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Abstract: Progress in the development of commercially available non-enzymatic glucose sensors
continues to be problematic due to issues regarding selectivity, reproducibility and stability. Over-
coming these issues is a research challenge of significant importance. This study reports a novel
fabrication process using a double-layer self-assembly of (3 mercaptopropyl)trimethoxysilane (MPTS)
on a gold substrate and co-deposition of a platinum–copper alloy. The subsequent electrochemical
dealloying of the less noble copper resulted in a nanoporous platinum structure on the uppermost
exposed thiol groups. Amperometric responses at 0.4 V vs. Ag/AgCl found the modification to
be highly selective towards glucose in the presence of known interferants. The sensor propagated
a rapid response time <5 s and exhibited a wide linear range from 1 mM to 18 mM. Additionally,
extremely robust stability was attributed to enhanced attachment due to the strong chemisorption
between the gold substrate and the exposed thiol of MPTS. Incorporation of metallic nanomaterials
using the self-assembly approach was demonstrated to provide a more reproducible and controlled
molecular architecture for sensor fabrication. The successful application of the sensor in real blood
serum samples displayed a strong correlation with clinically obtained glucose levels.

Keywords: nanoporous platinum film; MPTS; covalent immobilisation; glucose sensing; non-
enzymatic; stability

1. Introduction

To date, enzymatic glucose sensors remain commercially unchallenged, mainly due to
the high selectivity of the enzyme towards glucose. However, the inclusion of an enzyme
in biosensor fabrication can cause the sensor to be affected by temperature, pH, humidity
and toxic chemicals [1]. Ensuring the stability of the immobilised enzyme and mediator on
electrode surfaces also requires considerable attention, often involving elaborate fabrication
processes [2].

To overcome the problems associated with an enzymatic biosensor, the fabrication of
non-enzymatic glucose sensors has recently been intensively investigated to improve their
electrocatalytic activity towards the oxidation of glucose. The non-enzymatic sensing of
glucose based on the direct electrochemistry of glucose (oxidation or reduction) is a rapid
and cost-effective approach [3]. As the sensor is enzyme-free, all associated enzymatic
stability issues and enzyme immobilisation processes are removed from the fabrication
process.

However, despite decades of research into non-enzymatic systems, problems asso-
ciated with this approach have prevented its practical application. These include poor
selectivity and reproducibility, slow kinetics of glucose, fouling of the electrode by real
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sample constituents and the limited number of modifications that are applicable to physio-
logical pH [4]. Non-enzymatic electrocatalysts usually involve the use of a transition metal
centre. Many different metals have been investigated, including nickel, copper, cobalt, gold,
zinc and platinum [5–10]. Of these, platinum has been shown to be the most promising
material, although its use as a smooth surface provides low sensitivity and poor selectivity
and is susceptible to fouling of the surface [11].

More recent studies have reported that the successful fabrication of a non-enzymatic
glucose sensor requires a high real surface area (with high roughness factor) [12]. This
results in the highly sensitive and selective electro-oxidation of glucose. This is due to
the fact that the adsorption of glucose on the electrode surface is a prerequisite step, and
the electro-oxidation of common interfering electroactive species such as ascorbic acid,
uric acid and p-acetamedophenol is independent of the electrode’s roughness because it is
diffusion-controlled [13].

Nanoparticles display attractive features in electrochemistry as a direct consequence
of their nanodimensions. Their size and ultimately the electrochemical active area of the
surface can be closely controlled using electrochemical deposition. Recently, nanoporous
Pt has been reported to show high sensitivity and an excellent ability to be selective for
glucose, while resisting interfering species. These advances were attributed to the increased
roughness factor and porosity of the electrode surface, selectively enhancing the current of
a sluggish reaction. This feature also resulted in an excellent antifouling property [14,15].

Many reports exist where nanomaterials are prepared, characterised and then applied
in microliter quantities to the electrode surface. Such modifications have advanced the
non-enzymatic detection of glucose [15–20]. However, modifying an electrode in this way
can lead to issues with regard to stability and reproducibility. Self-assembled monolayers
(SAMs), in contrast, have the ability to provide a more reproducible, simple and reliable
procedure to immobilise molecules on various metal surfaces [21–23]. SAM formation is
an easy method recently used for selected metal nanoparticle chemisorption onto surfaces
such as gold, platinum or silver [6]. In chemisorption, much stronger and more stable
covalent bonds are formed between the adsorbate and the electrode surface.

