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Abstract: Ivabradine (Corlanor®), is a chiral benzocycloalkane currently employed and commercial-
ized for the treatment of chronic stable angina pectoris and for the reduction in sinus tachycardia.
The eutomer (S)-ivabradine is usually produced via chiral resolution of intermediates, by employing
enantiopure auxiliary molecules or through preparative chiral HPLC separations. Recently, more
sustainable biocatalytic approaches have been reported in literature for the preparation of the chiral
amine precursor. In this work, we report on a novel biocatalyzed pathway, via a resolution study of a
key alcohol intermediate used as a precursor of the chiral amine. After screening several enzymatic
reaction conditions, employing different lipases and esterases both for the esterification and hydroly-
sis reactions, the best result was achieved with Pseudomonas cepacia Lipase and the final product was
obtained in up to 96:4 enantiomeric ratio (e.r.) of an ivabradine alcohol precursor. This enantiomer
was then efficiently converted into the desired amine in a facile three step synthetic sequence.

Keywords: lipase; esterase; kinetic resolution; biocatalysis; chiral alcohol; ivabradine

1. Introduction

Ischemic heart disease is conventionally treated with β-blockers, calcium antagonists,
and ACE inhibitors [1]. Despite the use of different therapies, some patients still exhibit
refractory angina or vascular side effects. In particular, high values of heart rate (HR) have
been proved to be critical in patients suffering from chronic heart failure (CHF) [2]. The ac-
tual insufficient prevention of mortality due to major coronary events is the driving force for
the research of new anti-ischemic drugs. In this context, new therapeutics are necessary to
modulate HR in those conditions [3–5]. HR is determined by sinoatrial (pacemaker) nodal
cells among the cardiac myocytes, which generate spontaneous depolarization current,
controlled by If (funny) channels [5,6]. In recent literature, it was reported that the If current
can be inhibited by some benzocycloalkane derivatives; particularly, the (S)-ivabradine
1 (Scheme 1) [7–10] was selected as the best compound for activity and hemodynamic
values [7], and approved by the European Medicines Agency in 2005 for the treatment of
stable angina pectoris [11,12]. Like for many other medicines, stereochemistry is crucial
in ivabradine’s structure; only its (S)-enantiomer is active as a drug, therefore, either a
chiral synthesis or a racemic resolution of intermediates is necessary in its production.
According to literature, including patents, most synthetic approaches aim at obtaining the
secondary amine 2 as the chiral building block (Scheme 1) needed for ivabradine’s final
structure [13–15]. Thus, the target (S)-2 can be obtained via resolution with chiral acids
or by preparative chiral HPLC [3,16]. The described preparations run into problems like
low-resolution yields of enantiomerically pure amine, due to several crystallization cycles
needed, or not practical scale-up processes. Moreover, chemical reactions involving metal
catalysts (e.g., reductions with LiAlH4) [16] produce large amount of waste in industrial
productions; in a time where manufacturing is focusing more and more on greener chemi-
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cal processes [17–20], a biocatalytic approach can be also exploited as a valid alternative
for the industrial ivabradine’s synthesis. Indeed, enzyme-based processes are already in
use in the pharmaceutical productions, such as in the syntheses of Pregabalin-Lyrica® [21],
an antiepileptic drug, Sitagliptin-Januvia® [22–24], a DPP-4 inhibitor for treating type 2
diabetes, or Zanamivir-Relenza® [21], a neuraminidase inhibitor against influenza.
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Scheme 1. Overview on ivabradine 1 and the possible biocatalytic routes [3] to the synthesis of its precursors (S)-2 and (S)-4.

