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Abstract: The dry reforming of methane (DRM) process has attracted research interest because
of its ability to mitigate the detrimental impacts of greenhouse gases such as methane (CH4) and
carbon dioxide (CO2) and produce alcohols and clean fuel. In view of this importance of DRM,
we disclosed the efficiency of a new nickel-based catalyst, which was promoted with magnesia
(MgO) and supported over gamma-alumina (γ-Al2O3) doped with silica (SiO2), toward DRM. The
synthesized catalysts were characterized by H2 temperature-programmed reduction (H2-TPR), X-ray
diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Thermogravimetric analysis (TGA), and
Transmission electron microscopy (TEM) techniques. The effect of MgO weight percent loading (0.0,
1.0, 2.0, and 3.0 wt. %) was examined because the catalytic performance was found to be a function
of this parameter. An optimum loading of 2.0 wt. % of MgO was obtained, where the conversion of
CH4 and CO2 at 800 ◦C were 86% and 91%, respectively, while the syngas (H2/CO) ratios relied on
temperature and were in the range of 0.85 to 0.95. The TGA measurement of the best catalyst, which
was operated over a 15-h reaction time, displayed negligible weight loss (<9.0 wt. %) due to carbon
deposition, indicating the good resistance of our catalyst system to the deposition of carbon owing to
the dopant and the modifier. TEM images showed the presence of multiwalled carbon nanotubes,
confirming the TGA.

Keywords: methane; carbon dioxide reforming; magnesium oxide; γ-alumina doped with silica

1. Introduction

Synthesis gas (syngas), a mixture of hydrogen (H2) and carbon monoxide (CO), is a
vital material for the synthesis of useful liquid fuels, such as methyl alcohol and dimethyl
ether, through a Fischer–Tropsch process [1,2]. The widely used procedures for the syngas
manufacturing are methane steam reforming, dry reforming, and partial oxidation [3]. The
DRM, shown in Equation (1), has gained great attention because the H2/CO mole ratio
is near one, and this ratio is suitable for utilization in the Fischer–Tropsch process, in fuel
cells, and in the production of chemicals [4].

CH4 + CO2 = 2CO + 2H2 ∆H0
298 = 260.5

kJ
mol

(1)

In addition, DRM transforms the main two greenhouse gases, CH4 and CO2, into
syngas [5].
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Moreover, DRM is an attractive means for utilizing natural gas and biogas composed
of CH4 and CO2 as the main constituents [6].

The catalysts used for DRM could be deactivated because of coke deposition from
CH4 decay and Boudouard reaction, as denoted in Equations (2) and (3), respectively. In
addition, rapid deactivation can be caused by sintering and metallic oxidation of catalyst, as
a result of the endothermic nature of DRM (Equation (1)), which requires high temperature
to achieve high conversion of the reactants [7]. Nevertheless, the primary factor for catalyst
deactivation has been considered to be coke deposition [8].

CH4 = C + 2H2 ∆H0
298 = 75.0

kJ
mol

(2)

2CO = C + CO2 ∆H0
298 = −172.0

kJ
mol

(3)

Catalysts based on noble metals (such as rhodium, ruthenium, platinum, and palla-
dium) and non-noble metals such as nickel (Ni) and cobalt (Co) have been widely studied
in DRM. [5] On one hand, high catalytic performance and high resistance to coke formation
were perceived in the noble metal-based catalysts. However, their use has been limited
due to their expensiveness and rarity. On the other hand, low cost and comparable activity
have made Ni-based catalysts good substitutes, but coke deposition and sintering are two
important difficulties for emerging Ni-based catalysts at the industrial level. The influences
of the method of synthesis, variation of support, promoters, operating circumstances, and
reactor configurations can be altered to enhance the performance and steadiness of the
Ni-based catalysts [8].

