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Abstract: The goal of this research was to synthesize activated nitrogen-doped nanocarbons with high
specific surface area and adjustable pore size distribution using wood charcoal as a raw material. The
resulting carbon materials were tested for possible application as oxygen reduction reaction catalysts
in alkaline media. Activated carbons were obtained using a thermochemical activation method
with NaOH. Nitrogen was introduced into activated carbons using dicyandiamide solution. It was
demonstrated that the content of introduced nitrogen depends on oxygen content in the structure of
the activated carbon. The oxygen reduction reaction activity of the activated and nitrogen-doped
carbon material was comparable with a commercial 20% Pt/C catalyst. Electrocatalytic properties
of the synthesized N-doped wood-derived carbon catalysts may be associated with the highly
developed surface area, specific ratio of micro- and mesopores, as well as the high percentage of
pyridinic nitrogen.

Keywords: wood; activated carbons; porous structure; fuel cells; metal-free catalyst; oxygen
reduction reaction

1. Introduction

Nowadays, energy consumption is constantly increasing and the development of
effective and cheap electrochemical power sources is gaining more and more attention.
Fuel cells are considered one of the most important technologies, among the others, because
of their high efficiency [1], grid-independence and longer operating times, in comparison to
battery technologies [2]. Despite having already been used in 1960 by NASA for the Apollo
and Space Shuttle programs [3] and many research efforts to improve their performance, as
well as the efficiency and durability of fuel cells, they still have not succeeded in large-scale
commercialization [4,5]. Power specifications and price of fuel cells are limited, among
other factors, by the expense of platinum-based catalysts, which also suffer from catalyst
poisoning due to carbon monoxide [6,7]. Thus, the development of catalysts aimed to
replace platinum-group metals is the most important issue in fuel-cell design [1].

The application of biomass-derived, N-doped carbons as novel metal-free cathode
catalysts for oxygen reduction reactions (ORR) to transform chemical energy into elec-
tricity is the current and prospective approach to the use of carbon materials [8]. There
is a number of studies devoted to oxygen-reduction catalysts on porous carbonaceous
materials, which can be obtained by carbonizing renewable biomass, such as lignocellulose,
sugar, chitosan, mulberry leaves, animal biomass, natural fibers, haddock peel, dandelion
seeds, gelatin, chitin, etc. [9]. Besides their availability and renewability, plant biomass
precursors are mostly naturally porous and rich in heteroatoms. For example, authors [10]
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have synthesized Typha orientalis-based materials using hydrothermal carbonization, yield-
ing catalysts with relatively low specific area, and compared them to Pt/C commercial
electrodes. Despite a relatively high nitrogen content, the performance was notably less
effective than that of the commercial sample. In previous research [11], carbons were
derived from aronia and peach stones via steam vapor activation, once again showing
relatively low specific area, and used as catalysts for ORR. In this case, materials were
co-doped with nitrogen and iron ions and compared to Pt/C commercial electrodes. There
were also efforts to activate carbons from juncus plants using ZnCl2 [12] and to apply
them for ORR reactions. Chemical activation provided significantly higher specific areas
compared to the abovementioned methods, although the nitrogen content was low. Highly
porous material was synthesized from the oatmeal precursor using urea as a source of
nitrogen [13], showing promising activity towards ORR reaction. Another approach is
the synthesis of biomass-based fibers, from example, from catkins and soybean treatment
waste [14]; however, porosity and nitrogen content were relatively low in this case, which
affected electrochemical performance.

The performance of N-doped activated carbons is attributed to various factors, includ-
ing the number of active sites, such as pyridinic N, the favorable three-dimensional porous
structure, and the large specific surface area [9]. The most prospective way to obtain highly
porous carbon materials with well-developed nanoporous structure is alkali activation [15].
The final characteristics of activated carbons (AC) are predetermined by the nature of the
precursor, as well as activation parameters [16]. The process of alkali activation usually
includes four main stages: (1) impregnation or mixing of the precursor with an alkali (with
a ratio of up to 1–7 to 1 of alkali to precursor); (2) heating of the mixture to activation
temperature; (3) isothermal treatment for 1–3 h; (4) cooling of the mixture, washing of the
AC from mineral components (leftover alkali and alkali salts), and finally, drying [17]. A
porous material, AC, is formed at the end of the third stage [15].

