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Abstract: Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has
attracted much attention and their use in C–C bond forming reactions constitutes one of their most
important applications. A huge variety of metal NPs, which have showed high catalytic activity
for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such
as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic
composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs
catalysts. This review classified and outlined the categories of metal NPs by the type of support.

Keywords: metal nanoparticles; support; C–C bond forming reactions

1. Introduction

The synthesis of new functional molecules and the development of new reactions
are important fields at the core of synthetic organic chemistry. Among them, C–C bond
formation is one of the most important reactions. Until now, numerous kinds of C–C
bond forming reactions, including regioselective reactions, stereoselective reactions, and
cross-coupling reactions such as Suzuki-Miyaura, Mizoroki-Heck, Stille, Hiyama, Ullmann,
and Sonogashira coupling reactions, have been developed and applied to synthesize
many kinds of functional molecules such as drugs, natural products, optical devices, and
industrially important starting materials. Homogeneous transition metal catalysts act in a
pivotal role to achieve the above reactions, a huge kind of catalysts and ligands have been
developed. However, homogeneous catalysts have a number of drawbacks, in particular,
the lack of reuse of the catalyst. This leads to a loss of expensive metals and ligands and
to impurities in the products. Although numerous kinds of heterogeneous catalysts have
been developed in order to address these problems, heterogeneous catalysts are inferior to
homogeneous catalysts at some points, such as in reactivity.

On the other hand, transition metal nanoparticles (NPs), which can be readily ob-
tained by several methods, such as chemical reductions and thermal decompositions, are
of great interest due to their high reactivity derived from their extremely small size and
their large surface to volume ratio. Metal NPs have received much attention for their
use in many promising catalytic and biomedical applications because they exhibit unique
magnetic and catalytic properties that are not shown in bulk materials. The pioneer-
ing catalytic application of metal NPs was reported by Rampino and Nord in 1941 [1].
Since the pioneering works on C–C coupling reaction by metal NPs were reported by Reetz
in 1996 [2,3], over the last few decades, the use of transition metal NPs in catalysis has
expanded considerably and a huge variety of metal NP catalysts have been developed.
Due to the enormous number of publications outlining metal NPs in recent years [4–30],
this review will only focus on the metal NPs used as a catalyst for C–C bond forming
reactions over the last five years. This review classified and outlined the categories of
metal NPs by the type of support, such as inorganic materials, magnetically recoverable
materials, porous materials, organic–inorganic composites, carbon materials, polymers and
surfactants (Scheme 1).
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Scheme 1. Category of support.

2. Several Supports for Metal Nanoparticles
2.1. Inorganic Materials

One of the most fundamental supports for metal NPs is inorganic materials such as
metal oxides, clay, and so on [31–33]. There have been developed many highly active
inorganic materials and supported metal NP catalysts, such as those which proceed the
C-C bond forming reaction at room temperature [34–51]. Typical recent examples include
the following:

Trudell et al. reported a reliable method for the encapsulation of Pd NPs in halloysite,
and the resultant Pd@halloysite catalyzed the Suzuki-Miyaura coupling reaction of aryl bro-
mides at room temperature [52]. Verberckmoes et al. found that uncalcined, co-precipitated
hydrotalcite-supported Pd NP catalysts are preferred above the calcined, impregnated
ones when catalyzing basic promoted organic reactions. The reason for this is that the
lack of calcination resulting in an ordered and porous hexagonal hydrotalcite structure
causes a high accessibility of the active centers in combination with the high support
basicity [53]. Pd NPs stabilized on magnesium oxide–carbon quantum dots catalyzed the
Suzuki-Miyaura coupling reaction of aryl bromides and chlorides at room temperature.
In addition, Pd loading and leaching in catalysts can be estimated by using fluorescence
emission because a good relationship was observed between fluorescence intensity and the
loading of Pd [54].

Miura and Shishido et al. developed one-pot synthesis of cyclohexene derivatives
from the reductive cycloisomerization of diynes and subsequent [4+2] cycloaddition with
dienophiles, based on the hypothesis that Pd species functioned as a redox site to form a
palladacycle via the oxidative addition of two alkyne moieties (Scheme 2) [55]. They also
found that the [2+2+2] cycloaddition of alkynes proceeded smoothly by PdAu alloy NPs
while monometallic Pd and Au NPs were ineffective [56,57]. In the hydroalkoxycarbonyla-
tion of olefins using Ru NPs on CeO2, controlling the regioselectivities of linear esters and
branched esters has been found to be related to the Ru size [58,59]. The Ru/Ceria catalyzed
quinazolinones synthesis was also achieved by the same group (Scheme 3) [60].

Scheme 2. One-pot synthesis of cyclohexene derivatives by Miura and Shishido et al. Reproduced
from [55], Wiley-VCH: 2020.
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Scheme 3. Three-component coupling reactions catalyzed by Ru-clusters/ceria. Reproduced
from [58], Elsemier: 2020 and [60], Wiley-VCH: 2018.

Metal NPs have been also applied to polymerization reactions. Cu NPs supported on
SiO2 catalyzed the controlled living radical polymerization to afford poly(n-butyl acrylate)
and poly(n-butyl acrylate-block-styrene) [61]. Pd NPs coated on the surface of the fabricated
titanate nanotubes was utilized for electrochemical polymerization of o-phenylenediamine
in acid medium [62].