An important goal in industrial field today is to perform reactions at ambient temper-
ature and pressure, reducing the use of organic solvents or metal catalysts [25]. Enzymes
often constitute an environmentally friendly alternative to conventional chemical catalysts;
they can operate under mild conditions and at low temperature and are nontoxic and
biodegradable. The high chemo-, regio-, and stereoselectivity often exhibited enable purer
and more selective reactions, and may even diminish the need for functional group protec-
tions, which will increase the atom economy and afford shorter synthetic routes [26–28].
This is attractive from both an economical and an environmental point of view, so that in
recent years, there has been an increase in the use of biocatalysis in industry [29,30], with
hydrolases being the most common enzymes employed [31–34], the class to which esterases
and lipases belong to. In their natural environment, their role deals with the hydrolysis of
ester bonds [35,36], such as in the case of free fatty acids, and water is the solvent where
they operate. Nevertheless, if lipases are used in organic solvents, condensations, and
transacylations can be easily performed. These are reactions, which are unfavored in
aqueous solution [32,37,38]. Other common examples of nonhydrolytic processes that can
be performed if lipases are used in organic solvents are esterifications, transesterifications,
aminolysis, and thiolysis. Lipases are among the most commonly employed enzymes,
especially for molecules that resemble their natural lipophilic substrates [26,39].

In this scenario, the excellent properties displayed by enzymes in terms of selectivity
and reactivity under mild reaction conditions make therefore biocatalysis an attractive
alternative for the production of enantiopure building blocks and pharmaceuticals [3,40,41].

Recently, the biocatalytic tools have been applied to the preparation of the ivabradine
precursor chiral amine 2. Excellent results have been obtained [3] with the use of a lipase
from Pseudomonas cepacia (PSC-II) mediated resolution of 2 (99% ee) with diethyl carbonate
and 2-Me-THF as a solvent, whereas with the biocatalytic amination of the aldehyde 3,
the desired amine could be obtained in 90% ee under dynamic kinetic resolution (DKR)
conditions. Despite the very good results hitherto obtained, the use of organic solvent as
2-Me-THF or of very expensive enzymes as transaminase ω-TA, still can represent a limit
to a broad application of this transformation. Following these observations, we decided
to investigate the possibility to obtain (S)-2 from chiral alcohol (S)-4, which could be, in
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turn, obtained by an enzymatic resolution of its racemic form. We decided to explore both
the acylation of 4 and the hydrolysis of 5. This last reaction can be specially attracting for
the use of water as the solvent and very mild reaction conditions. In this work, we tested
several easily commercially available Lipase and Esterase in different reaction conditions.
Once the enantioenriched intermediate (S)-4 has been obtained, it could be easily converted
into the desired amine precursor (S)-2 in a few chemical steps.

2. Results and Discussion

The general scheme of the synthetic pathway to 4 and 5 is reported in Scheme
2. The aim was to obtain both the racemic alcohol 4 and the acylated compound 5 as
analytical references and enzymes substrates. The staring material was the commercially
available cyano-compound 6. This last was easily hydrolyzed in basic environment to
the corresponding carboxylic acid, which was further submitted to a Fischer esterification
in methanol to form the methyl ester 7 in 72% overall yield. The racemic alcohol 4 was
then achieved by reduction in 7 with LiAlH4. Compound 4 was acetylated using acetic
anhydride and pyridine, to get the derivative 5. Biocatalytic resolutions studies were
performed on both substrates 4 and 5, employing several types of Lipases and Esterases with
different reaction conditions, as discussed in the following paragraphs.
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Scheme 2. Synthesis of racemic substrates 4 and 5.

2.1. Studies on the Enzymes-Catalyzed Acetylation of Racemic 4

Among Lipases and Esterases, different types of enzymes were exploited to achieve
enantiomerically enriched compound (S)-5 (Scheme 3). Namely, three esterases (CLEA-
Esterase BS2, CLEA-Esterase BS3, and Amano Acylase) and three lipases (Candida antarctica
Lipase B-CAL-B, Amano Pseudomonas cepacia Lipase, and Porcine Pancreas Lipase PPL-Type
II) were employed. The enzymes were tested varying the reaction medium, using MTBE,
tetrahydrofuran, diethyl ether, and mixtures of these organic solvents with drops of buffer.
Attempts were also made to substitute the vinyl acetate with butyric anhydride or acetic
anhydride, but with a complete loss of selectivity. Temperature was also controlled, and
tested between 20 and 40 ◦C. After exploiting the different conditions, reactions were
performed in tert-butyl methyl ether (MTBE) as a solvent and with the use of vinyl acetate
as the acyl donor at room temperature.
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Scheme 3. Resolution by enzymes-catalyzed acetylation of 4.