In typical carbon materials, high micropore volume ensures high specific areas of
up to 2000 m2/g, while mesopores are responsible for the more effective mass transfer
properties. It is crucial to develop materials with these properties balanced with regards
to pore size distribution, providing both high specific areas and unhindered transport
of ions. Carbon microstructure comprises chaotically distributed crystallites of various
sizes. Each of these crystallites consists of polyaromatic carbon moieties, e.g., graphenes.
Unsaturated double bonds provide electric conductivity via mobile π-electrons, and the
carbon regions of greatest interest are defect sites and edges, which are the most chemically
active [18]. Electrochemical properties of carbon materials are dependent on the ratio of
basal planes and edge structures and, in general, are defined by the surface concentration of
structural defects [18]. According to this, the greatest catalytic activity should be exhibited
by the less-ordered activated carbons [19]. Additionally, AC has various surface oxygen
groups that present in the precursor and are formed in the process of carbon synthesis and
activation [16].

Due to the strong O=O bond, the ORR has slow kinetics [20], so it is important to
focus on accelerating the reaction rate. There are two possible ways to improve kinetics
using carbon materials doped either with transition metals and/or with heteroatoms
as catalysts [21,22]. The improved ORR activity of heteroatom-doped carbon materials
can be associated with free-flowing π-electrons that can be donated [23]. Among the
various heteroatoms, nitrogen has significant advantages for the modification of carbon
nanomaterials since nitrogen and carbon have similar atomic sizes. Theoretical studies
have demonstrated that nitrogen can be viewed as a n-type donor for transferring electrons
to carbon atoms [24,25]. As nitrogen has higher electronegativity, doping carbon with N
generates positive charge density on carbon atoms, and the O2 chemisorption changes.
This also effectively weakens the O=O bond and promotes the ORR [26].

In this study [27], it was demonstrated that nitrogen-doped carbon material on the
base of lignocellulose demonstrated good electrochemical activity in the oxygen reduction
reaction. However, the low uniformity of resulting materials is one of the drawbacks [28].
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To achieve the desired structure of N-doped carbon nanomaterials, optimization of activa-
tion and pyrolysis processes is required, as well as appropriate sources of nitrogen [29,30].

The goal of this research was to synthesize activated nitrogen-doped nanocarbons
at various temperatures, providing high specific surface area and adjustable pore size
distribution of the material, and using wood charcoal as a precursor. The obtained carbons
were tested as candidates for application as ORR cathode catalysts in alkaline media.

2. Results

To evaluate the effect of activation temperature on the porosity and properties of
activated carbon (AC), activated nitrogen-doped nanocarbons were synthesized using
wood charcoal as precursor. This raw material was chosen for the several reasons. Firstly,
it allows for the exclusion the carbonization stage; secondly, commercial charcoal has
stable properties and is produced in large quantities in the well-known technological cycles
available in many countries.

Activation was performed an activator (NaOH) to precursor rate of 3:1 for two hours.
Isothermal process temperature was varied in the range 650 to 800 ◦C. The resulting
activated carbons were then doped with nitrogen using the following procedure. Dicyandi-
amide (DCDA) was dissolved in dimethylformamide (DMF), mixed with activated carbon
and stirred in a rotary evaporator for two hours at 90 ◦C. Then, DMF was evaporated, and
the resulting solid mixture was thermally treated at 800 ◦C in a muffle oven for one hour in
an argon atmosphere.

The samples were tested using nitrogen sorption at 77 K, and the resulting isotherms
are shown in the Figure 1a. The shape of the isotherm for the sample synthesized at 650 ◦C
belongs to Type I, according to IUPAC classification [16], which points to the predominant
presence of very fine micropores with a width of only few molecular dimeters. At activation
temperatures of 700 and 750 ◦C, the volume of adsorbed gas increases, and isotherms are
accompanied by visible H4-type hysteresis [31], characteristic of capillary condensation
and development of mesoporosity [15]. At the activation temperature of 800 ◦C, the shape
of the isotherm changes even further and can be classified as Type II, while the shape of
hysteresis points to the significant input of mesopores in the adsorption process.