Huge efforts have been devoted to develop the metal NPs as a photocatalyst for
C–C bond forming reactions. Hosseini-Sarvari et al. reported the synthesis of nano
Pd/TiO2 with band gap >3 eV through a photodeposition method under sunlight, and
their activity for Suzuki-Miyaura coupling reaction under visible light irradiation [63]. They
also reported photocatalytic activity of nano Pd/ZnO for Suzuki-Miyaura, Hiyama, and
Buchwald-Hartwig reactions under visible light irradiation at ambient temperature [64].
The study of Lanterna and Scaiano et al. indicated that the direct excitation of Pd NPs
can catalyze Sonogashira coupling reaction [65]. The same research group also found
that the Ullmann coupling reaction of aryl iodides proceeded smoothly under both UV
and visible light irradiation in the presence of Pd@TiO2 whereas a similar dose of visible
light did not initiate the reaction [66]. The photocatalytic activity of Pd NPs supported
on SiC in Sonogashira coupling reaction under visible light irradiation has been also
reported. The rate of the photocatalytic reaction can be controlled by the light intensity
and irradiation wavelength respectively [67]. Yoshida et al. found a blended catalyst
of TiO2 and Pd-Au/Al2O3 showed high catalytic activity for photocatalytic Ullmann
coupling reaction (Scheme 4). The photogenerated electrons on the TiO2 photocatalyst
reduced the aryl halide to generate the corresponding radical species, while the Pd-Au
bimetallic nanoparticles activated another aryl halide and facilitated its reaction with the
photogenerated aryl radical to yield biaryls. To improve of both the photocatalyst and the
metal NPs independently is an attractive and promising approach to improve the entire
catalytic performance [68]. The coupling reaction of pyridine with benzene and THF with
alkane, alkene, and arene using Pt NPs or Pd-Au NPs loaded TiO2 photocatalyst have been
also reported by the same research group [69–72].

Scheme 4. Photocatalytic Ullmann coupling with the blended catalyst consisting of TiO2 and Pd-
Au/Al2O3. Reproduced from [68], RSC: 2018.

Surface structure engineering has afforded many breakthroughs in enhancing the
photocatalytic activity of titania. Among them, readily accessible urchin-like structures
with properties of an interconnected porous framework and a high specific surface area
and can increase the efficiency of light harvesting as well as facilitate the accessibility of
reactants to the active sites [73]. InP/ZnS quantum dots were used as a sole photocatalyst
to catalyze the C–C coupling reaction between 1-phenyl pyrrolidine and phenyl-trans-styryl
sulfone without the aid of any cocatalyst or sacrificial oxidant or reductant [74]. The density
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functional theoretical (DFT) calculations of the adsorption energies of reaction interme-
diates leads to a design of the photocatalyst. Su et al. found the Cu NP-modified TiO2
presented a high selectivity towards photocatalytic homocoupling of benzyl bromide into
bibenzyl with a remarkable apparent quantum efficiency (AQE) of 15% by evaluation of
the adsorption energies of benzyl radicals and bromine atoms on a series of selected metal
surfaces (Scheme 5) [75]. Cu2O NPs supported on graphitic carbon nitride make a photoac-
tive catalyst that has been developed for the preparation of ynone, aminoindolizines, and
pyrrolo [1,2-a] quinoline. The electrons present in the conduction band under irradiation
play an important role in enhancing the charge density of the Cu2O NPs, which strengthens
the π-complex between Cu2O NPs and alkyne molecules, and acting as scavengers for
the terminal hydrogen of alkyne to form the copper acetylide complex (Scheme 6) [76].
The size effect of Pt on the photocatalytic nonoxidative methane conversion efficiency was
systematically investigated over x-Pt/Ga2O3 with the particle size (x) ranging from 1.5 to
2.7 nm, where a volcano-shaped relation was observed [77].

Scheme 5. Photocatalytic dehalogenative coupling of benzyl bromides using Cu/TiO2 photocatalyst.
Reproduced from [75], ACS: 2021.

Scheme 6. Cu2O NPs/g-C3N4 catalyzed synthesis of ynones, aminoindolizines, and pyrrolo[1,2-
a]quinolones. Reproduced from [76], ACS: 2020.

The nature of the metal nanoparticle cocatalyst deposited on a TiO2 photocatalyst
dictated the product selectivity for the cross-coupling. The reaction of toluene with acetone
gave 1-(o-tolyl)propan-2-one in the presence of Pd NPs, while Pt NPs promoted the cross-
coupling reaction between the methyl group of toluene and acetone to afford 4-phenylbutan-
2-one (Scheme 7) [78].
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Scheme 7. Selective photoreaction using metal immobilized on TiO2. Reproduced from [78],
Springer: 2020.

2.2. Magnetically Recoverable Materials

Metal NPs with a magnetic core can be easily separated from the reaction mixture by
using an external magnet. Magnetic separation is an alternative to filtration or centrifuga-
tion as it prevents loss of catalyst and increases the reusability. This makes materials like
Fe3O4 a promising support for nanocatalysts. Magnetic nanoparticles have received con-
siderable attention in terms of biocompatibility, thermal stability against degradation, large
surface area, and low cost. Therefore, it is suitable for designing magnetically retrievable
metal NPs [79–86]. Lately, many excellent studies about magnetic composite nanocatalysts
have been reported [87–118].