A conventional approach for improving the activity and steadiness of Ni-based cat-
alysts is to employ appropriate promoters of metals and/or their oxides. In this regard,
cerium oxide promoter has been extensively used due to its high capacity for storing
oxygen and for cerium high redox properties, Ce4+/Ce3+ [9–11]. Thus, higher activity and
higher coke deposition resistance have been obtained for Ni-based catalysts promoted
with Ce-containing material [12]. Sepehri et al. [5,9] reported the high activity and high
coke resistance of Al2O3-supported Ni catalyst promoted with 3.0 wt. % of Ce in methane
partial oxidation reactions. Furthermore, Kim et al. [13] reported better activities for CeO2-
promoted Ni/γ-Al2O3 catalyst than the unpromoted one. The promoted catalyst exhibited
higher activity because of the interaction between Ni and Ce, forming the new active sites
for converting methane. In addition, Mattos et al. [14] reported better activity and steadi-
ness for Pt/Ce-ZrO2 in comparison to Pt/ZrO2. The good performance of Pt/Ce-ZrO2
was owed to the enhancement of coke gasification by the CeO2 higher oxygen mobility.
Taherian et al. proved that Ni/SBA-16-Mg, promoted with 3% either Ce or Y, resulted in
highly dispersed nickel nanoparticles, having an average size of 11.5 nm, and in oxygen
vacancies in the support. Their catalyst combination had a remarkable enhancement of
catalytic activity and stability [15]. Al-Fatesh et al. promoted nickel catalyst over meso-
porous zirconia for DRM by using various loadings of MgO. They found that the potent
interaction of NiO–MgO solid solution with the ZrO2 support was essential for obtaining
high conversions of both methane and carbon dioxide. Furthermore, over their mixture
of metal oxides, carbon dioxide functioned as a soft oxidizing for surface coke, entailing
the stability of catalytic performance [16]. Karam et al. found the optimum loading of
MgO was in the range of 5–10 wt. % for the mesoporous Ni6-Mgx-Al2O3, prepared by
one-pot evaporation-induced self-assembly, for DRM due to lower activation energy [17].
In another study conducted by Bahare et al. [18], MgO-promoted Ni/MgSiO3 showed the
highest catalytic performance among the unpromoted and those promoted with other metal
oxides. They concluded that the addition of MgO increased Ni dispersion and provided
suitable Ni active sites for the reactants. Alipour et al. [19] also reported an enhancement of
methane conversion in DRM when MgO was added to Ni/Al2O3 catalyst. The advantage
of incorporating MgO in the catalyst matrix was revealed by the work of Shen et al. [20],
where oxidative DRM was performed for 100 h on stream over Ni supported on MgAl2O4
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spinel. The result displayed a stable performance of high CH4 conversion with no de-
activation owing to sintering or coke deposition. Cho et al. investigated the impact of
Mg/Al mole ratio of MgAl2O4 mesoporous support on the catalytic activity of nickel
in DRM. They found the best coke resistance, proper acidity, and defect structure when
the Mg/Al mole ratio was 0.24 [21]. Hu and Ruckenstein [22] highlighted the benefits
of the solid solution of NiO-MgO for DRM. The basic property of MgO and its similar
lattice parameters to that of NiO resulted in a catalyst of NiO-MgO solid solution, which
showed the highest conversions for carbon dioxide and methane with resistance to carbon
deposition. Silica (SiO2) is also considered as a promising support modifier due to its
great physicochemical properties. Silica has been reported to facilitate the reduction of
NiO species by weakening its interaction with the metal oxide support [23]. However,
the weak metal support interaction could lead to quick deactivation as a result of agglom-
eration of active metal species. Several investigators applied modified silica support in
upgrading the catalytic activity, stability, and in overcoming the deactivation problems
by adding elements such as lithium, lanthanum, cerium, magnesium, cobalt, niobium,
and zinc [24–27]. On the other hand, Al2O3 interacts strongly with NiO, facilitating the
development of the spinel phase of NiAl2O4 and therefore complicating the reduction to
nickel metal [23]. Yadav et al. showed that the catalytic activity of perovskite-type catalyst
of 40LaNi0.75Zr0.25−xCexO3/SiO2, modified with alumina or magnesia, was improved due
to the formation of nickel aluminate or solid solution of nickel-magnesia, which increased
the basicity of silica and hence improved both the reactant conversions and product yield
in DRM [28]. The importance of an MgO promoter and SiO2 support modifier for Ni-based
catalysts toward the activity and stability performance in DRM stipulates the optimization
of MgO loading for well-defined modified support of alumina.