Figure 1b compares the pore size distributions of carbon materials (AC-N), depending
on the activation temperature, calculated from the nitrogen adsorption isotherms at 77 K
(Figure 1a) using density functional theory (DFT). The increase in the activation temper-
ature substantially influences micropore development, increasing their width. At lower
activation temperatures (650 ◦C), pores in the size range of 1 to 2 nm are mainly formed,
and their volume is relatively low. As the temperature increases, volume of micropores
with a width of 1–2 nm increases and reaches a maximum at the activation temperature of
750 ◦C. As the activation temperature increases to 800 ◦C, micropore input into the total
specific volume of the samples under study significantly decreases, and the volume of
mesopores with a pore width of 2–5 nm increases.

The porosity data calculated from the nitrogen adsorption isotherms at 77 K (Figure 1a)
are presented in Table 1 (specific surface area calculated according Brunauer-Emmet-Teller
(BET) theory—SBET, specific surface area calculated according to density functional theory
(DFT, calculated according NLDFT− N2—carbon equilibrium transition kernel at 77 K
based on a slit-pore model)—SDFT, micropores volume calculated according Dubinin-
Radushkevich method—Vmicro, and mesopores volume—Vmeso). Table 1 illustrates that
all samples of activated carbons have high specific surface areas (SBET from 1924 to
2728 m2 g−1 and 1383 to 1764 cm2 g−1) according DFT theory (SDFT), which points to
the high efficiency of the chosen activation process. With the increase in activation temper-
ature, both total volume (Vmicro + Vmeso) and specific surface area increase, reaching the
maximum of SBET 2728 m2 g−1 at 750 ◦C. At the activation temperature of 800 ◦C, pore size
distribution is altered (Figure 1b). Due to the collapse of walls, micropores merge and form
a bimodal mesoporous structure with sizes in the range of 2.5–4.5 nm, thus reducing the
specific surface area of the samples.
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Figure 1. N-doped, wood-based activated carbon nitrogen sorption isotherms at 77 K (a) and pore
size distributions (b), depending on activation temperature.

Table 1. Porosity, yield and elemental composition of nitrogen-doped, wood-based activated carbons.

Samples
Tactivation SBET, SDFT Vmicro Vmeso Yield * N C H O

◦C m2 g−1 m2 g−1 cm3 g−1 cm3 g−1 % % % % %

AC-650-N 650 2021 1582 0.94 0.26 31.2 7.52 89.53 0.68 2.27

AC-700-N 700 2435 1675 0.65 0.62 24.9 5.55 90.97 0.89 2.59

AC-750-N 750 2728 1764 0.86 0.63 20.2 3.42 93.08 0.72 2.78

AC-800-N 800 1924 1383 0.61 1.14 19.2 2.48 94.98 2.06 1.48

* calculated to o.d. charcoal.

The yields of the activated carbons from the precursor, namely alder wood charcoal,
in the process of activation and doping are shown in the Table 1, and their dependency on
the temperature is demonstrated. The highest AC-N yield was achieved at the activation
temperature of 650 ◦C (based on o.d. charcoal—31.2%), and the lowest yield was achieved
at the activation temperature of 800 ◦C (calculated on o.d. charcoal—19.2%).

The chemical composition of the samples under study was determined using elemen-
tary analysis and is shown in Table 1. There are works that relate the nitrogen content after
doping to the content of oxygen-containing groups on the surface of the carbonaceous pre-
cursor, e.g., degree of oxidation [32,33]. The authors of this study have published extensive
research showing a decrease in oxygen content in activated carbons with an increase in
activation temperature [34]. The highest N content was obtained at the activation tempera-
ture of 650 ◦C −7.52%, while when the activation temperature was increased up to 800 ◦C,
N content was only 2.48%, which can be explained by the abovementioned phenomena.

In a number of studies [35–39], it was found that electrochemical activity depends not
only on the content but also on the chemical form of nitrogen bound to the AC structure.
The surface chemical composition of AC-N was studied using X-ray photoelectron spec-
troscopy (XPS). Peaks corresponding to C1s, O1s and N1s were recorded (Figure 2a). The
high-resolution spectra of N1s are shown in Figure 2b.
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of samples under study and the relative content of various nitrogen-related peaks.