Nasseri et al. improved their bifuncitional catalytic system based on copper with an
ionic tail reported in 2019, and developed a magnetically water dispersible Cu-Co bimetal-
lic catalyst for the efficient base/Pd-free C-C and C-N cross-coupling reactions [119,120].
Magnetite coated by amino acid functionalized chitosan in consideration of improving
physicochemical properties such as solubility and mucoadhesiveness, was used as a sup-
port for Pd NPs. On using this catalyst, the Suzuki-Miyaura and Sonogashira coupling
reactions were carried out efficiently at room temperature [121]. Based on this, a new
catalytic system with an extremely low loading of expensive metal (ppm or ppb) has
been developed. Eshghi et al. developed arginine-modified Fe3O4@carbon magnetic
nanoparticles with highly dispersed Cu NPs and ppm levels of Pd [122]. To improve
the catalytic activity, nitrogen-doped materials are used as a support [123,124]. Accord-
ing to this idea, Shen and Qiao et al. synthesized novel magnetically Fe3O4@Pd NPs by
fixing Pd on the surface of nitrogen-doped magnetic nanocomposites (Scheme 8) [125].
Hajipour et al. synthesized magnetically separable nano-nickel catalysts, which catalyzed
efficiently for fluoride-free Hiyama coupling reaction, through a “click” reaction of azide-
functionalized magnetic nanoparticles with 2-ethynylpyridine followed by immobilization
of nickel nanoparticles [126]. Co NPs immobilized on magnetic chitosan has been used for
the first time for the cyanation of aryl halides, and also promoted the Hiyama coupling
reaction (Scheme 9) [127].

Scheme 8. Application of Fe3O4@NC/Pd in the synthesis of crizotinib. Reproduced from [125],
MDPI: 2018.
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Scheme 9. Cyanations and Hiyama coupling reactions using Co NPs immobilized on magnetic
chitosan. Reproduced from [127], ACS: 2020.

A Fe3O4/oleic acid/Pd NPs catalyst was used for the Sonogashira polymerization.
The polymerization occurred by a step-growth mechanism and resulted in a molar mass
of 3.8 kg/mol [128]. The sequential Knoevenagel condensation/1,3-dipolar cycloaddition
reactions proceeded using Fe3O4@SiO2@Au catalyst to give substituted spiroisoxazoines
and oxadiazoles with good regio- and stereoselectivity under mild reaction conditions
(Scheme 10) [129].

Scheme 10. Synthesis of spiroisoxazorines and oxadiazoles using Fe3O4@SiO2@Au catalyst.
Reproduced from [129], Elsevier: 2020.

Bhalla et al. developed a supramolecular porous ensemble consisting of oligopheny-
lene derivatives and Au-Fe3O4. A series of catalysts efficiently catalyzed Kumada reac-
tion, Heck reaction, and the synthesis of quinoline carboxylates (Scheme 11) [130–132].
Azadi and Kazemi et al. prepared the core-shell magnetic nano photocatalyst. The catalyst
composed of a central magnetite core, an interlayer of silica, a shell of titania, and finally a
Schiff base complex of Pd NPs. The Suzuki-Miyaura coupling reaction occurred under blue
LED irradiation, while no product was obtained under a white and green LED irradiation
(Scheme 12) [133].

Scheme 11. Photocatalytic synthesis of quinoline carboxylates through a C(sp2)-H activation reaction.
Reproduced from [132], ACS: 2017.
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Scheme 12. Visible-light-driven photocatalytic Suzuki-Miyaura Coupling reaction. Reproduced
from [133], Wiley-VCH: 2021.

2.3. Porous Materials

Several porous materials, such as zeolite, mesoporous silica, covalent organic frame-
works (COFs), and microporous organic polymers (MOPs), have also been utilized as
the support for metal NPs. These materials possess several highly desirable properties:
pore topologies that possess long-range structural ordering, a uniform pore size, and high
surface areas. Due to the typical advantages of the porous supports, the size control of
the stabilized metal NPs and the selective reactions dependent on the pore size have been
achieved [134–151].

Li and Chen et al. confirmed that the number of acid sites within the zeolite frame-
works were directly proportional to the catalytic activity of Pd NPs in Suzuki-Miyaura
coupling reaction [152]. Gu and Zhang et al. have developed a novel covalent organic
framework (COFs)-templated strategy for the size-controlled synthesis of stable and highly
dispersed ultrafine metal NPs. With the aid of the evenly distributed thioether groups in
the ordered framework structure, ultrafine metal NPs with a narrow size distribution were
successfully obtained [153]. Arisawa et al. developed a well-established metal–nanoparticle
catalyst preparative protocol by simultaneous in situ metal NPs and nanospace organiza-
tion (PSSO). Several sulfur-modified Au-supported metal (Pd, Ni, Ru, and Fe) catalysts
were constructed by self-assembled metal NPs, which were encapsulated in a sulfated
p-xylene polymer matrix, and showed high catalytic activities for several C–C coupling
reactions (Scheme 13) [154–158].

Scheme 13. One-pot synthesis of carbazole derivatives catalyzed by self-assembled multilayer Fe(0)
NPs. Reproduced from [154], ACS: 2020.

El-Shall et al. found that ultra-small CuPd bimetallic nanoparticles deposited on a
mesoporous-fumed silica support could be participated efficiently to the Suzuki-Miyaura
coupling reaction of aryl bromides to give the corresponding coupling product within
30 min [159]. Bae, Byun, and Kim et al. prepared small and large Au NPs stabilized in
mesoporous TiO2 and poly(N-isopropylacrylamide) particles, respectively. These Au NPs



Catalysts 2021, 11, 1266 8 of 35

exhibited a notably high catalytic activity in the homocoupling of phenylboronic acid, and
interestingly, there was no obvious correlation between the apparent Ea values and the
size of Au NPs [160]. Dewan et al. reported the first synthesis of a renewable, recyclable,
environmental benign bio-nanocellulose-based honeycomb-like heterogeneous surface
from waste pomegranate peel. Pd NPs loaded onto the bio-nanocellulose is the effective
catalyst for C–C coupling reaction to synthesize the potential bioactive biaryl/heterobiaryl
and alkynyl/heteroalkynyl derivatives (Scheme 14) [161].