The screening was performed on 50 mg of substrate; reactions were monitored up to
48 h with GC-MS for the conversions’ evaluation, whereas the enantiomeric ratio (e.r.) was
measured through a chiral HPLC. Results are reported in Table 1. Since the enantiomeric
ratio is the most important parameter in this study, the reaction times reported in Table 1
refer to the time at which the best balance between high e.r. and conversions was measured.
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Table 1. Results from screening of enzymes on the acetylation of racemic 4.

Entry Catalyst Time
(h)

Conversion
(%) a e.r. (S)-5 b E c

1 Esterase BS3 (CLEA) 2 10 66:34 2
2 Esterase BS2 (CLEA) 48 21 57:43 1
3 Acylase (Amano) 3 6 59:41 1
4 Candida Antarctica Lipase B (CAL-B) 1 55 73:23 4
5 Lipase PS (Amano) 1 41 90:10 17
6 Porcine Pancreas Lipase (PPL) (Type II) 6 26 90:10 11

a From GC-MS. b Enantiomeric ratios from chiral HPLC. c From ees of substrate and product (See Figure S12 in the Supplementary Materials
for more information.) [42].

As shown, the Esterases exhibited a poor reactivity in these conditions, and generally
very low conversions and e.r. values were obtained. On the contrary, Lipases showed a
better activity: the most interesting result was achieved with Lipase PS (Amano), which
produced a 41% conversion and a 90:10 e.r. of the acylated product (S)-5 after only 1 h (entry
5, Table 1). These enzymes showed a preference for the (S)-enantiomer of the substrate
(for the determination of the configuration vide infra), forming enantioenriched acylated
compound (S)-5. Anyway, due to a scarce selectivity, each reaction revealed a progressive
decrease in enantiomeric excess value during the increase in conversion in product. Indeed,
using as an example the results with Lipase PS, after 2 h, the conversion increased up to
57% and e.r. dropped to 86:14. The calculated selectivity factor for this biotransformation
is E = 17; with this value, it would be possible to obtain the enantiopure substrate (R)-4 in
30% yield (70% conversion). This was, however, the undesired enantiomer for the synthesis
of the target compound would be obtained.

2.2. Studies on the Enzymes-Catalyzed Hydrolysis of Racemic 5

We then moved toward the investigation of the enzymes-catalyzed selective hydrolysis
of the acetylated racemic compound 5 (Scheme 4).
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The same set of the aforementioned Lipases and Esterases were used. The optimized
setup for the reaction was a mixture of Na2PO4 buffer at pH 7.4 and EtOH (5:1), operating
at room temperature. Moreover, in this case, reactions were monitored up to 48 h with
GC-MS for the conversions’ evaluation, whereas the enantiomeric ratio (e.r.) was measured
through a chiral HPLC. The results are reported in Table 2. The reaction times reported
refer to the time at which the best balance between high e.r. and conversions was measured.

Esterases showed in all cases good conversion values, but the enantioselection was
always very poor. The best result was achieved again using Lipase PS (Amano). With this
catalyst, after only 30 min at room temperature, a moderate 30% conversion with a good
96:4 e.r. could be achieved (entry 5, Table 2). The other Lipases also gave good conversions,
but lower e.r.s were measured. According to what was previously observed, the enzyme
resulted more active on the (S)-enantiomer of substrate 5, thus under hydrolysis conditions,
the desired alcohol (S)-4 was obtained. Under these conditions, we were able to prepare
0.5 g of enantioenriched alcohol (S)-4 to be further transformed into the desired amine (S)-2.
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Table 2. Results from screening of enzymes for the hydrolysis of racemic 5.

Entry Catalyst Time
(h)

Conversion
(%) a e.r. (S)-4 b E c

1 Esterase BS3 (CLEA) 20 35 79:21 5
2 Esterase BS2 (CLEA) 2 51 52:48 1
3 Acylase (Amano) 29 50 65:35 4
4 Candida Antarctica Lipase B (CAL-B) 0.5 44 82:18 7
5 Lipase PS (Amano) 0.5 32 96:4 37
6 Porcine Pancreas Lipase (PPL) (Type II) 5 30 87:13 9

a From GC-MS. b Enantiomeric ratios from chiral HPLC. c From ees of substrate and product (See Figure S11 in the Supplementary Materials
for more information.) [42].