In an effort to produce a reliable, reproducible non-enzymatic sensor for glucose,
this study describes the immobilisation of a two-stage self-assembled monolayer of (3-
mercaptopropyl)trimethoxysilane (MPTS) onto a gold surface. A nanoporous platinum
surface is then covalently attached to exposed thiol groups of the MPTS from copper
platinum solutions using a voltammetric alloying/dealloying procedure. The surface area
of the resulting nanoporous platinum surface is controlled by the number of voltammetric
cycles. The sensor is then investigated with regard to its ability to accurately detect glucose
in the presence of common interferents and with regard to stability and reproducibility.

2. Results and Discussion
2.1. Electrode Preparation

During the fabrication of the modified sensor, it was imperative that the gold surface
was as clean as possible to promote the interaction of gold with the thiol-terminated
molecules of the MPTS. Therefore, an electrochemical cleaning step was performed by
subjecting the gold electrode to cyclic voltammetry (CV) in a 0.5 M sulphuric acid solution.
The voltammetric response of the gold electrode in 0.5 M sulphuric acid displays typical
characteristic peaks, shown in Figure 1. The peaks in the anodic scan correspond to different
forms of oxide species on the gold surface, and the single reduction peak in the cathodic
scan is due to the removal of the oxide layer when reversing the scan direction. The scan
obtained was typical of a clean gold electrode in an acidic solution.
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Figure 1. Cyclic voltammogram of the gold electrode in 0.1 M H2SO4 between 0.0 and 1.5 V vs. 
Ag/AgCl in 0.5 M H2SO4 at a scan rate of 0.1 V s−1. 

2.2. Au-MPTS-Pt Fabrication 
The fabrication of the sensor involved immersing the prepared gold electrode in the 

MPTS solution. MPTS was chosen in this self-assembly approach as, structurally, it pos-
sesses two reactive functional groups—the thiol tail and the methoxy headgroup. The 
thiol tail allows covalent attachment to the gold surface, while the methoxy group can 
undergo hydrolysis and condensation reactions [24]. This immersion resulted in the at-
tachment of a self-assembled monolayer of MPTS onto the surface by the formation of 
Au–S bonds. The electrode was then immersed in 0.01 M NaOH, causing the hydrolysis 
of the self-assembled monolayer through a polycondensation reaction, forming exposed 
silane units arranged in a 2-dimensional (2D) network. A second immersion of the elec-
trode into the MPTS solution resulted in the formation of a second silane layer via Si-O-Si 
bonds, producing a surface containing many exposed thiol moieties. The fabrication pro-
cess of the sensor is shown in Scheme 1. Chemisorption of a nanoporous platinum surface 
onto the MPTS 2D network was performed by the electrochemical co-deposition of a plat-
inum–copper alloy and the subsequent electrochemical dealloying of the less noble copper 
using a previously described method [25]. A platinum–copper layer was deposited during 
the cathodic scan, while removal of the less noble alloying partner in the return scan 
yielded a porous platinum structure. 

 
Scheme 1. Schematic diagram showing steps involved in the fabrication of the Au-MPTS-Pt. 

  

Figure 1. Cyclic voltammogram of the gold electrode in 0.1 M H2SO4 between 0.0 and 1.5 V vs.
Ag/AgCl in 0.5 M H2SO4 at a scan rate of 0.1 V s−1.

2.2. Au-MPTS-Pt Fabrication

The fabrication of the sensor involved immersing the prepared gold electrode in
the MPTS solution. MPTS was chosen in this self-assembly approach as, structurally,
it possesses two reactive functional groups—the thiol tail and the methoxy headgroup.
The thiol tail allows covalent attachment to the gold surface, while the methoxy group
can undergo hydrolysis and condensation reactions [24]. This immersion resulted in the
attachment of a self-assembled monolayer of MPTS onto the surface by the formation of
Au–S bonds. The electrode was then immersed in 0.01 M NaOH, causing the hydrolysis of
the self-assembled monolayer through a polycondensation reaction, forming exposed silane
units arranged in a 2-dimensional (2D) network. A second immersion of the electrode into
the MPTS solution resulted in the formation of a second silane layer via Si-O-Si bonds,
producing a surface containing many exposed thiol moieties. The fabrication process of
the sensor is shown in Scheme 1. Chemisorption of a nanoporous platinum surface onto
the MPTS 2D network was performed by the electrochemical co-deposition of a platinum–
copper alloy and the subsequent electrochemical dealloying of the less noble copper using
a previously described method [25]. A platinum–copper layer was deposited during the
cathodic scan, while removal of the less noble alloying partner in the return scan yielded a
porous platinum structure.
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Scheme 1. Schematic diagram showing steps involved in the fabrication of the Au-MPTS-Pt.