Scheme 14. Heteroaryl cross-coupling reactions catalyzed by Pd NPs@NCmw. Reproduced
from [161], ACS: 2021.

Xie et al. reported a one-step strategy for the design of size-selective heterogeneous
catalysts, which was composed of microporous polymer carriers and ultrafine Pd NPs.
This research will expand the application scope of microporous organic polymers in size-
selective heterogeneous catalysis (Scheme 15) [162]. Product selectivity is attributable to the
size selectivity of micropores. Pt NPs encapsulated in H-BEA zeolite (Pt@H-BEA) catalyzed
a one-step conversion of biomass-derived cyclopentanone to C10 cyclic hydrocarbons, i.e.,
bicyclopentane and decalin. While cyclopentane was produced with a yield of >70% on
Pt@H-ZSM-5, which have the narrower pores (Scheme 16) [163]., Shi et al. achieved the
selective synthesis of 3-methylindole from the reaction of aniline with glycerin using Cu
NPs/SBA-15 modified with Al2O3, La2O3, and CoO. The characterizations revealed that
the effect of Al2O3, La2O3, and CoO to enhance the polarity of the carrier, weaken the
acidity, and to increase the number of weak acid centers, respectively (Scheme 17) [164].

Scheme 15. Size-selective C–C coupling reactions catalyzed by microporous polymer stabilized Pd
NPs. Reproduced from [162], ACS: 2021.

Scheme 16. Product selectivity controlled by pore size of zeolite-encapsulated Pt NPs. Reproduced
from [163], ACS: 2020.
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Scheme 17. Selective synthesis of 3-methylindole from the reaction of glycerin with aniline.
Reproduced from [164], Springer: 2021.

2.4. Organic–Inorganic Composites

One of the most useful methods to obtain the inorganic materials with excellent
properties as a support for metal NPs is functionalization of inorganic materials with
organic molecules. On the other hand, metal–organic frameworks (MOFs), which includes
a typical organic–inorganic composite, have attracted extensive attention as supports
for metal NPs due to their huge surface area, large porosity, recyclability, and tunable
functionality. Many kinds of metal NPs immobilized on the functionalized inorganic
materials and MOFs have been reported until now [165–187].

Malta et al. synthesized the hydroxypropylated α-, β-, or γ-cyclodextrins-stabilized
Pd NPs supported on ceria, and compared the reactivity in Suzuki-Miyaura coupling
reactions. The catalysts based on β- and γ-cyclodextrins-stabilized Pd NPs showed higher
reactivities than α-cyclodextrins-stabilized Pd NPs, probably due to a higher degree of
particles up to 5 nm [188]. A Suzuki-Miyaura coupling reaction took place smoothly at
room temperature using thiourea-bridged periodic mesoporous organosilica and supported
Pd NPs as a catalyst [189]. Ha et al. synthesized dual (temperature and pH)-responsive
poly(N-isopropyl acrylamide-co-methacrylic acid) functionalized SBA-15. This material
supported the fact that Pd NPs showed high catalytic activity for Suzuki-Miyaura coupling
reactions at room temperature, while the activity decreased at higher temperature than
LCST of PNIPAM [190]. It has been reported that Suzuki-Miyaura coupling reaction
proceeded at room temperature using Pd NPs stabilized on CaAl-layered double hydroxide
functionalized with tris(hydroxymethyl)aminomethane (Scheme 18) [191].

Scheme 18. The Suzuki-Miyaura cross-coupling reaction at room temperature catalyzed by
LDH/Tris/Pd. Reproduced from [191], Elsevier: 2018.

Pd NPs stabilized on 12-tungstophosphoric acid modified zirconia catalyzed the
Suzuki-Miyaura coupling reaction efficiently and TOF reached to ca.100000 h−1 [192]. Pd
NPs decorated into a biguanidine modified-KIT-5 showed high catalytic activity for Suzuki-
Miyaura coupling reaction under sonication at room temperature. The coupling product
was obtained efficiently within 15 min [193]. Pd NPs immobilized on zirconium phosphate
glycine diphosphonate nanosheets was confirmed to be an effective catalyst for Suzuki-
Miyaura and Mizoroki-Heck reaction, and was applicable to the flow system [194]. Pd NPs
supported on the hybrid nanomaterials based on thiol functionalized halloysite nanotubes
and highly cross-linked imidazolium salts showed high performance in Suzuki-Miyaura
and Mizoroki-Heck coupling reactions, and TOF of 3.88 × 106 h−1 was achieved in Suzuki-
Miyaura coupling reaction [195]. Control synthesis of polyacrylamide brushes grafted
onto silica particles (SiO2-g-PAAm), which can be used for the support of Pd NPs was
achieved using reversible addition–fragmentation chain transfer (RAFT) polymerization.
Appropriate activity and recyclability of SiO2-g-PAAm-Pd indicated in the Mizoroki-Heck
coupling reaction of iodobenzene with n-butyl acrylate [196]. In Ullmann-type aryl iodides
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homocoupling, Au and Pd NPs loaded on ZIF-8 have been confirmed to be more efficient
than the catalyst after calcination [197]. Kobayashi et al. developed poly(dimethyl)silane-
immobilized metal NPs with alumina as a second support, and the resulting catalysts have
been utilized in several reactions (Schemes 19 and 20) [198,199].

Scheme 19. The carbonylative Suzuki-Miyaura coupling reactions catalyzed by polysilane/Al2O3-
immobilized Pd NPs. Reproduced from [198], Thieme: 2021.

Scheme 20. Asymmetric 1,4-addition of arylboronic acids to β,γ-unsaturated α-ketoesters.
Reproduced from [199], Wiley-VCH: 2020.