2.3. Conversion of Alcohol (S)-4 into Amine (S)-2

To obtain the desired amine (S)-2, a straightforward three steps reaction sequence
was performed (Scheme 5). First, the alcohol (S)-4 was converted into the corresponding
tosylate using tosyl chloride and pyridine as a base, in dichloromethane. Next, substitution
of the activate tosylate moiety with sodium azide at 60 ◦C in DMF, allowed to isolate, after
a chromatographic purification, the azido-derivative (S)-9. Finally, the reduction in the
azido group with triphenylphosphine in THF afforded the target compound in 70% overall
yield after three steps.
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It is worth to notice that this synthetic sequence is stereoconservative, since no transfor-
mation occurred on the stereogenic carbon of the starting alcohol. Thus, by the comparison
of the sign of the optical rotatory power of the final product with literature, we could
establish the correct (S) configuration of the starting alcohol (S)-4 as resulting from the
lipase-mediated hydrolysis of racemic ester 5 ([α]D

20 = −7.3 in CHCl3 for (S)-2 obtained
from our sequence and [α]D

20 = + 7.9 for (R)-2 compound from the literature [3]).

3. Materials and Methods
3.1. General Remarks

Chemicals and solvents were purchased from Merck KGaA (Darmstadt, Germany)
and used without further purifications. Reactions were monitored mostly by thin-layer
chromatography (TLC), performed on Merck Kieselgel 60 F254 plates. Visualization was
accomplished by UV irradiation at 254 nm and subsequently by treatment with the alkaline
KMnO4 reactant or with a phosphomolybdic reagent. 1H and 13C-NMR spectra were
recorded on a Bruker 400 spectrometer (1H-NMR, 400 MHz; 13C-NMR, 100 MHz) in CDCl3
solution using TMS as an internal standard; chemical shifts (δ) in the spectra are reported
in ppm, and the coupling constants J are reported in Hz. GC-MS analyses were performed
on an Agilent HP 6890 gas chromatograph equipped with a HP-5MS column (30 m ×
0.25 mm × 0.25 µm), with injection temperature = 250 ◦C, injecting 1 µL of solution,
and using He as a carrier gas (1.0 mL·min−1). The method used for the analyses was:
60 ◦C (1 min)/6 ◦C/min/150 ◦C (1 min)/12 ◦C/min/280 ◦C (5 min). Determination of
enantiomeric excesses was determined by HPLC Agilent 1260 Infinity equipped with a
chiral column Lux 5 µm Cellulose-3 (250 × 4.60 mm), λ = 288 nm. Product (S)-2 isolation
was achieved through preparative HPLC Agilent 1260 Infinity equipped with a Luna 10u
PREP Silica(3) 100A Column (250 × 21.2 mm), λ:288nm. Optical rotations were performed
on JASCO DIP 181 digital polarimeter. The enzymes employed in this work were: Acylase
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(30,000 U/g from Amano Enzyme Inc., Nagoya, Japan), Esterase BS3 (CLEA) 2500 U/g,
and BS2 obtained from Bacillus subtilis 10,000 U/g, immobilized Candida Antarctica Lipase
B (CAL-B, Novozym® 435 10,000 U/g from Boehringer Manheim, Germany), Porcine
Pancreas Lipase (PPL) (Type II) (30,000 U/g from Merck KGaA, Darmstadt, Germany), and
Pseudomonas cepacia Lipase (Lipase PS, 30,000 U/g from Amano Enzyme Inc., Nagoya, Japan).