2.3. Characterisation of Au-MPTS-Pt

The increase in the surface area of Pt chemisorbed on the MPTS/Au electrode was
monitored by electrochemical cycling between −0.25 and 1.4 V in 0.5 M H2SO4. Voltam-
mograms displayed a platinum oxide reduction peak at 0.42 V vs. Ag/AgCl reference
electrode similar to that reported previously [26] (Figure 2).
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Figure 2. Cyclic voltammograms of the Au-MPTS-Pt after 100 and 300 platinum deposition cycles.
CVs were performed in 0.5 M H2SO4 at a scan rate of 50 mV s−1.

In this study, the oxygen absorption method was used to determine the real surface
area of the platinum-modified electrodes. The area under the platinum oxide peak in
the CV scan was determined using the automatic peak search option on the potentiostat.
The real surface area (cm2) of the modified electrode was determined by dividing the
area un-der the oxide reduction peak (µC) by a correction factor of 420 µC cm−2 for a
platinum electrode [27]. The surface roughness factor (rf ) was then calculated by dividing
the real surface area (cm2) by the geometric area (cm2). The electrode subjected to 100
cycles produced a rf of 235, while the electrode cycled 300 times created a rf of 612.

These rf values indicate a significant increase in the electrochemical surface area of
immobilised platinum nanoparticles after 300 cycles when compared to that recorded after
100 cycles. Each cycle increased the surface area of the formed nanoporous platinum,
resulting in an increased area being available for gold oxide formation in the forward
scan and consequently an increase in the reduction peak area in the return scan. Recent
studies have demonstrated that nanoporous platinum surfaces deliver many advantages,
including a stable, self-supporting, nanometre-sized structure coupled with increased
catalytic activity and selectivity for glucose due to the high surface area of the porous
surface [15,25,26,28].

Scanning electron microscopy analysis was performed to determine the surface mor-
phology characteristics of the electrode. Figure 3 depicts the FE-SEM images of the surface
of the electrode before modification (A) and at different magnifications of the modifi-
cation (B, C and D). The SEM image of the unmodified gold substrate displays a flat
morphology with some ridges and pits (Figure 3A). The SEM image of the nanoporous
platinum modified electrode (Figure 3B) shows well-dispersed, spherical platinum clusters
with an approximate size of 2 µm. Detailed images at higher magnification of the modi-
fied electrode are shown in Figure 3C,D. The platinum clusters contained nanopores of
approximately 10 to 20 nm in size, which can be clearly observed in Figure 3D.
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Figure 3. SEM images of the morphology of the electrode surface before (A) and after 300 cycles
(B–D): gold surface prior to modification (A), nanoporous platinum surface at ×5k (B), ×20k (C) and
×60.1k magnification (D).

The chemical composition of the nanoporous platinum layer was determined by
energy-dispersive X-ray spectroscopy (EDX) (Figure 4). Figure 4A shows the spectrum
obtained from the electrode that was subjected to 100 deposition cycles, while Figure 4B
shows the results from the electrode that had undergone 300 deposition cycles. Both EDX
spectra of the nanoporous platinum layer confirm the presence of platinum as the element
of the highest percentage weight. Increased deposition cycles in Figure 4B produced an
increase in Pt signal (45.0 to 71.9%), which, consequently, led to a reduction in the Si signal
(4.9 to 0.8%) from the MPTS. This confirms that with increasing deposition cycles, the
platinum percentage weight increased and the available MPTS attachment sites decreased
as they were continuously being occupied by platinum. The Au signal was due to the gold
substrate on which the platinum was deposited. Other elements appearing in the EDX
spectrum were Cu, coming from the residual copper after the dealloying process, and O
and C, which were present due to the use of MPTS as the organic linker in the fabrication
of the electrode.