A one-pot synthesis of benzo[c]pyrazolo[1,2-a]cinnoline-1-ones was achieved with
Pd NPs dispersed on octakis[3-(3-aminopropyltriethoxysilane)propyl]octasilsesquioxane
functionalized fibrous nanosilica (KCC-1) (Scheme 21) [200]. Thiocarbamide-functionalized
graphene oxide-supported RhPd NPs have been tried for the Knoevenagel condensation
of malononitrile and aryl aldehydes and showed an excellent catalytic activity to give the
product within 35 min at room temperature (Scheme 22) [201].

Scheme 21. Synthesis of benzo[c]pyrazolo[1,2-a]cinnoline-1-ones in the presence of Pd/HPG@KCC-1.
Reproduced from [200], RSC: 2017.

Scheme 22. Knoevenagel condensation at room temperature catalyzed by Rh-Pt NPs. Reproduced
from [201], Elsevier: 2018.
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Parida et al. reported that amino-functionalized Zr-based MOF (UiO-66-NH2) was
a suitable photocatalyst and support for metal NPs because it has a high surface area,
tunable pores, and high thermal and chemical stabilities [202]. The same research group
also investigated the utility of a graphene oxide/ZnCr-layered double hydroxide hybrid
nanocomposite [203]. Chen and Wang et al. found that the porous coordination frameworks
(PCFs) using the DIB-TETA as organic linkers and inorganic NPs as nodes exhibited
superior photocatalytic performances in a noble metal-free Suzuki-Miyaura coupling
reaction [204].

2.5. Carbon Materials

Charcoal is a classic commercial support for catalysts. Carbon materials have been
proven to be suitable supports for heterogeneous catalysis, due to high thermal and chem-
ical stability, their special electronic properties, and tunable textural properties such as
surface area, porosity, and surface chemistry. To date, numerous kinds of metal NPs
supported on carbon materials such as graphene and carbon nanotubes have been devel-
oped [205–231].

Ni@Pd core-shell NPs on carbon nanotubes (CNT) have been reported to show a high
catalytic activity for carbonylative Suzuki-Miyaura cross-coupling reactions.
The immobilization of the Ni@Pd NPs on CNT not only prevented their aggregation,
but also significantly enhanced the accessibility of the catalytically active sites [232].
Hajipour and Farrokhpour et al. achieved the immobilization of Co NPs within a car-
bon nanotube channel, and found that Co NPs-in-CNTs, as compared to Co NPs-out-CNTs,
exhibited excellent activity for Mizoroki-Heck reactions (Scheme 23) [233]. Chung et al. dec-
orated Rh NPs on fullerene C60 to obtain a highly efficient nanocatalyst for Suzuki-Miyaura
coupling reactions [234]. Chen and Li et al. designed an electron-deficient Au NPs-based
catalyst via Schottky contact with boron-doped carbons for room temperature Stille cou-
pling reaction. The electron-deficiency of Au NPs significantly increased the activation of
C-Br bonds in alkylbromides and successive coupling reaction with allylstannanes [235].

Scheme 23. Heck reaction with carbon-nanotube-encapsulated Co NPs. Reproduced from [233],
RSC: 2019.

Astruc et al. successfully immobilized α-Fe2O3 nanocluster on graphene oxide (GO) by
utilizing the supramolecular interaction between amphiphilic tris(triazolyl)-polyethylene
glycol and GO. α-Fe2O3/GO worked well as a catalyst for Suzuki-Miyaura coupling
reaction with only parts-per-million loading [236]. Taniike et al. revealed that a graphene
oxide framework prepared with benzene 1,4-diboronic acid as a two-side linker was a
superior support of Pd NPs to that with phenylboronic acid as a one side linker [237].

The coupling reaction of aryl chlorides can be achieved by using reduced graphene
oxide-supported Pd NPs. The size of NPs and reactivity was dependent on the prepa-
ration temperature, and this catalyst was applied for the synthesis of key intermediates
of important Sartans and Fluxapyroxad medicines (Scheme 24) [238]. Hoseini et al. uti-
lized self-assembly at the toluene–water interface to produce a PdNiZn nanosheet and
PdNiZn/reduced graphene oxide (rGO) ultrathin spherical NPs. The presence of rGO
enhanced the catalytic activity, probably due to altering the electronic properties [239].
Ni NPs supported reduced graphene oxide, which has also been prepared by the hydrother-
mal process and investigated the catalytic activity for the homocoupling of arylboronic
acids and alkynes [240]. Graphene acid is a convenient platform for the surface anchoring
of Pd NPs with a narrow and sharp distribution. The size of NPs can be easily con-
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trolled by the amount of the Pd precursor, and the catalyst showed a high activity in
the Suzuki-Miyaura coupling reaction and oxidative homocoupling of arylboronic acids
under environmentally friendly conditions [241]. Three-dimensional graphene, which has
excellent properties such as ultrahigh surface-to-volume ratio, high porosity, low density,
etc., was used for the effective support of Au NPs and PdCo-bimetallic NPs [242,243].

Scheme 24. The synthesis of the intermediate of Sartans and Fluxapyroxad. Reproduced from [238],
RSC: 2020.

C-methylations of alcohol, ketones, and indoles have been achieved using methanol
and Pt/C as a sustainable C1 source and a catalyst, respectively. The reaction is driven by a
borrowing-hydrogen mechanism (Scheme 25) [244]. Nitrogen-doped carbon-encapsulated
Ni/Co NPs catalyzed pinacol couplings have been reported. The reaction mechanism is
different to the classical pinacol coupling pathway, and the initial formation of silyl radicals
is proposed (Scheme 26) [245].