In this research work, the catalytic performance of 5.0 wt. % NiO catalyst, promoted
with MgO and supported on gamma-alumina doped with 3.0 wt. % SiO2, was investigated
for DRM. The effect of MgO wt. % loading (0.0, 1.0, 2.0, and 3.0) was investigated on the
catalyst activity and stability, which is expressed in conversions of methane and carbon
dioxide, and the molar ratio of H2/CO.

2. Results and Discussion

To observe the reproducibility and the consistence of the obtained data, blank tests
and carbon balances were performed. The mass balance, in respect to carbon and overall,
was within ±5% for all catalysts. The experiment was repeated three times for each run,
resulting in consistent values with a percentage error within 3%. To comprehend differences
in the performance of the prepared catalysts, nitrogen adsorption–desorption isotherms
of the catalysts were registered for investigating the textural attributes: specific surface
area (SBET), pore volume (Pv), and pore diameter (Pd). Figure 1 displays the nitrogen
adsorption–desorption isotherms (Figure 1), which indicated the mesoporous nature of
the prepared catalysts because the isotherms were of type IV with a hysteresis loop of the
H1-type, owing to the condensation in and evaporation from capillaries at relatively high
pressures. This structural characteristic is known for hexagonal array and mesoporous SiO2-
Al2O3 [29]. The loading of both the active metal and promoter did not noticeably change
the framework of the support. However, a significant increase in the relative pressure
region of 0.65–0.95 was observed owing to a combination of N2 capillary condensation
within the mesopores and the interstitial cavities of the SiO2-AlO3. The physisorption
results are as shown in Table 1, which shows that the 5Ni2Mg3SiAl has the highest surface
area of all catalysts, implying that most of the active catalyst and promoter particles are
exposed to the reactants. Thus, the chance of colliding reactants with the catalyst surface is
high, leading to more successful collisions per second, a higher reaction rate, and better
activity performance.
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Figure 1. N2 adsorption–desorption isotherms of the fresh 5Ni0Mg3SiAl (a), 5Ni1Mg3SiAl (b), 5Ni2Mg3SiAl (c), and
5Ni3Mg3SiAl (d) catalysts.

Table 1. The results of nitrogen physisorption for the various catalysts.

Catalyst SBET (m2/g) Pv (cm3/g) Pd (nm)

3SiAl 262.59 0.69 9.69
5Ni0Mg3SiAl 222.08 0.59 9.21
5Ni1Mg3SiAl 235.17 0.57 9.08
5Ni2Mg3SiAl 236.60 0.61 9.13
5Ni3Mg3SiAl 230.15 0.60 9.13

The Barrett–Joyner–Halenda (BJH) pore size distribution is shown in Figure 2.
A monomodal pore size distribution was observed for all the prepared catalysts,

where the peak was located in the micropore and mesopore range (0–500 Å), confirming the
results of N2 adsorption–desorption isotherms. In addition, a small tail in the macropore
range (>500 Å) was observed for every prepared catalyst, but such pores would have a
negligible effect on the textural properties.
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Figure 2. BJH pore size distributions for the fresh 5Ni0Mg3SiAl (a), 5Ni1Mg3SiAl (b), 5Ni2Mg3SiAl (c), and 5Ni3Mg3SiAl
(d) catalysts.