3.2. Synthetic Procedures
Methyl 3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-triene-7-carboxylate 7

A mixture of 3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-triene-7-carbonitrile 6 (2 g,
10.6 mmol) and KOH (17 eq) in ethanol (20 mL) was refluxed for 8 h. The reaction mixture
was cooled down to room temperature and the ethanol was evaporated under reduced
pressure. The residue was acidified with 1 N HCl (aq.) and extracted three times with ethyl
acetate (3 × 50 mL). The combined extracts were dried over anhydrous Na2SO4, filtered,
and then concentrated in vacuum to yield the brown solid carboxylic acid intermediate
(1.84 g, 84%). 1H-NMR (400 MHz, CDCl3) δ 6.78 (s, 1H, Ar H), 6.72 (s, 1H, Ar H), 4.25
(dd, J = 4.3, 3.3 Hz, 1H, -CH-), 3.87 (d, J = 1.0 Hz, 6H, -OCH3), 3.44–3.41 (m, 2H, -CH2-).
13C-NMR (101 MHz, CDCl3) δ 178.4 (C=O), 150.8 (Ar), 150.1 (Ar), 135.3 (Ar), 133.1 (Ar),
107.2 (Ar), 106.8 (Ar), 56.3 (-OCH3), 44.7 (-CH-), 33.4 (-CH2-).

A mixture of the 3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-triene-7-carboxylic acid ob-
tained (1.84 g, 8.9 mmol) and methanol (20 mL) was stirred for 15 min. Then, a few drops
of concentrated H2SO4 were added and the mixture was refluxed for 8 h. The resulting
mixture was cooled down at room temperature and the solvent was evaporated under
reduced pressure; the residue was washed with NaHCO3 (aq.) and extracted three times
with ethyl acetate (3 × 50 mL). The combined extracts were dried over anhydrous Na2SO4,
filtered, and then concentrated in vacuum to yield the brown oil. Purification of the crude
oil on a column chromatography silica gel (eluent hexane/ethyl acetate from 9:1 to 7:3)
afforded 7 (1.65 g, 85%). 1H-NMR (400 MHz, CDCl3) δ 6.77 (s, 1H, Ar H), 6.71 (s, 1H, Ar
H), 4.22 (dd, J = 3.9 Hz, 1H, -CH-), 3.85 (bs, 6H, -OCH3), 3.74 (s, 3H, -COOCH3), 3.39 (d,
J = 3.9 Hz, 2H, -CH2-). 13C-NMR (101 MHz, CDCl3) δ 173.1 (C=O), 150.6 (Ar), 149.9 (Ar),
135.7 (Ar), 133.7 (Ar), 107.6 (Ar), 106.9 (Ar), 56.4 (-OCH3), 56.3 (-OCH3), 52.0 (-COOCH3),
44.8 (-CH-), 33.4 (-CH2-). (See Figure S1 in the Supplementary Materials for NMR spectra.)

(3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-trien-7-yl)methanol 4

A solution of compound 7 (1.65 g, 7.4 mmol) in THF (15 mL) was stirred at room
temperature for 15 min. Then, a solution of LiAlH4 (1.15 eq) in dry THF (2 mL) was added
dropwise and the mixture was refluxed for 8 h. The reaction mixture was quenched with
distilled H2O and extracted three times with ethyl acetate (3 × 50 mL) after removing the
organic solvent with rotavapor. The combined extracts were dried over anhydrous Na2SO4,
filtered, and then concentrated in vacuum to yield the brown oil. Purification of the crude
oil on a column chromatography silica gel (eluent hexane/ethyl acetate from 9:1 to 6:4)
afforded 4 (1.30 g, 90%). 1H-NMR (400 MHz, CDCl3) δ 6.75 (s, 1H, Ar H), 6.72 (s, 1H, Ar
H), 3.85 (bs, 6H, -OCH3), 3.91 (m, 2H, -CH2-OH), 3.64 (dq, J = 6.7 Hz, 1H, -CH-), 3.23 (dd,
J = 13.6, 5.0 Hz, 1H, -CH2-), 2.83 (dd, J = 13.6, 2.0 Hz, 1H, -CH2-). 13C-NMR (101 MHz,
CDCl3) δ 150.1 (Ar), 149.5 (Ar), 137.0 (Ar), 135.4 (Ar), 107.7 (Ar), 106.9 (Ar), 65.5 (-CH2OH),
56.4 (-OCH3), 56.3 (-OCH3), 44.4 (-CH-), 32.3 (-CH2-). (See Figure S2 in the Supplementary
Materials for NMR spectra and S3 for GC-MS chromatograms.)