Scheme 25. C-methylation of alcohols, ketones, and indoles with methanol as a C1 source.
Reproduced from [244], ACS: 2018.
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Scheme 26. Silylative Pinacol coupling. Reproduced from [245], ACS: 2018.

Graphitic carbon nitride-supported Pd NPs (g-C3N4/Pd) is an efficient photocatalyst
for Suzuki-Miyaura cross-coupling reactions. It has been confirmed that the reaction is
driven by the light because the conversion of iodobenzene has the same trend as the
absorption of light by the g-C3N4/Pd [246]. Dabiri et al. prepared AuPd alloy NPs
immobilized on graphitic carbon nitride sheets, which enhanced Suzuki-Miyaura cross-
coupling reactions at room temperature under visible-light irradiation. The photocatalytic
activities strongly depend on the Au:Pd ratio of the alloy NPs. The activity of Au1Pd1/g-
C3N4 was much higher than that of the catalysts, compared with other Au:Pd ratios,
probably because the electron transfer between the two metals occurs efficiently in the alloy
NPs with an Au:Pd weight ratio near 1:1 (Scheme 27) [247]. Lim et al. investigated the role
of the graphene interface in the photocatalyst, and found that the fast electron transfer was
achieved in the presence of the reduced graphene oxide layer. Consequently, the highest
catalytic activity for the visible-light induced C–C coupling reaction was obtained with
Pd-nanodot-modified reduced GO-coated Au NPs [248].

Scheme 27. Visible-light-enhanced Suzuki-Miyaura cross-coupling reactions. Reproduced from [247],
Elsevier: 2020.

2.6. Organic Polymers and Surfactants

Polymers such as poly(vinylpyrrolidone) (PVP) and surfactants including quaternary
ammonium salt with a long alkyl chain are commonly used as stabilizers in the synthesis of
metal NPs. For example, Rampino et al. used poly(vinyl alcohol) (PVA) to protect Pd and Pt
NPs in 1941, and El-Sayed et al. initially reported the use of Pd nanoparticles stabilized by
PVP as catalysts in the Suzuki-Miyaura coupling reaction of aryl iodides with arylboronic
acids in aqueous media [1,249]. Dendrimers are also often utilized as the stabilizer for
metal NPs, and pioneering studies were reported by Crook, Tomalia, and Esumi [250–252].
On the other hand, as a greener process, phytosynthesis that utilizes parts of whole plants
to synthesize metal NPs is also under exploitation and is an advantageous and profitable
approach [253]. Numerous kinds of metal NPs stabilized by organic compounds with a
high molecular weight have been reported [254–294].

Peinemann et al. prepared Pd NPs with a subnanometer size (<1 nm) supported within
the highly cross-linked network, which catalyzed Suzuki-Miyaura coupling reactions at
a low temperature (<40 ◦C) [295]. Pd NPs stabilized by heteroatom donor-decorated
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polymer immobilized ionic liquid catalyzes the Suzuki-Miyaura coupling reaction of aryl
bromides with remarkable efficacy in aqueous media under exceptionally mild conditions.
Improvements in catalyst performance arising from the introduction of PEG are attributed
to an increase in dispersibility and/or solubility, facilitating access to more exposed active
sites [296]. The room temperature Suzuki-Miyaura coupling reactions have been confirmed
in the presence of Pd NPs supported by polydopamine and Pd NPs synthesized using
Sapindus mukorossi seed extract [297,298]. Studer et al. prepared Pd NPs by visible light
irradiation to the DMF solution of silyl ketones and Pd(OAc)2. The diameter of Pd NPs
could be adjusted to 1.9 to 5.2 nm depending on the photoinitiator used (Scheme 28) [299].
Pd NPs stabilized on poly(o-aminothiophenol) prepared by oxidation polymerization of
o-aminothiophenol in the presence of Pd(NO3)2 showed a high catalytic activity for the
Suzuki-Miyaura coupling reaction of aryl chloride in water [300]. The amphiphilic property
of the eumelanin support helps Pd NPs to catalyze the Suzuki-Miyaura coupling reaction
in water through a hydrophobic effect [301]. A series of PdxM147-x (M = Cu, Pt, Au, Rh, Ru)
stabilized on poly(amidoamine) dendrimers were synthesized and their catalytic activities
were investigated in Suzuki-Miyaura coupling reactions. Pd74Cu73 DEN showed a similar
activity to Pd147 DEN and DFT calculations illustrated that the similar activity of the Pd147
and Pd74Cu73 DENs originate from the comparable energy barriers of the rate-determining
steps [302].

Scheme 28. The catalytic activity of Pd NPs prepared under visible light irradiation. Reproduced
from [299], ACS: 2018.

Thang et al. developed the facile preparation method of polymer–metal nanocompos-
ites for an improved catalytic performance by utilizing ultrasound as both the initiation and
reducing source. Metal NPs were immobilized on the hydrophilic shell of the polymer ma-
trix, and the size of the NPs were closely related to the ratio of tertiary amine groups in the
polymer matrix to metal atoms [303]. Highly efficient Tsuji-Trost allylations in water have
been achieved using Pd NPs stabilized by PVP. A very high TON of 537,000 was obtained
in this system [304]. Yu et al. obtained the effective catalysts, which showed high activity
for carbonylative Sonogashira coupling reactions by the introduction of salen moieties
into highly cross-linked polyacrylamide [305]. Pd NPs were encapsulated within hybrid
hydrogels made from an acylhydrazide-functionalized 1,3:2,4-dibenzylidene sorbitol (DBS-
CONHNH2) low-molecular-weight gelator combined with agarose polymer gelator via
an in situ reduction of Pd(II). These heterogeneous gel-phase catalysts were successfully
applied for several C–C coupling reactions (Scheme 29) [306–308]. Simple hydrophobic
polymers without a coordination site such as polystyrene and poly(tetrafluoroethylene)
have been confirmed to stabilize metal NPs and polymer-supported metal NPs were
applicable to the recyclable catalyst for several reactions in water [309–313].
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Scheme 29. Pd NPs@hybrid hydrogels catalyzed C–C coupling reactions. Reproduced from [307],
Elsevier: 2020, and [308], RSC: 2018.