The C1 peak consists mainly of sp2 hybridized carbon [40]. The intensity of the
N1s peak is very low due to the low nitrogen content on the surface. Nevertheless,
the peak can be deconvoluted (Figure 2b). Four peaks were determined for nitrogen:
pyridinic-N, pyrrolic-N, graphitic-N and pyridine-N-oxide. Most of the nitrogen was in
the pyridinic form, and the second most important form of nitrogen is graphite-N. It has
been reported [37] that the pyridinic-N form lowers the potential for oxygen reduction
reactions, and graphitic-N acts as their active site, which, in turn, helps to achieve a higher
diffusion-limited current.

Raman spectroscopy and XRD were used to determine the structural characteristics
of the carbon samples under study and to clarify how the changes in structure affect the
oxygen reduction reaction. Figure 3a illustrates the changes in the structure of AC-N with
the alteration of activation temperature at a constant amount of activator to precursor
ratio. Figure 3a shows the Raman scattering spectra for wood-based AC-N samples as
a function of activation temperature. Two peaks are observed in the Raman scattering
spectra: 1350 cm−1 (band D) and 1580 cm−1 (band G) (see Figure 3a).

Band D indicates a completely symmetric type of Alg valence, which is not possible in
the case of ideal graphite crystals and appears only in the presence of defects [41]. These
bands indicate an amorphous carbon structure.

The G band indicates the symmetry of E2g and is related to the valence fluctuations of
carbon atoms in the aromatic ring and chains in the sp2 hybridization plane [42].

As the activation temperature increases, the intensity of the D and G peaks increases,
and in the case of the AC-800N sample spectrum, shows a maximum G’ (or 2D) in the
~2500 cm−1 region, which is characteristic of graphene and indicates the presence of
two-dimensional carbon structures [41].
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Figure 3. Raman spectra of wood-based, nitrogen-doped activated carbons synthesized at vari-
ous temperatures (a); X-ray diffraction spectra of wood-based, nitrogen-doped activated carbons
synthesized at various temperatures (b).

X-ray diffraction (XRD), which is generally considered to be the “ideal” method for
structural characterization of materials, not only distinguishes the structures of different
carbon allotropes and polytypes but also allows for the determination of the extent to
which a given carbon form differs from the ideal graphite structure [31]. Anything that
changes interatomic distances—activation temperature, reheating, doping or defecting by
introducing nitrogen into the structure—will be reflected in the change in peak positions.

For all of the samples under study, the diffraction reflexes (Figure 3b) detected by XRD
are centered around 2θ = 43◦ and related to the diffraction in the 004 [43] or 100/101 [44]
planes. However, differences in their relative intensities and widths are observed, depend-
ing on the sample activation temperatures. Increasing the activation temperature increases
the intensity of the peak, reaching a maximum when the activation temperature is 800 ◦C
(AC-800-N).

As the activation temperature increases, a peak centered around 2θ = 26◦ appears
in the X-ray diffraction patterns of samples AC-750-N and AC-800-N, which is related to
diffraction C (002) (graphite-graphite) [44,45], which corresponds to amorphous carbon
and reveals a small amount of graphitized carbon embedded in the amorphous matrix.
This type of carbon is formed by a partial conversion of amorphous carbon to a more
ordered carbon due to the influence of DCDA decomposition products and NaOH on the
carbon matrix in the course of thermal treatment. It should be noted that AC-800-N is not
just a crystalline or amorphous form of carbon but a heterogeneous mixture of domains
ranging from a single graphite layer (graphene) to multilayer graphite crystallites [46].