The nanoporous Pt surface was analysed by XPS. Figure 5B shows the high-resolution
spectra for Pt 4f. The doublet structure revealed dual components with assigned binding
energies at 76.7 eV, 4f7/2 and 79.9 eV, 4f5/2. These increased energies can be associated with
charging on the platinum surface and increased final state effects due to the nanoparticle
size [29]. Previous studies have also shown that Pt-S bond formation can cause a shift in Pt
4f spectra [30]. This would correspond with the covalent nature of the interaction between
platinum and the silane linker.
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2.4. Electrochemical Detection of Glucose

Cyclic voltammetry was used to evaluate the response of the sensor towards glucose
oxidation (voltammograms not shown). The potential at which glucose was oxidised was
determined from the addition of glucose concentrations (2, 4 and 6 mM) into 0.1 M PBS.
A glucose oxidation peak occurred between 0.35 and 0.45 V, which agrees with previous
studies by this group when using a platinum surface [14]. The area of the peak increased
linearly with glucose concentration. The performance of the modified platinum electrode
was compared with different glucose sensors, as shown in Table 1.

Table 1. Comparison of the performance of different platinum-based glucose sensors.

Electrode
Modification Potential (V) Linear Range (mM) Sensitivity (µA

mM−1 cm−2)
Detection Limit

(µM) Year and Ref.

PtNPs/CNCs −0.30 [a] 0.05–10.0 - 20 2017 [31]
Hierarchical Pt micro-

/nanostructures +0.45 [a] Up to 3.0 473 85 2018 [32]

PtAu/C −0.33 [b] 0.01–10 - 3 2020 [33]
ZnO-Pt-g-C3N4 +0.20 [a] 0.25–110 3.34 0.1 2020 [34]
Pt-CuO/GPE +0.60 [a] Up to 25 2035 0.1 2020 [35]

PtNi alloy-graphene +0.30 [a] 0.5–15.0 24.03 16 2020 [36]
Pt-Au-

graphene/GCE −0.10 [b] 1.0–25.0 26.33 4.0 2014 [37]

Pt-CuO/rGO +0.60 [a] 0.0005–12 3577 0.01 2014 [38]
Pt nanoporous +0.40 [a] 1.0–10.0 5.67 800 2017 [26]

Au-MPTS-Pt +0.40 [a] 1.0–7.0
7.0–18.0

191.67
135.98 37 This work

[a] vs. Ag/AgCl. [b] vs. SCE.

2.5. Interference Study

A major challenge associated with non-enzymatic glucose sensors is eliminating the
effects of other physiological interferences commonly found in blood. These interferents
can often be oxidised at the same working potential as glucose, which can result in an over-
estimation of the analyte. The selectivity of Au-MPTS-Pt was investigated by measuring
the amperometric response of glucose at potentials of 0.35, 0.40 and 0.45 V in the presence
of the common interferents (Figure 6). In physiological conditions, interfering compounds
exist at lower concentrations when compared to glucose levels.
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Therefore, the amperometric response of the Au-MPTS-Pt to successive additions of 1
mM glucose, 0.1 mM p-acetamidophenol (AP), 0.1 mM ascorbic acid (AA), 0.1 mM uric acid
(UA) and 1 mM glucose (Glu), respectively, in a stirred 0.1 M phosphate buffer (pH 7.4)
was investigated. Figure 5 shows the change that occurs in the amperometric response at
different potentials. There is a minimal response to interfering species at 0.4 V, with no
significant effect on the recovery of glucose, which suggests the anti-interference capability
and high selectivity of the Au-MPTS-Pt electrode at this potential.

2.6. Amperometric Measurement of Glucose

The performance of the nanoporous Au-MPTS-Pt towards the detection of glucose was
then studied by recording the amperometric response at 0.4 V in stirred phosphate buffer
(Figure 7). Upon successive additions of 1 mM glucose at regular intervals, significant and
fast current responses were observed using the modified electrode, with a steady-state
current being achieved within 5 s.
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Figure 7. Amperometric response of the Au-MPTS-Pt towards successive additions of 1 mM glucose
into a stirring solution of 0.1 M phosphate buffer (pH 7.4) at a constant potential of 0.4 V. Inset:
Calibration curve of the Au-MPTS-Pt amperometric response of the glucose concentrations against
the corresponding current generated. Sensitivity: 1 to 7 mM and 7 to 18 mM are 191.67 and 135.98 µA
mM−1 cm−2, respectively.