Oble and Rieger et al. synthesized a nanostructured well-defined core-shell nanogel
with the ability to stabilize Pd NPs in its core by using reversible addition-fragmentation
chain-transfer (RAFT)-mediated aqueous dispersion polymerization [314]. One of the most
effective catalytic systems is micellar catalytic systems, which have been developed and
expanded by Lipshutz and Handa groups. In their reaction systems, several reactions
proceed at room temperature by designing an appropriate surfactant which form a micellar
reaction field in water (Scheme 30) [315–328].

Scheme 30. One example of an efficient coupling reaction by micellar catalysts. Reproduced
from [316], ACS: 2021.

Yang and Jiang et al. reported a Cu NPs-catalyzed substrate-dependent chemodiver-
gent transformation of vinyl azides with a terminal alkyne. 2,5-Disubstituted pyrroles were
selectively obtained with aryl and aliphatic alkynes, whereas silylated alkynes afforded
2,3,4-trisubstituted pyrroles (Scheme 31) [329]. Substrate-dependent chemodivergent was
also observed in the reaction of substituted benzyl bromides with terminal alkynes cat-
alyzed by CuN3 NPs. The electron donating group containing terminal alkyne produced
5-alkynyl 1,4-disubstituted triazoles whereas for alkynes with terminal electron with-
drawing group facilitated the formation of 1,4-disubstituted triazoles (Scheme 32) [330].
The synthesis of 3-substituted isocoumarins from 2-chlorobenzoic acids and 1,3-diketones
have been achieved utilizing Cu NPs. When 2-bromo-N-phenylbenzamide was used as
a substrate, the reaction completed within 15 min (Scheme 33) [331]. Metal NPs can be
applicable for the multi steps reactions. For example, Abdolmohammadi et al. reported
the synthesis of [1]benzopyrano[b]pyridine-3-carbonitriles though Knoevenagel condensa-
tion, Michael addition, cyclization, tautomerization, and aromatization (Scheme 34) [332].
Trzeciak et al. have developed DNA-stabilized metal NPs and reported their catalytic
applications in several C–C bond forming reactions such as Suzuki-Miyaura, carbonylative
Sonogashira, and hydroformylation [333–337].
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Scheme 31. Switchable reactivity between vinyl azides and terminal alkynes. Reproduced from [329],
ACS: 2019.

Scheme 32. Alkyne-dependent synthesis of 1,2,3-triazole derivatives. Reproduced from [330], Nature
Research: 2020.

Scheme 33. One-pot synthesis of isocoumarin derivatives. Reproduced from [331], Elsevier: 2017.

Scheme 34. One-pot synthesis of [1]benzopyrano[b]pyridin-3-carbonitrile derivatives. Reproduced
from [332], Taylo&Francis: 2020.

Bhalla et al. found that Supramolecular polymer of perylene bisimide derivative
and ZnO NPs exhibited remarkable efficiency in direct dehydrogenative cross-coupling
between terminal alkynes and aldehydes for the synthesis of ynones under visible light
irradiation (Scheme 35) [338]. They also found that thiophene appended perylene bisimide
derivative undergoes oxidative polymerization in the presence of gold ion to generate
supramolecular polymeric ensemble, which showed photocatalytic activity in Mizoroki-
Heck reaction [339].
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Scheme 35. One-pot synthesis of [1]benzopyrano[b]pyridin-3-carbonitrile derivatives. Reproduced
from [338], RSC: 2018.

2.7. Others

As seen, the pioneering works of Reetz and Jeffery [2,340], organic molecules and
simple tetraalkylammonium salts are also able to be used as stabilizers for metal NPs [341].
The use of ionic liquids alone as NP stabilizers and reaction media for the Suzuki-Miyaura
coupling reaction was also shown to be efficient [342]. The introduction of nitrogen- and
phosphorus-based molecules is also of special interest, because they not only act as a
stabilizer of metal NPs, but also as ligands, which enhance the catalytic activity of metal
NPs. The metal NPs stabilized by small molecules were used not only as prepared ones,
but also as in situ generated ones [343–361].

TPPTS (triphenylphosphine-3,3′,3”-trisulfonic acid trisodium salt), which is one of the
most well-known water-soluble phosphine ligands acted as not only as a stabilizer, but
also as an activator for Pd NPs. Pd NPs/TPPTS catalyzed the Suzuki-Miyaura coupling
reactions of aryl bromides at room temperature to afford the coupling product within
1 h [362]. In situ-generated Pd NPs by gallic acid was an extremely simple, green, and
active catalyst, which catalyzed C–C coupling reactions at room temperature [363,364].
Kumar et al. developed a selective synthesis of Pd9Te4 and PdTe, which are applicable
for the catalyst in the Suzuki-Miyaura coupling reactions of aryl chloride [365]. By the
same research group, a series of bidentate organochalcogen ligands (N, E; E = S/Se) were
synthesized and they investigated the applicability for the support of Pd NPs [366,367].
Sewald et al. confirmed that solvent-stabilized Pd NPs were applicable for bio-orthogonal
side-chain derivatizations of amino acids [368]. In situ-generated Pd NP-catalyzed three-
component coupling of chloromethylarene with allyltrimethoxysilane and carbon dioxide
(i.e., a carboxylative Hiyama coupling reaction) successfully produced α,β-unsaturated
esters, whereas the coupling reaction with allytributylstannane (i.e., a carboxylative Stille
coupling reaction) gave β,γ-unsaturated esters (Scheme 36) [369,370].