In order to study the electrochemical activity of the synthesized doped carbon samples,
measurements were performed using a standard three-electrode system and the rotating
disk electrode (RDE) method in 0.1 M KOH solution at room temperature (23 ◦C) at
different rotation rates. Figure 4 compares the oxygen reduction voltammetry curves of
AC-N based on wood synthesized at different activation temperatures at the same ratio of
activator to precursor (3:1) with electrode rotation speeds of 360, 610, 960, 1900, 3100 and
4600 rpm. The linear sweep polarization curves demonstrate a clear dependence on the
RDE rotation speed. Current density increases due to shorter diffusion distance, and a flat
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diffusion-limited plateau can be observed at lower rotation speeds, especially in the case of
the sample activated at 800 ◦C (Figure 4d).
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Figure 4. RDE polarization curves of GC electrodes modified with wood-based, nitrogen-doped
activated carbons synthesized at (a) 650 ◦C, (b) 700 ◦C, (c) 750 ◦C and (d) 800 ◦C temperatures in O2

saturated 0.1 M KOH (ν = 10 mV s−1) measured at various rotation speeds.

As the activation temperature increases from 650 to 800 ◦C, the onset (650 ◦C −237 mV,
700 ◦C −196 mV, 750 ◦C −146 mV, 800 ◦C −91 mV) and half-wave potentials become
more positive, but at the same time, the diffusion-limited current density falls to slightly
lower values (–1.4 mA cm−2—650 ◦C; −2.3 mA cm−2—700 ◦C; −3.1 mA cm−2—750 ◦C;
−5.5 mA cm−2—800 ◦C at 1900 rpm). When the activation temperature is 800 ◦C, the
curves almost coincide with the selected commercial 20% Pt/C catalyst samples (Figure 5a).
For the samples activated at lower temperatures, the current is under the mixed, kinetic-
diffusional limitations, even in the case of overpotentials. However, the activity steadily
increases with the increase in the activation temperature. For the sample AC-N-800, the
reaction is practically only diffusion-limited, which is indicated by the Koutecky-Levich
plot (Figure 6a) since the intercept is close to zero.
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The number of transferred electrons per O2 molecule (n) was calculated at various
potentials using the Koutecky-Levich (K-L) equation, shown below, from the ORR data [47]:

1
j
=

1
jk
+

1
jd

= − 1
nFkCb

O2

− 1

0.62nFD2/3
O2

ν−1/6Cb
O2

ω1/2
(1)

where, j is the ORR current density measured experimentally, jk and jd are the kinetic and
diffusion limited current densities, respectively, F is the Faraday constant (96,485 C mol−1),
k is the heterogeneous rate constant for O2 reduction, ω is the electrode rotation rate
(rad s−1 [48]), DO2 is the diffusion coefficient of oxygen (1.9 × 10−5 cm2 s−1 [49]), CO2b is
the oxygen concentration (1.2 × 10−6 mol cm−3 [49]) in 0.1 M KOH, and ν is the kinematic
viscosity of the solution (0.01 cm2 s−1).

The changes in the number of transferred electrons, n (per O2 molecule), depending
on the mesopore volume ratio to total adsorbed volume, can be seen in Figure 5b. As the
activation temperature increases, the total pore volume increases linearly, and the mesopore
volume and the number of transferred electrons increase as well, while the micropore
volume decreases. More efficient electron transfer occurs when the density of mesopores
(size 2.5–5 nm) of the material is greater than the volume of micropores. This outstanding
result for AC-800-N can be attributed to its more accessible porosity, which is formed by
two interconnected systems of mesopores (see Figure 1b), centered around 2.7 and 3.5 nm,
that enhance the mass-transfer processes during the oxygen reduction reaction and limit
the influence of mass-transfer limitations. The authors of [45] have also observed similar
behavior, though in the case of N-doped carbon microspheres. Figure 6a illustrates the
Koutecky-Levich plots derived from the experimental data shown in Figure 4d for the
material with the best properties towards ORR—nitrogen-doped carbon activated at 800 ◦C,
AC-N-800. Figure 6b shows the potential dependence of n, which, in this is case, is four,
indicating that the process proceeds via a four-electron pathway.
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3. Materials and Methods

Activated carbons based on alder wood charcoal (SIA “Fille”, Latvia) were obtained
using chemical activation method with NaOH (activator to precursor ratio 3:1) at tem-
peratures of 650, 700, 750 and 800 ◦C in an argon atmosphere. After activation, samples
were demineralized with 10% HCl and deionized water. Nitrogen was introduced into the
activated samples using dicyandiamide (DCDA) solution in dimethylformamide (DMF)
with mass ratio of carbon material/DCDA 1:20. Doping was performed at 800 ◦C for 1 h in
an argon atmosphere.