(3,4-dimethoxybicyclo[4.2.0]octa-1(6),2,4-trien-7-yl)methyl acetate 5

A solution of compound 4 (0.15 g, 0.77 mmol) in dichloromethane (10 mL) was
stirred with acetic anhydride (5 eq) and pyridine (2 mL) for 6 h at room temperature. The
reaction mixture was then acidified with 1 N HCl (aq.) and extracted three times with
dichloromethane (3 × 20 mL). The combined extracts were dried over anhydrous Na2SO4,
filtered, and then concentrated in vacuum to yield the brown oil. Purification of the crude
oil on a column chromatography silica gel (eluent hexane/ethyl acetate from 9:1 to 7:3)
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afforded 5 (0.125 g, 69%). 1H-NMR (400 MHz, CDCl3) δ 6.70 (bs, 2H, Ar H), 4.32 (d, 2H,
J = 7.0 Hz, -CH2-O), 3.85 (bs, 6H, -OCH3), 3.67 (dq, J = 7.0, 5.0 Hz, 1H, -CH-), 3.26 (dd,
J = 13.7, 5.0 Hz, 1H, -CH2-), 2.81 (dd, J = 13.7, 2.2 Hz, 1H, -CH2-), 2.08 (s, 3H, -COCH3).
13C-NMR (101 MHz, CDCl3) δ 171.1 (C=O), 150.3 (Ar), 149.6 (Ar), 136.6 (Ar), 134.9 (Ar),
107.5 (Ar), 106.9 (Ar), 67.1 (-CH2O-), 56.3 (-OCH3), 56.3 (-OCH3), 40.9 (-CH-), 33.0 (-CH2-),
21.0 (-CH3). (See Figure S4 in the Supplementary Materials for NMR spectra and Figure S5
for GC-MS chromatograms.)

General Procedure for enzyme-mediated acetylation of (3,4-dimethoxybicyclo[4.2.0]octa-
1,3,5-trien-7-yl)methanol 4

A mixture of (3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-trien-7-yl)methanol 4 (50 mg,
0.26 mmol) in tert-butyl methyl ether (TBME, 5 mL) and vinyl acetate (10 eq) was stirred
for 10 min at room temperature. Then, enzyme (300 U) was added and the resulting mixture
was stirred from 1 to 48 h. To check the flow of the acetylation reaction, 200 µL withdrawals
were performed every 30 min or 1 h, according to the type of enzyme. Once withdrawn, the
reaction medium was filtrated, diluted with 800 µL of TBME, and analyzed by GC-MS to
determine the conversion. The same samples were injected into chiral HPLC to evaluate the
enantiomeric excesses of the products. (See Figures S9–S12 in the Supplementary Materials
for HPLC chromatograms and Figures S13 and S14 for the selectivity profiles of the kinetic
resolution of the racemate.)

General Procedure for enzyme-mediated hydrolysis of (3,4-dimethoxybicyclo[4.2.0]octa-
1,3,5-trien-7-yl)methyl acetate 5

A mixture of (3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-trien-7-yl)methyl acetate 5 (50 mg,
0.21 mmol), 0.3 M Na2HPO4 buffer solution at pH 7.4 (5 mL), and EtOH as a cosolvent
(1 mL) was stirred at room temperature for 10 min. Then the enzyme (300 U) was added
and the resulting mixture was stirred from 1 to 48 h. To check the flow of the hydrolysis
reaction, 200 µL withdrawals were performed every 30 min or 1 h, according to the type of
enzyme. Once withdrawn, the reaction medium was filtered, extracted with TBME and
analyzed by GC-MS to determine the conversion. The same samples were injected into
chiral HPLC to evaluate the enantiomeric excesses of the products. (See Figures S9–S12 in
the Supplementary Materials for HPLC chromatograms and Figures S13 and S14 for the
selectivity profiles of the kinetic resolution of the racemate.)

Preparative Synthesis of (S)-4

A mixture of (3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-trien-7-yl)methyl acetate 5 (2.0 g,
8.5 mmol), 0.3 M Na2HPO4 buffer solution at pH 7.4 (200 mL), and EtOH as a cosolvent
(40 mL) was stirred at room temperature until a clear solution has formed. Then 0.5 g of
Lipase PS (Amano) was added, and the resulting mixture was stirred for 30 min. Then, the
reaction was filtered, extracted three times with TBME (3 × 100 mL), and the solvent was
then evaporated under reduced pressure. The enantioenriched alcohol (S)-4 was isolated
from the crude mixture after a silica gel column chromatography with eluents in gradient:
hexane-ethyl acetate from 9:1 to 7:3 (0.52 g, 31% yield). [α]20

D = −4.8 (c 1, CHCl3).