The calibration curve (inset) displays two distinct regions of linearity, similar to the
response reported in a number of previous studies [39–43]. The first region provided a
linear range from 1 to 7 mM glucose with a regression coefficient of 0.9995 and a sensitivity
value of 191.67 µA mM−1 cm−2. The second region displayed a linear range from 7 to 18
mM glucose with a regression coefficient of 0.9995 and sensitivity of 135.98 µA mM−1 cm−2.

2.7. Analysis of Real Samples

Validation studies for the practical application of the Au-MPTS-Pt sensor in real blood
serum samples were performed. The sensor was employed to determine the glucose
concentration in three clinically validated serum samples obtained from the local university
hospital. The samples did not undergo further pre-treatment before the analysis. For each
sample, the current response at 0.4 V was recorded for 0.5 mL of serum added to 9.5 mL of
0.1 M PBS (pH 7.4). The glucose content of the serum samples was then calculated from
the calibration plot. Results shown in Table 2 display a high degree of accuracy relative to
the clinically validated samples.



Catalysts 2021, 11, 1161 9 of 13

Table 2. Determination of glucose in human blood serum samples.

Sample Hospital Laboratory
(mM) Au/MPTS/Pt (mM) Recovery (%)

1 5.08 5.09 100.2
2 7.16 7.11 99.3
3 3.75 3.55 94.7

2.8. Reusability, Stability and Reproducibility

The reusability of a single sensor was evaluated by measuring the amperometric
response to 10 samples each containing 1 mM glucose in 0.1 M PBS (Figure 8A). The
investigation showed that the sensor exhibits high reusability, with 97% of the sensor’s
initial response being recorded after ten uses.
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Figure 8. Reusability: Amperometric responses of a Au-MPTS-Pt sensor to ten 1 mM glucose samples
in 0.1 M PBS at the applied potential of 0.4 V (A). Stability: Amperometric responses of the Au-
MPTS-Pt to additions of 1 mM glucose and 0.1 M interferences in 0.1 M PBS at week 1 and week 10
(B). Reproducibility: Amperometric responses of six independently fabricated Au-MPTS-Pt sensors to
additions of 1 mM glucose in 0.1 M PBS (C).

The stability of a sensor stored at room temperature was evaluated by measuring the
amperometric response to 1 mM glucose and 0.1 mM interferants every week for ten weeks.
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The results in Figure 8B show the sensor’s response to glucose and interferents during
week 1 and week 10. The responses are displayed as a percentage of the sensor’s initial
value, with 93.4% of the sensor’s initial response being recorded after ten weeks.

The reproducibility was evaluated by measuring the amperometric response to
1 mM glucose in 0.1 M PBS using six independently fabricated sensors. The current
response of each sensor is presented in Figure 8C and shows a relative standard deviation
(RSD) of 1.45%.

3. Materials and Methods
3.1. Materials

All reagents were of analytical grade and used as purchased without further purifica-
tion. Hexachloroplatinic acid hydrate (H2PtCl6), copper (II) sulphate (CuSO4), methanol
(MeOH), (3-mercaptopropyl)trimethoxysilane (MPTS), hydrochloric acid (HCl), sodium
hydroxide (NaOH), potassium phosphate monobasic (KH2PO4), potassium phosphate
dibasic (K2HPO4), L-ascorbic acid (AA), uric acid (UA), acetamidophenol (AP) and glucose
were obtained from Sigma Aldrich (Ireland). Sulphuric acid (H2SO4) and D-glucose were
purchased from Fisher Scientific (Loughborough, UK). Ultra-purified water (resistivity
≤18 MΩ cm) supplied by a Milli-Q system (Millipore, Darmstadt, Germany) was used in
the preparation of all solutions.

All electrochemical measurements were performed using a CHI660 potentiostat
(Shanghai CH Instrument Company, Shanghai, China) and a personal computer for data
storage and processing. The electrode assembly consisted of a screen-printed gold work-
ing electrode (3 mm Ø), a silver/silver chloride reference (3 M KCl) and a platinum
counter electrode.

3.2. Fabrication of the Modified Electrode

The disposable gold electrode was electrochemically cleaned by cycling 50 times
be-tween −0.2 and 1.5 V vs. Ag/AgCl in 0.5 H2SO4 at a scan rate of 0.1 V s−1 until
a reproducible scan typical for a gold surface was achieved. The MPTS solution was
prepared by placing 100 µL MPTS, 300 µL MeOH, 300 µL ultrapure water and 100 µL
hydrochloric acid in a conical flask. The solution was then sonicated in a sonic bath for
30 min to allow gelation to occur.

