.2 Hz, 3H, CH3). 13C NMR
(100 MHz, CDCl3) δ 170.8, 170.3, 67.7, 60.6, 34.6, 21.1, 20.7, 19.9. HRMS (ESI) m/z calcd for
C8H15O4

+: 175,0970 [M + H]+; found: 175,0981.
The (R)-1,3-butandiol diacetate 6 (1.67 g, 9.6 mmol) was dissolved in cyclohexane

(10 mL). Ethanol (1.32 g, 28.8 mmol) and CAL-B (0.2 g) were added and the mixture was
gently shaken at 30 ◦C following the reaction course by TLC. When the diacetate 6 was fully
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converted to the diol 3 the reaction was filtered and evaporated to afford (R)-1,3-butanediol
3 (0.82 g, 9.1 mmol), 95% yield, (>95% ee).

3.5. Inversion of Configuration of (S)-3-Hydroxybutyl Acetate 5

A solution of (S)-3-hydroxybutyl acetate 5 (1 g, 7.5 mmol) and p-dimethylaminopyridine
(47 mg, 0.38 mmol) in pyridine (5 mL) was cooled to 0 ◦C and p-toluenesulfonyl chloride
(1.8 g, 9.6 mmol) was added in portions over 30 min. The mixture was kept at room
temperature for 5 h and then diluted with water (16 mL). The white solid precipitated was
filtered, washed with cold water (2 × 10 mL) and dried under vacuum at 40 ◦C to give
compound 9 (2.06 g, 7.2 mmol), 96% yield; 1H NMR (300 MHz, CDCl3) δ 7.79 (d, J = 8.3 Hz,
2H, Ar), 7.32 (d, J = 8.4 Hz, 2H, Ar), 4.80–4.67 (m, 1H, CHOTs), 4.07–3.97 (m, 1H, CHOAc),
3.95–3.85 (m, 1H, CHOAc), 2.44 (s, 3H, Ts), 1.96 (s, 3H, Ac), 1.99–1.80 (m, 2H, CH2), 1.34
(d, J = 6.2 Hz, 3H, CH3). 13C NMR (100 MHz, CDCl3) δ 171.0, 145.0, 134.5, 130.1, 128.1,
77.1, 60.4, 35.8, 21.9, 21.4, 21.1. The crude compound 9 (2.06 g, 7.2 mmol) was added to a
solution of triethylamine (0.22 g, 2.16 mmol) and acetic acid (0.78 g, 13 mmol) in toluene
(5 mL) previously stirred at room temperature for half an hour. The mixture was heated to
80 ◦C, and stirred at this temperature for 4 h. After cooling to room temperature, the
reaction mixture was diluted with toluene (40 mL) and was washed successively with
aqueous 2 M HCl solution (20 mL) and 10% (w/v) aqueous K2CO3 solution (30 mL). The
organic layer was separated, dried over anhydrous Na2SO4 and evaporated to afford the
1,3-butanediol diacetate 6 (1.0 g, 5.76 mmol), 80% yield, (88% ee).

4. Conclusions

This enzymatic methodology allows for easy access to the nutraceutical and pharma-
ceutical relevant (R)-3-hydroxybutyl (R)-3-hydroxybutyrate starting from cheap, racemic
reagents. The ethyl 3-hydroxybutyrate was used directly in racemic form while the needed
(R)-1,3-butandiol was obtained by enzymatic kinetic resolution of the corresponding race-
mate. Thanks to the configuration inversion of both the distomers (S)-3-hydroxybutyrate
and (S)-1,3-butandiol, the overall yield of the process has been increased over the classical
50% normally achieved by kinetic resolution-based methodologies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-434
4/11/1/140/s1, Figure S1: 1H- and 13C-NMR spectra of compound 4; Figure S2: 1H- and 13C-NMR
spectra of compound 5; Figure S3: 1H- and 13C-NMR spectra of compound 6; Figure S4: 1H- and
13C-NMR spectra of compound 9; Figure S5: Chiral phase GC of (R,R)-4 and (R,R)/(R,S)-4 mixture;
Figure S6: Chiral phase GC of acetylated (R)-2 from (S)-2 inversion; Figure S7: Chiral phase GC of
acetylated (R)-3 from kinetic resolution rac-3; Figure S8: Chiral phase GC of (R)-6 from inversion
of (S)-5.
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