(S)-(3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-trien-7-yl)methyl 4-methylbenzenesulfonate
(S)-8

A solution of compound (S)-4 (0.545 g, 2.8 mmol) in dichloromethane (20 mL) was
cooled in ice bath and stirred, while pyridine (3 eq) was added dropwise. Then a solution of
tosyl chloride (TsCl, 1.2 eq) in dichloromethane (8 mL) was dropped into the mixture. The
ice bath was removed, and the reaction mixture was stirred at room temperature for 48 h.
The resulting mixture was washed with 1 N HCl (aq.), the organic solvent was removed
under pressure, and the reaction was extracted three times with ethyl acetate (3 × 50 mL).
The organic layer was dried over anhydrous Na2SO4, filtered, and concentrated to yield
a crude product. The product was purified through a silica gel column chromatography
(eluent in gradient: hexane-ethyl acetate) to obtain the desired pure compound (S)-8, as
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a brownish oil (0.91 g, 94%). [α]20
D = +12.4 (c 1, CHCl3). 1H-NMR (400 MHz, CDCl3) δ

7.78–7.76 (m, 2H, Ar H), 7.35–7.33 (m, 2H, Ar H), 6.66 (s, 1H, Ar H), 6.63 (s, 1H, Ar H),
4.28–4.17 (m, 2H, -CH2-O), 3.81 (d, J = 6.6 Hz, 6H, -OCH3), 3.67 (tdd, J = 7.2, 4.9, 2.2 Hz, 1H,
(-CH-), 3.21 (dd, J = 13.8, 4.9 Hz, 1H, -CH2-), 2.73 (dd, J = 13.8, 2.1 Hz, 1H, -CH2-), 2.44 (s,
3H, -CH3). 13C-NMR (101 MHz, CDCl3) δ 150.4 (Ar), 149.6 (Ar), 144.7 (Ar), 135.3 (Ar), 134.6
(Ar), 133.2 (Ar), 129.8 (Ar), 127.8 (Ar), 107.5 (Ar), 106.8 (Ar), 72.9 (-CH2O-), 56.3 (-OCH3),
56.19 (-OCH3), 40.7 (-CH-), 32.7 (-CH2-), 20.6 (-CH3). (See Figure S6 in the Supplementary
Materials for NMR spectra.)

(S)-7-(azidomethyl)-bicyclo-[4.2.0]-octa-1,3,5-triene (S)-9

A solution of compound (S)-8 (0.5 g, 1.4 mmol) in DMF (5 mL) was stirred for 10 min.
Then NaN3 (2 eq) was added into the flask. The mixture was refluxed for 12 h and then
washed with brine and extracted five times with dichloromethane (5 × 30 mL). The organic
layers were dried over anhydrous Na2SO4, filtered, and concentrated to yield a yellow oil
of (S)-9 without further purification (0.270 g, 92%). [α]20

D = +6.37 (c 0.85, CHCl3). 1H-NMR
(400 MHz, CDCl3) δ 6.75 (s, 1H, Ar H), 6.71 (s, 1H, Ar H), 3.85 (s, 6H, -OCH3), 3.68–3.61
(m, 1H, -CH-), 3.60–3.48 (m, 2H, -CH2-N3), 3.29 (dd, J = 13.7, 4.9 Hz, 1H, -CH2-), 2.80 (dd,
J = 13.7, 2.2 Hz, 1H, -CH2-). 13C-NMR (101 MHz, CDCl3) δ 150.4 (Ar), 149.7 (Ar), 136.9 (Ar),
134.5 (Ar), 107.5 (Ar), 106.9 (Ar), 56.4 (-OCH3), 56.3 (-OCH3), 55.1 (-CH2N3), 41.7 (-CH-),
33.5 (-CH2-). (See Figure S7 in the Supplementary Materials for NMR spectra.)

