Supporting Information

Understanding selectivity in CO₂ hydrogenation to methanol for MoP nanoparticle catalysts using *in situ* techniques

Melis S. Duyar^{*,1,2,3}, Alessandro Gallo^{1,2}, Samuel K. Regli⁴, Jonathan L. Snider^{1,2}, Joseph Singh^{1,2}, Eduardo Valle^{1,2}, Joshua McEnaney^{1,2}, Stacey F. Bent^{1,2}, Magnus Rønning⁴, Thomas F. Jaramillo^{*,1,2}

¹ SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA

² SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

³ Department of Chemical and Process Engineering, University of Surrey, Guildford, GU2 7XH, United Kingdom

⁴ Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway

*Corresponding authors: m.duyar@surrey.ac.uk, jaramillo@stanford.edu

Table of Contents:

Figure S7: Activity of ZrO_2 support during CO_2 hydrogenation. Test conditions: CO_2 hydrogenation, 40 bar, 250°C, $H_2/CO_2=3$	7
Figure S8: TPSR-DRIFTS full spectrum for MoP/ZrO ₂ . Spectra were normalized to initial room temperature background taken under vacuum which is why the TOP ligands (see Figure S1 can be seen as negative peaks in the C-H stretching region (ligands were removed with the reduction treatment prior to TPSR) until higher temperatures when the formates begin to form and associated C-H stretching bands become dominant.	m)
Figure S9: TPSR-DRIFTS full spectrum for ZrO ₂	9
Figure S10: TPSR-DRIFTS C-H region	10

Figure S1: C-H stretching region of the ex-situ IR spectra for supported MoP catalysts with the highest and lowest loading of MoP, showing the removal of ligands after hydrogen reduction treatment (450°C, 1hour)

Table S1: Curve-fit results for the EXAFS data for Mo K-edge: S02 was set to 0.72 for all samples as determined by the fit of MoP standards (0.72±0.07). The data ranges used in the fit are $3.0 \le k \le 12.5 \text{ Å}-1$ and $1.0 \text{ Å} \le R \le 3.3 \text{ Å}$ (b1.0 Å $\le R \le 2.3 \text{ Å}$). a Set to the crystallographic values. c set value. Uncertainties in the last digit are shown in parentheses.

Conditions	Path	Ν	R (Å)	σ² (Ų)	ΔE (eV)	R-factor
MoP std	Mo-P	6 ^a	2.449(7)	0.0022(9)	5.8(7)	0.02
	Mo-Mo	8 ^a	3.212(6)	0.0042(7)		
RT, He ^b	Mo-O	0.5(3)	1.95(5)	0.002 ^c	4(1)	0.009
	Mo-P	5(1)	2.43(2)	0.013(2)		
450°C, H ₂	Mo-P	5.3 (6)	2.440 (8)	0.006(1)	5(1)	0.013
	Mo-Mo	3(1)	3.209(9)	0.007(2)		
700°C, H₂	Mo-P	5.4(5)	2.440(8)	0.008(1)	5(1)	0.016
	Mo-Mo	4(1)	3.22(1)	0.008(2)		

Figure S2: XANES difference between crystalline MoP and as-prepared colloidal nanoparticles.

Figure S3: First derivative of the XANES region of the Mo K-edge for different standards and as prepared Mo NPs at room temperature.

Figure S4: comparison of the FT of EXAFS signal at Mo K-edge for silica supported and unsupported Mo NPs

Table S2: Surface area (reported by manufacturer), Mo and P loadings determined via ICP and Mo/P ratios for amorphous MoP nanoparticles on various metal oxide supports.

Surface area for	Mo loading	P loading	Mo/P molar
support (m²/g)	(wt%)	(wt%)	ratio
185	3.13%	0.79%	1.28
103	0.05%	0.01%	1.99
15-45	1.61%	0.51%	1.01
35-65	0.75%	0.28%	0.86
30	1.83%	0.60%	0.98
10.8	0.33%	0.29%	0.87
	Surface area for support (m²/g) 185 103 15-45 35-65 30 10.8	Surface area for support (m²/g) Mo loading (wt%) 185 3.13% 103 0.05% 15-45 1.61% 35-65 0.75% 30 1.83% 10.8 0.33%	Surface area for support (m²/g) Mo loading (wt%) P loading (wt%) 185 3.13% 0.79% 103 0.05% 0.01% 15-45 1.61% 0.51% 35-65 0.75% 0.28% 30 1.83% 0.60% 10.8 0.33% 0.29%

Figure S5: Conversion and methanol selectivity of MoP nanoparticle catalysts on various supports during CO₂ hydrogenation. Test conditions: CO₂ hydrogenation, 40 bar, 250°C, $H_2/CO_2=3$, Conversion=0.3-1.8%. Data shown were collected after 7 hours on stream.

Table S3: Conversion and activity towards alcohols. Data shown collected after 7 hours on stream.

Catalyst	Conversion	g C ₁₊ OH/h gcat
MoP/Al ₂ O ₃	1.4%	9.0x10 ⁻²
MoP/ZrO ₂	1.4%	3.4x10 ⁻²
MoP/SiO ₂	0.8%	0.4x10 ⁻²
MoP/TiO ₂	0.8%	0.2x10 ⁻²
MoP/CeO ₂	1.8%	1.1x10 ⁻²
MoP/ZnO	0.3%	0.4x10 ⁻²

Figure S6: X-ray Photoelectron Spectroscopy (XPS) of air exposed unsupported and zirconia supported MoP nanoparticles

Figure S7: Activity of ZrO_2 support during CO_2 hydrogenation. Test conditions: CO_2 hydrogenation, 40 bar, 250°C, $H_2/CO_2=3$

Figure S8: TPSR-DRIFTS full spectrum for MoP/ZrO₂. Spectra were normalized to initial room temperature background taken under vacuum which is why the TOP ligands (see Figure S1) can be seen as negative peaks in the C-H stretching region (ligands were removed with the reduction treatment prior to TPSR) until higher temperatures when the formates begin to form and associated C-H stretching bands become dominant.

Figure S9: TPSR-DRIFTS full spectrum for ZrO₂

Figure S10: TPSR-DRIFTS C-H region