2.1. H2-TPR

To investigate the reducibility of the prepared catalysts, the hydrogen temperature-
programmed reduction (H2-TPR) is a helpful tool. The H2-TPR profiles are illustrated
in Figure 3. All the prepared catalysts exhibited a negative intensity zone besides three
reduction zones: low (I), moderate (II), and high (III) temperatures, where the metal oxide
species were reduced as per their degree of interaction with and their dispersion on the
support. The negative intensity zone could be ascribed to the spillover of hydrogen in the
mesopores of the support [30]. The peaks, observed in the low-temperature (I) zone of
200–400 ◦C, could be ascribed to the dispersion of slight quantities of free NiO nanoparti-
cles, which interacted weakly with the support [31]. All the prepared catalysts displayed a
broad reduction peak in the moderate zone, centered around 400–700 ◦C, which might be
due to the modest interaction between the support and the NiO. The 5Ni1Mg3SiAl catalyst
exhibited another small peak centered around 450 ◦C. The catalysts showed strong interac-
tion between support and the NiO due to the reduction of Ni2+ in the extremely crystalline
NiO [22]. The 5Ni2Mg3SiAl catalyst displayed the best catalytic performance owing to the
best NiO interaction with the support in the moderate-temperature (II) region, while the
5Ni3Mg3SiAl catalyst showed inferior catalytic performance because it had a stronger NiO
interaction with the support, hindering the reduction of NiO. The 5Ni1Mg3SiAl catalyst
showed a little bit lower performance than the 5Ni3Mg3SiAl catalyst because the free NiO
particles would facilitate the sintering of Ni particles with the progress of DRM reaction.
Table 2 displays the H2-consumption during TPR; the H2-consumption values during
the TPR study indicated that negligible absorption took place at both lower and higher
temperature zones. The considerable absorption happened at the moderate temperature
zone between 650 and 705 ◦C. The best catalyst 5Ni2Mg3SiA with the appropriate NiO
interaction with the support gave the lowest H2- consumption value.
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Figure 3. The H2-TPR profiles of the fresh 5Ni0Mg3SiAl, 5Ni1Mg3SiAl, 5Ni2Mg3SiAl, and 5Ni3Mg3SiAl catalysts.

Table 2. H2-consumption during TPR.

Catalyst Temperature
(◦C)

H2-Consumption
(µmole/g)

5Ni0Mg3SiAl
697.9 951.1
833.0 1.0
841.4 0.9

5Ni1Mg3SiAl

336.6 53.2
438.5 0.7
454.8 30.1
649.9 992.0
850.2 5.8

5Ni2Mg3SiA

687.1 789.4
846.3 0.5
846.5 2.1
851.1 1.1
854.1 0.7

5Ni3Mg3SiAl

705.1 887.7
844.4 13.5
852.9 1.4
855.6 1.1

2.2. X-ray Diffraction (XRD)

Figure 4 shows the XRD patterns of the prepared catalysts. The diffraction peaks at
2θ = 37.2◦, 45.5◦, and 67◦ were ascribed to γ-Al2O3 (JCPDS file No.: 29-0063).
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Figure 4. The XRD patterns of the fresh 5Ni0Mg3SiAl, 5Ni1Mg3SiAl, 5Ni2Mg3SiAl, and 5Ni3Mg3SiAl
catalysts.

2.3. XPS

The O1s XPS (Figure 5a) had a peak centered at 532.3 eV for 5Ni0Mg3SiA, at 532.7 eV
for 5Ni1Mg3SiAl and 5Ni2Mg3SiAl, and at 532.4 eV for 5Ni3Mg3SiAl. The presence of Si
and absence of Mg in 5Ni0Mg3SiA shifted the O1s binding energy to higher energy than
that of γ-Al2O3 (531.08 eV) [30], which could be ascribed to the incorporation of Si into the
lattice of γ-Al2O3. The incorporation of Mg led to an increase in the O1s binding energy,
which might be due to peroxide species (O2

2−) or to hydroxyl species and most probably
due to hydroxyl species. [32] The reduction in O1s binding energy upon increasing the
MgO to 3.0 wt. % could be attributed to the higher interaction between MgO and NiO,
which, in turn, led to a solid solution between them, and hence, an increased difficulty of
reducing NiO [32].

