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Figure S1. Effect of different reaction modes on the performance of the
plasma dry reforming reaction: (a) yield of CO, (b) yield of Hz. (CO2/CHs=1:
1, total feed flow rate 20 mL/min, 600 mg catalyst, room temperature and

ambient pressure).
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Figure S2. PXRD pattens of AE-Ni/y-Al:Os-used, TI-Ni/y-Al2Os-used (*NiO,

*v-ALOs;, € NiALOs).
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It can be seen from the Figure S2 that the diffraction peaks of
AE-Ni/y-ALOs-used and TI-Ni/y-Al:Os-used around 37 ° were significantly
enhanced, but no obvious carbon diffraction peak was found, which may be
attributed to the formation of NiAl2Os (20 = 31.406 °, 26 = 31.406 °, PDF #
10-0339). That also means that during the reaction, NiO interacted with the
support y-AlOs to form a NiAl:Os spinel. In addition, no obvious diffraction
peaks of Ni or NiO were observed, which proved that NiO was not sintered

or cluster after the reaction.
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Figure S3. TG results of AE-Ni/y-Al:Os-used and TI-Ni/y-AlLOs-used.

Figure S3 shows the TG results of AE-Ni/y-AlLOs-used and
TI-Ni/y-ALOs-used. Obviously, the loss of AE-Ni/y-ALOs-used is less than
TI-Ni/y-Al:Os-used. By combining the EDX results in Figure S4, it can be

obtained that carbon is formed on the catalyst after the reaction. As shown in
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Figure S3, the weight loss of AE-Ni/y-Al:Os-used is less than the weight loss
of TI-Ni/y-Al:Os-used, indicating that the ability to resist carbon deposition of

AE-Ni/y-ALOQO:s is higher than TI-Ni/y-ALO:s.
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Figure S4. EDX results of AE-NiO/y-ALOs-used and TI-NiO/y-AlLOs-used.
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Figure S5. (a) Nitrongen adsorption isotherms
average pore size distribution of y-Al:QOs, (c) Nitrongen adsorption isotherms
of AE-NiO/y-ALOs, (d) BJH desorption average pore size distribution of

AE-NiO/y-ALQO:s, (e) Nitrongen adsorption isotherms of TI-NiO/y-ALOs, (f)

Relative Pressure (P/P")
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BJH desorption average pore size distribution of TI-NiO/y-ALQO:s.
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Table S1. Input Power, Output Power (Discharge Power) and Efficiency.

Input Power(W) Output Power(W) Efficiency(n, %)
40 36.4 91.1
80 64.7 80.8
120 92.7 77.3
140 132.1 94.4
160 147.6 92.2

Table S1 lists the input power and discharge power calculated by the

Lissa-jous graphic method. The discharge efficiency is calculated by

Efficiency(n) = Jutput POWET o 100%.

Input Power
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