Spontaneously assembled monolayers were formed by immersing the gold electrode
in the MPTS solution for 3 h. The electrode was thoroughly rinsed with ultrapure water
and immersed in aqueous 0.01 M NaOH for 2 h, causing the silane units of the MPTS to
become polymerised into a 2D network. A second silane layer was formed by immersing
the electrode back in the MPTS solution for 12 h. The MPTS-modified electrode was rinsed
several times with ultrapure water.

A 20 mM H2PtCl6 and 20 mM CuSO4 solution was made by adding 0.0414 g of H2PtCl6
and 0.025 g of CuSO4 to a 5 mL volumetric flask and adding 0.5 M H2SO4. Platinum
nanoparticles were electrodeposited onto the MPTS layer by cyclic voltammetry according
to a procedure by Kloke and co-workers [28]. The attachment of platinum nanoparticles to
the MPTS layer was achieved by multiple repetitions of the electrochemical co-deposition
of a platinum–copper alloy and subsequent electrochemical dealloying of copper. This
procedure involved subjecting the working electrode to up to 300 CV scans in the platinum–
copper solution. The potential range was from 1.4 to −0.6 V vs. Ag/AgCl at a scan rate of
50 mV s−1. The electrode was rinsed with ultrapure water, dried with nitrogen and stored
at room temperature. The modified electrode was denoted as Au-MPTS-Pt.

3.3. Structural and Morphological Analysis

The morphological and structural observations were obtained by scanning electron
microscopy (SEM) using a Hitachi Regulus 8230. The elemental composition was confirmed
by energy-dispersive x-ray spectroscopy (EDX) analysis using an Oxford Instruments Ultim
Max 170 and X-ray photoelectron spectroscopy (XPS) using a Kratos Axis Ultra DLD.
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3.4. Electrochemical Surface Roughness Determination

Electrochemical characterisation of the Au-MPTS-Pt was performed using cyclic
voltammetry by subjecting the electrode to 10 scans in 0.5 M H2SO4 in the potential range
from −0.25 to 1.4 V vs. Ag/AgCl at a scan rate of 0.05 V s−1. The charge (µC) associated
with the area under the platinum oxide reduction peak in the final scan was divided by
a con-version factor of 420 µC cm−2, giving the real electrochemical area of the electrode
(cm2). The real electrochemical area was divided by the geometric area (cm2) to produce a
sur-face roughness factor.

3.5. Cyclic Voltammetric Detection of Glucose

The electrocatalytic activity of the sensor towards glucose oxidation was investigated
by cyclic voltammetry. The applied potential ranged from −0.6 to 0.8 V at a scan rate
of 100 mV s−1. A blank scan and varying glucose concentrations (2, 4 and 6 mM) were
recorded by cycling the electrode in 20 mL of 0.1 M PBS.

3.6. Amperometric Detection of Glucose and Interferences

For amperometric detection, the electrode was immersed in a rapidly stirred solution
of 0.1 M PBS (20 mL) to provide convective transport and the potential was held at different
values from 0.35 to 0.45 V. The linear range was determined by additions of 1 mM glucose
at regular intervals. The selectivity of the electrode was determined by an initial addition
of 1 mM glucose followed by additions of 0.1 mM interfering species and a final addition
of 1 mM glucose. Additions were delivered in increments of 100 s.

Glucose concentrations in serum samples obtained from a local hospital laboratory
were determined using the modified electrode by the addition of 0.5 mL of serum to 9.5 mL
of 0.1 M PBS. Values found were compared to those recorded in the medical laboratory.

4. Conclusions

Non-enzymatic glucose sensors were successfully fabricated using nanoporous plat-
inum attached to gold screen-printed substrates using a MPTS 2D monolayer. The platinum
nanoporous layer was electrochemically deposited by cyclic voltammetry. The modified
electrode exhibited good stability and selectivity towards glucose in the presence of inter-
fering compounds commonly found in human blood serum. The sensor also dis-played
a wide linear range, fast response time, good reproducibility and excellent reusability.
The sensor also provided accurate glucose measurements in human blood serum samples
obtained from the local hospital. Nanoporous platinum provided a highly selective glucose
sensing platform, while the MPTS self-assembly approach of modification resulted in
increased stability and reproducibility. The above attributes of the fabricated sensor may
provide a new approach to practical glucose determination in real samples.
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