The Ni2p3/2 peak (Figure 5b) for 5Ni0Mg3SiAl catalyst was observed at 855.02 eV.
Upon incorporation of Mg, the Ni2p3/2 peak was shifted to 855.39, 855.13, and 854.31 eV
for 5Ni1Mg3SiAl, 5Ni2Mg3SiAl, and 5Ni3Mg3SiAl, respectively. All values for Ni2p3/2
were less than that of NiO (856.20 eV). This reduction in binding energy could be due to the
presence of Ni octahedral lattice sites having electrostatic potential among six negatively-
charged oxide with a better opportunity of extra-atomic relaxation [33]. Furthermore,
increasing the amount of MgO wt. % loading resulted in more decrease in the binding
energy of Ni2p3/2. This observation could be attributed to the increase in interaction
between MgO and NiO with increasing the loading wt. % of MgO [32]. The additional
peak at ≈864 eV could be due to the solid solution of MgO-NiO.

The Al2p peaks (Figure 5c) of 5Ni0Mg3SiAl, 5Ni1Mg3SiAl, 5Ni2Mg3SiAl, and 5Ni3Mg3SiAl
catalysts were observed at 74.03, 74.96, 75.53, and 74.56 eV, respectively. The value of Al2p
binding energy of 5Ni0Mg3SiAl was very close to that of γ-Al2O3 (74.30 eV). This red shift
in binding energy could be owing to the presence of Si in the lattice of γ-Al2O3. However,
the incorporation of MgO led to an increase in the binding energy of Al2p, which could
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be due to the interaction of MgO with γ-Al2O3 support. This interaction between MgO
and the support reached its maximum when the MgO loading was 2.0 wt. %. The XPS
results were in agreement with the observed catalytic performance, which showed that
5Ni2Mg3SiAl was the best catalyst.
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2.4. The Catalytic Activity and Stability

The catalytic performances of the catalysts in the DRM process were evaluated at
700 ◦C for 420 min. Figure 6a shows that the CH4 conversion improved slightly by
incorporating 1.0 wt. % and 3.0 wt. % loadings of MgO in comparison to the catalyst
without MgO. This increase in CH4 conversion might be due to the supplementary metal
active sites endowed by MgO. On the other hand, 2.0 wt. % loading of MgO raised the CH4
conversion markedly by about 16% in comparison with the catalyst without MgO. These
results showed the preferential effect of loading MgO on the conversion of CH4. Similarly,
Figure 6b displays the effect of different MgO wt. % loadings on CO2 conversion. The
CO2 conversion was enhanced with the promotion of MgO, where the 2.0 wt. % loading of
MgO improved the conversion by ≈8%. In addition, the higher CO2 conversion hinted at
the incidence of a reverse water gas shift (RWGS) process (Equation (4)).

CO2 + H2 → CO + H2O (4)

The catalyst with 2.0 wt. % loading of MgO had the best conversions for methane and
carbon dioxide, which was followed by the one with 3.0 wt. % loading of MgO. Figure 6c
shows the H2/CO mole ratio profile for different wt. % loading of MgO in the catalyst. The
loadings of 1.0 wt. % (5Ni1Mg3SiAl) and 2.0 wt. % (5Ni2Mg3SiAl) were affected by the
H2 consumption of the RWGS reaction (Equation (4)) [34], which led to an increase in the
conversion of CO2 and to a decline in the H2/CO mole ratio. Similarly, the 5Ni3Mg3SiAl
catalyst attained a comparable molar ratio of H2/CO to the 5Ni2Mg3SiAl catalyst. For the
conversions of methane and carbon dioxide and the molar ratio of H2/CO, the stability
was sustained during the 420 min of time-on-stream.

Figure 7 exhibits the impact of reaction temperature on the conversions for methane
and carbon dioxide, and the molar ratio of H2/CO. The methane and carbon dioxide con-
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versions, as expected, improved with the increase in temperature because of the endoergic
character of DRM. The 5Ni2Mg3SiAl catalyst exhibited relative superiority in the conver-
sion of methane and carbon dioxide. In addition, the molar ratio of H2/CO increased
and a unity value was obtained at 750 ◦C, while those of other temperatures provided
were either lower or higher than one, depending on the involvement of the RWGS reaction
(Equation (4)) and Boudouard reaction (Equation (3)).