(S)-(3,4-dimethoxybicyclo[4.2.0]octa-1,3,5-trien-7-yl)-methanamine (S)-2

A solution of compound (S)-9 (0.150 g, 0.7 mmol) in THF (5 mL) was stirred at room
temperature for 10 min. Then, triphenylphosphine (2 eq) was added and stirred for 1 h
at room temperature. After that, distilled H2O (1 mL) was added and stirred at room
temperature for 12 h. The resulting solution was acidified with 1 N HCl (aq.) and extracted
once with diethyl ether (1 × 20 mL) after removing the organic solvent under vacuum.
The aqueous phase was made basic with NaOH (pH 12) and extracted twice with diethyl
ether (2 × 20 mL). The organic layers were dried over anhydrous Na2SO4, filtered, and
concentrated under vacuum to yield a yellow oil. After preparative HPLC purification
on a silica column (eluents in gradient: hexane-ethyl acetate) (S)-2 was obtained (0.1 g,
76%). [α]20

D = −7.3 (c 1, CHCl3). In accordance with literature values [3]. 1H-NMR (400
MHz, CDCl3) δ 6.73 (s, 1H, Ar H), 6.71 (s, 1H, Ar H), 3.85 (d, J = 1.8 Hz, 6H, -OCH3), 3.84
(m, 2H, -CH2-NH2), 3.46 (tdt, J = 8.0, 5.2, 2.5 Hz, 1H, -CH-), 3.23 (dd, J = 13.5, 5.0 Hz, 1H,
-CH2-), 2.98 (d, J = 6.9 Hz, 2H, -NH2), 2.73 (dd, J = 13.5, 2.2 Hz, 1H, -CH2-). 13C-NMR
(101 MHz, CDCl3) δ 150.0 (Ar), 149.6 (Ar), 138.4 (Ar), 135.2 (Ar), 107.7 (Ar), 106.7 (Ar), 56.4
(-OCH3), 56.3 (-OCH3), 46.1 (-CH2NH2), 45.2(-CH-), 33.2 (-CH2-). (See Figure S8 in the
Supplementary Materials for NMR spectra.)

4. Conclusions

In the case of (S)-ivabradine, many enzymes have been already tested for the resolution
of racemic amine 2, being its main synthetic precursor. An example reported in literature [3]
is its kinetic resolution via alkoxycarbonylation using lipase from Pseudomonas cepacia (PSC-
II), diethyl carbonate, and 2-Me-THF as a solvent. The (S)-carbamate intermediate is then
converted into the secondary (S)-2, used to provide (S)-ivabradine in one-step reaction.
However, the most common synthetic routes attempted to (S)-2, do not concern biocatalysis;
examples are reported by Liu et al., [13,16] where a synthesis involves the reduction in a
cyano group to an amine, its acylation to form an amide, followed by a reduction with
LiAlH4. The final step is a resolution of the racemic mixture with the use of the chiral
d-camphorsulfonic acid. Alternatively, [43,44] a primary amine is prepared by reduction in
the cyano group and immediately resolved with N-acetyl-L-glutamic acid to produce the
desired optical isomer, whose acylation and reduction afford (S)-2. As a last example, the
cyano intermediate can be easily converted into a carboxylic derivative, resolved using a
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chiral amine to get the pure enantiomer that can be reacted to give an amide, finally reduce
to (S)-a. [16]

In this work, we performed the synthesis of the chiral amine (S)-2 by means of a
Lipase PS-mediated resolution of the ester precursor 5. One of the advantages of this
protocol is that this transformation could be realized under mild conditions, in water
and at room temperature on the gram scale, by employing only the 10% m/m of easily
available, reusable and cheap catalytic enzyme. This allowed to obtain the alcohol (S)-4 in
satisfying yield and in good 96:4 e.r. A three steps sequence allowed then to transform the
enantiopure alcohol into the target compound, the essential precursor of (S)-ivabradine.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
344/11/1/53/s1, Figure S1 to Figure S8: NMR spectra for all the compounds and GC-MS chro-
matograms for compounds 4 and 5. Figure S9 to Figure S12: HPLC chromatograms for the resolution
of compounds 4 and 5. Figure S13 and Figure S14: Selectivity profiles for the resolution of 4 and 5.
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