Scheme 36. The difference between carboxylative Stille coupling reaction and carboxylative Hiyama
coupling reaction. Reproduced from [369], Wiley-VCH: 2017, and [370], ACS: 2013.

Sathish and Praveen et al. developed a supercritical processing method for the
preparation of Au NPs, and found that the resultant Au NPs showed a high catalytic
activity for Suzuki-Miyaura and Sonogashira coupling reactions [371]. The catalytic activity
of Co3O4 in the Mizoroki-Heck reaction was confirmed by the Bagherzadeh group [372].

Tanaka et al. achieved the β-alkynylation of amides via C(sp3)-H activation using
Pd NPs stabilized by bis[N,N’-(2-indalolyl)]-1,5-diazacyclooctane (Scheme 37) [373]. Wu
et al. have established a cascade alkynylation and selective hydrogenation catalyzed by
covalent binaphthyl-stabilized Pd NPs to provide a novel and highly efficient method-
ology for accessing Z and Z,Z-selective phosphinyl [3]dendralenes [374]. Binaphthyl-
stabilized Pd NPs were also utilized to synthesize diphenylallylidenemethylindolin-2-ones,
indanone derivative, 3-allylidene-2(3H)-oxindoles, and 3-allylidene-2(3H)-benzofuranones
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(Scheme 38) [375–378]. Obora et al. found that Ir NPs showed excellent catalytic activity in
β-(aryl)methylation of alcohol [379,380]. Feng, Wang, and Bao et al. developed an efficient
method for the selective synthesis of δ-lactone from the telomerization of 1,3-butadiene
with CO2. This reaction was catalyzed by ultrasmall Pd NPs generated in situ [381].
Telmisartan-stabilized Cu NPs were utilized to synthesize naphtho[2,3-g]phthalazine
derivatives as potential inhibitors of tyrosinase enzymes [382].

Scheme 37. C(sp3)-H activation catalyzed by Pd NPs. Reproduced from [373], Thieme: 2018.

Scheme 38. Synthesis of indanone derivative, 3-allylidene-2(3H)-oxindoles, and 3-allylidene-2(3H)-
benzofuranones catalyzed by binaphthyl-stabilized Pd NPs. Reproduced from [376], ACS: 2020,
and [377,378], Wiley-VCH: 2019,2017.

Ćirić-Marjanović et al. have reported the oxidative polymerization using H2O2/Fe3O4
NPs in an oxidant/catalyst system. Ammonium peroxydisulfate (APS) was used as an
initiator in these systems [383,384]. Ultrahigh molecular weight poly(methyl methacrylate)
was synthesized using 2-bromoisobutyric acid ethyl ester (EBiB) in the presence of Pd NPs.
The polymerization was initiated by the radicals produced from the reaction of EBiB with
Pd NPs [385].

Galian, Lloret-Fillol, and Pérez-Prieto et al. found that colloidal CsPdBr3 perovskite
NPs are suitable as photosensitizers for photoredox catalytic homo- and cross-coupling of
benzyl bromides at room temperature with TON up to 17500 (Scheme 39) [386].
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Scheme 39. Homo- and cross-coupling of benzyl bromides catalyzed by CsPbBr3 perovskite.
Reproduced from [386], RSC: 2020.

3. Conclusions and Perspective

C–C bond forming reactions have been widely utilized to synthesize many kinds
of functional molecules such as biomaterials and natural products, fine chemicals, and
medicines. On a small scale, these reactions are generally taken place with homogeneous
catalysts utilizing the eminent advantages of high activity and selectivity. However, the
homogeneous catalysts are not generally appropriate for industrialization because of their
problems encountered in higher cost, stability, separation, and reusability. On the other
hand, recyclable heterogeneous catalysts have some disadvantages, such as low activity and
selectivity, the requirement of severe reaction conditions, and the leaching of metal species.

Metal NPs are expected to improve the above limits in industrialization. This review
has outlined recent advances in metal NPs, which were used in the C–C bond forming
reactions. Many types of support, such as inorganic materials, magnetically recoverable
materials, porous materials, organic–inorganic composites, carbon materials, polymers
and surfactants have been utilized to develop the metal NP catalysts. In each support,
the excellent metal NPs which proceeded the C–C bond forming reactions, even at room
temperature, or showed the photocatalytic activity, have been developed. In addition, most
of them showed a high recyclability, and metal NP-catalyzed regio- and stereoselective
reactions have been also developed. However, most of the reactions outlined in this
review have been performed with catalysts at a mole percent loading (0.1 mol%–10 mol%).
For industrial-scale applications, the use of an extremely low loading of catalysts is of great
importance. For most catalysts (especially in the case of Pd NPs), the catalytic activity
has been confirmed in well-known coupling reactions such as Suzuki-Miyaura, Mizoroki-
Heck, Hiyama, Stille, Ullmann, and Sonogashira coupling reactions. In other words, new
reactions catalyzed by metal NPs are not well developed. Considerable efforts over the last
few decades have led to the development of metal NP catalysts which overcome various
drawbacks such as reactivity and reusability. I hope that metal NPs will make a significant
contribution to industry in the near future by further developments such as the metal
NPs with a reactivity and selectivity that surpasses those of homogeneous catalysts, the
new reaction peculiar to metal NPs, and the reaction systems with extremely low loadings
of catalysts.
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