Figure 8 displays the stability results of the 5Ni2Mg3SiAl catalyst by studying the
methane and carbon dioxide conversions and the molar ratio of H2/CO versus time-
on-stream (TOS) for 15 h. The catalyst demonstrated excellent stability and negligible
deactivation for both reaction temperatures: 700 ◦C and 800 ◦C. The methane and carbon
dioxide conversions, by raising the temperature from 700 ◦C to 800 ◦C, were improved by
25% and 17%, respectively. The molar ratio of H2/CO had values less than unity for 700 ◦C
reaction temperature and values above unity for 800 ◦C. On this basis, reforming at 750 ◦C
would be the optimum reaction temperature for securing the unity ratio, as depicted in
Figure 7c.
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2.5. Space Velocity

The impact of contact time on the conversion of methane and carbon dioxide over
5Ni0Mg3SiAl, 5Ni1Mg3SiAl, 5Ni2Mg3SiAl, and 5Ni3Mg3SiAl catalysts was investigated
at 700 ◦C and with a molar ratio of unity for methane to carbon dioxide by varying the
gas hourly space velocity (GHSV). Figure 9 displays the results for 5Ni2Mg3SiAl catalyst.
The CH4 conversion profile displayed two aspects. When the GHSV was increased from
39,000 mL/gcat/h to 78,000 mL/gcat/h, the CH4 conversion was reduced from about 73%
to 55%. This observation was expected because when the contact time was decreased by
increasing the GHSV, the reactants could not adequately interact with the active Ni and
Mg particles. Therefore, some of the reactants were left unreacted. Furthermore, high
GHSV was not favorable for CH4 conversion because of the use of short bed length [34].
On the other hand, when GHSV was reduced to 19,500 mL/gcat/h, the CH4 conversion
also decreased. This observation could be ascribed to the mass transfer limitations. The
impact of GHSV on the molar ratio of H2/CO (Figure 9) indicated that this ratio reduced as
GHSV increased from 19,500 mL/gcat/h. This observation could be attributed to the mass
transfer limitations and to the RWGS reaction (Equation (4)), which caused additional CO2
conversion and a decrease in the molar ratio of H2/CO [35]. The relative increase in the
molar ratio of H2/CO from 39,000 to 78,000 mL/gcat/h could be due to the decomposition
of methane and the occurrence of WGS reaction of CO with H2 to produce CH4.
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CO2 mole ratio = 1; catalyst: 5Ni2Mg3SiAl; t = 700 ◦C; P = 1 atm).

2.6. Thermogravimetric Analysis (TGA)

The TGA measurements in Figure 10 gave a weight loss in the range of 5–9 wt. % and
indicated that the amount of carbon deposition was comparable over the tested catalysts
within a reaction time of 420 min at 700 ◦C. The addition of MgO and its loading increase
marginally improved the stability. Nonetheless, TGA measurement for a longer period of
15 h (Figure 11) showed that the catalyst with 2.0 wt. % MgO maintained the same range
of weight loss (<9.0 wt. %), displaying that the catalyst had a good resistance toward coke
formation and possessed excellent stability.
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Figure 11. The weight loss curve measured over the spent 5Ni2Mg3SiAl catalyst tested for 15 h.

2.7. Transmission Electron Microscopy (TEM) Analysis

We found that our prepared catalysts were made of agglomerated nanorods, as shown
in Figure 12 for the 5Ni2Mg3SiAl catalyst. The length of these nanorods was in the range
of 20–50 nm (Figure 12a), while their diameter fell in the range of 2–5 nm (Figure 12b).
This observed morphological nature could be responsible for the low intensity of the XRD
patterns and the good resistance of the catalysts toward the deposition of carbon.
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Figure 12. TEM images for the fresh sample of 5Ni2Mg3SiAl, showing the length of some nanorods
(a) and the diameter of some others (b).

Figure 13 shows the TEM images of the spent sample of 5Ni2Mg3SiAl. Figure 13a
clearly shows the formation of multiwalled carbon nanotube (MWCNT), surrounded by
the agglomerated catalyst particles, which had their shapes changed from rod-like to
undefined. The outer diameter of the MWCNT was larger than its internal diameter. Both
diameters were not the same along the MWCNT, as shown in Figure 13a. The distance
between one wall and another was estimated to be ≈0.35 nm, as shown in Figure 13b. The
formation of MWCNT and change in the morphology of the catalyst particles would be
responsible for reduction of the catalyst activity along with the reaction time.
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3. Experimental
3.1. Materials

Magnesium acetate tetrahydrate [Mg(CH3COO)2.4H2O; Merck, Kenilworth, NJ, USA]
and nickel nitrate hexahydrate [Ni(NO3)2·6H2O; Alfa Aesar, Haverhill, MA, USA] were com-
mercially available. The support of γ-alumina doped with silica (3.0 wt. % SiO2/γ-Al2O3) in
the shape of pellets was obtained from Inorganic Chemistry Laboratory, Oxford University.
Ultrapure deionized water (DI), with a resistivity of 18.2 MΩ.cm, was acquired from a
Milli-Q water purification system (Millipore).

3.2. Catalyst Preparation

In the present work, we followed the method of incipient wetness impregnation for
the synthesis of DRM catalysts. The required quantities of Ni(NO3)2.6H2O to get 5.0 wt. %
loading of nickel oxide, of Mg(O2CCH3)2.4H2O to get 1.0, 2.0, or 3.0 wt. % loading, and of
the support of 3.0 wt. % SiO2/γ-Al2O3 were combined and were subsequently crushed.
The resultant solid mixture was wetted with DI to form a paste, which was agitated
until it was dry. For the homogeneous spreading of the active catalyst and promoter
sources over and into the support, the addition of DI and drying steps was repeated. Then,
the solid mixture was heated for three hours at 600 ◦C with a temperature ramping of
3.0 ◦C/min. The catalysts were denoted, depending on the wt./wt. % loadings of
the various components on γ-Al2O3 support, as follows: 5Ni0Mg3SiAl, 5Ni1Mg3SiAl,
5Ni2Mg3SiAl, and 5Ni3Mg3SiAl.

3.3. Catalyst Activity

DRM experiments, over the prepared catalysts, were performed in a vertically posi-
tioned, cylindrical, stainless steel, fixed-bed (0.91 cm i.d. and 300 mm in length) reactor
(PID Eng & Tech micro activity reactor, Madrid, Spain), under ambient pressure, in a
temperature range of 650 to 850 ◦C. Catalyst weight of 0.10 g was put over a bed of quartz
wool to carry out the activity test. A thermocouple of K-type was fixed at the middle of the
bed of the catalyst to monitor the temperature. Before the tests, the catalyst was activated
by flowing hydrogen gas (20.0 mL/min) for one hour at 700 ◦C. The gas mixture was with
a volume ratio of 6.0 methane:6.0 carbon dioxide:1.0 nitrogen, and the overall gas rate was
65.0 mL per minute, corresponding to 39,000 mL/h/gcat space velocity. The eluted gases
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were directly analyzed by gas chromatography technique (Shimadzu 2014, Kyoto, Japan),
equipped with a thermal conductivity detector (TCD). The analysis was repeated at least
three times to ensure the reproducibility of the data. The conversion of reactants and the
molar ratio of H2/CO were calculated by the following equations:

CH4 Conversion (%) =
CH4 in −CH4 out

CH4 in
× 100 (5)

CO2 Conversion (%) =
CO2 in −CO2out

CO2 in
× 100 (6)

H2/CO =
moles of hydrogen produced

moles of CO produced
. (7)

3.4. Catalyst Characterization

N2 physisorption was employed to evaluate the specific surface area, pore volume,
and pore size distribution by using a Micromeritics Tristar II 3020 instrument (Micromerit-
ics, Atlanta, GA, USA), where the Barrett–Joyner–Halenda (BJH) method was used for
determining the pore volume and the distribution of pore size.

Powder X-ray diffraction (PXRD) technique was used for recognizing the catalyst
structures prior to the reaction by using a Rigaku (Miniflex) diffractometer (Rigaku, Tokyo,
Japan). equipped with a Cu Kα X-ray radiation, worked at 40 mA and 40 kV. The scanning
of 2θ was within the range of 10–85◦, at a step rate of 0.02 degrees. The “X’pert Highscore
plus” software helped to assess the data file of the instrument diverse phases, and their
scores were checked by using the JCPDS data bank.

TPR measurements were accomplished on a Micromeritics Auto Chem II (Atlanta, GA,
USA). A sample amount of seventy mg was placed into the TPR cell and was purged under
argon gas for 30 min at 150 ◦C. Then, the temperature of the sample was decreased to 25 ◦C.
The temperature of the TPR furnace was raised to 1000 ◦C, at a rate of 10 ◦C/min, under
a continuous flow of 40 mL/min of a mixture of hydrogen and argon gases (1:9 ratio). To
monitor the H2 consumption, a TCD was used.

A Chemisorption Analyzer (Micromeritics Autochem II Atlanta, GA, USA) was used
for CO2 temperature-programmed desorption (CO2-TPD). A sample of 50.0 mg of catalyst
was heated at 400 ◦C, for one hour, under a flow of 30 mL/min of helium gas, and then,
it was cooled down to 50 ◦C. The flow of CO2 was retained for one hour, and the sample
was washed out by flowing helium gas for the exclusion of any physisorbed CO2. The
temperature was ramped by a ratio of 10 ◦C/min for recording the catalyst desorption
profile. A TCD was used for measuring the CO2 concentration in the output stream,
where the amount of CO2 during TPD was determined by the integration of the areas
under the peaks.

X-ray photoelectron spectroscopy (XPS) was recorded on a JEOL JPS-9200 spectrometer
(JEOL, Akishima, Tokyo, Japan) for determining the chemical composition of the catalyst
surface by using Mg Kα (hν = 1253.6 eV) under vacuum at 5× 10−9 Pa, where the C1s peak
line at 284.6 eV of the surface adventitious carbon was used as a reference for calibrating
the binding energies.

The amount of carbonaceous material, deposited on the surface of the spent catalyst,
was evaluated by thermogravimetric analysis (TGA) by using a TGA-15 SHIMADZU
analyzer (Shimadzu Corporation, Kyoto, Japan) under aerial atmosphere. A sample of
spent catalyst, weighed 10–15 mg, was heated by a rate of 20 ◦C/min from 25 to 1000 ◦C
for determining the amount of the deposited carbon through weight loss.

The morphology of the catalysts was investigated by using a high-resolution trans-
mission electron microscope (HRTEM model: JEM-2100 F, JEOL, Akishima, Tokyo, Japan),
which was run at 200 kV, where the samples were mounted on carbon-coated copper grids
for analysis.
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4. Conclusions

Four catalysts were prepared with various weight percentage contents of MgO pro-
moter (5Ni0Mg3SiAl, 5Ni1Mg3SiAl, 5Ni2Mg3SiAl, and 5Ni3Mg3SiAl), and these catalysts
were tested for DRM to assess the impact of MgO promoter loading. The 2.0 wt. % loading
of MgO in 5Ni2Mg3SiAl produced a brilliant promotional effect for the catalytic perfor-
mance in terms of better conversions and better resistance to the deposition of coke carbon
compared to the unpromoted catalyst (5Ni0Mg3SiAl). Improvement was observed for
5Ni2Mg3SiAl catalyst at 800 ◦C, where the conversions of methane and carbon dioxide
were 86% and 91%, respectively. The 5Ni2Mg3SiAl catalyst maintained its activity for 15 h
with low carbon deposition (<9.0 wt. %). The investigation of the space velocity stipulated
the best GHSV as 39,000 mL/(gcat·h). The enhanced catalytic performance of the promoted
catalyst might be ascribed to the promoter-positive modification of the textural properties,
its formation of solid solution with nickel oxide, and its increase in metal–support interac-
tion. These findings were verified by the results of the characterization techniques used in
this work: N2 physisorption, H2-TPR, XRD, XPS, TGA, and TEM.
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