Porous characteristics were determined from nitrogen adsorption isotherms at 77 K
using Nova 4200e instrument (Quantachrome, Boynton Beach, FL, USA).

The elementary composition was evaluated using the Vario Macro CHNSO device
(Elementar, Langenselbold, Germany).

X-ray diffraction (XRD) data were collected on a PANalytical X’Pert Pro diffractometer
(Malvern Panalytical Ltd., Malvern, UK). Cu Kα1 radiation was used, and time per step
was 50 s, step size 0.050◦ 2θ, irradiated length 7 mm. X’Pert Highscore software and PDF-2
database were used for phase identification.

Raman spectra were recorded using an inVia Raman (Renishaw, Wotton-under-Edge,
UK) spectrometer equipped with a thermoelectrically cooled (−70 ◦C) CCD camera and
a microscope. The Raman spectra were excited with 532 nm radiation from a diode-
pumped solid-state (DPSS) laser (Renishaw, Wotton-under-Edge, UK). The 20x/0.40 NA
objective lens and 1800 lines/mm grating were used to record the Raman spectra. The
accumulation time was 40 s. To avoid damage of the sample, the laser power at the sample
was restricted to 0.6 mW. The Raman frequencies were calibrated using the polystyrene
standard. Parameters of the bands were determined by fitting the experimental spectra
with Gaussian-Lorentzian shape components using GRAMS/A1 8.0 software.(Version
8.0, Thermo Scientific, Waltham, MA, USA, 2015) Electrochemical measurements were
performed with a standard three-electrode system using the rotating disk electrode (RDE)
method. Saturated calomel electrode (SCE) was used as a reference electrode, and graphite
rod was used as a counter electrode. Glassy carbon disk (Sigma-Aldrich, St. Louis, MO,
USA) with a geometric area of 0.2 cm2 was used as a working electrode. The catalyst
ink with a concentration of 4 mg mL−1 in isopropanol was prepared by using 0.25% of
AS-04 OH− ionomer (Tokuyama Corp., Tokyo, Japan), followed by sonication for 1 h. The
electrodes were evenly covered with the catalyst material by drop coating with 20 µL of
previously prepared catalyst ink. After coating, the electrodes were dried in the oven
at 60 ◦C. Pine AFMSRCE (Pine, Durham, NC, USA) rotator and speed controlling unit
were used for carrying out the RDE measurements. The software used for controlling the
experiments was Nova 2.1.2 (Metrohm Autolab P.V., Utrecht, The Netherlands), and the
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potential was applied with a potentiostat/galvanostat Autolab PGSTAT 128N (Metrohm
Autolab P.V., Utrecht, The Netherlands). Measurements were performed in 0.1 M KOH
solution at room temperature (23 ◦C) at rotation rates of 360, 610, 960, 1900, 3100 and
4600 rpm. Further information on electrode preparation and electrochemical testing can be
found elsewhere [50,51].

4. Conclusions

Nitrogen-doped activated carbons were synthesized using the chemical activation
method with NaOH and studied as catalysts for oxygen reduction reactions (ORR) in
fuel cells. The dependence of porosity of carbons on the activation temperature was
studied. It was found that with the increase in activation temperature from 650 to 800 ◦C,
micropores walls collapse, leading to the higher input of mesopores into total specific
volume. Alterations to the structure of activated carbons were studied using Raman
spectroscopy and XRD methods.

The ORR activity of the carbon material in the case of a nitrogen-doped sample
activated at 800 ◦C wood char was comparable with commercial 20% Pt/C catalysts.
Electrocatalytic activity of the synthesized nitrogen-doped, wood-based carbon catalysts
may be associated with the highly developed surface area, favorable micro and mesoporous
ratio and balance, high percentage of pyridinic nitrogen, and lack of stacking defects
of graphene layers, as well as partial transformation into a more ordered structure, as
demonstrated by Raman spectroscopy.

The results of this study demonstrate that the oxygen reduction reaction is influenced
by the structure of the material and the pore size distribution. Nitrogen-doped carbon
activated at 800 ◦C is a promising material for application in fuel cells as cathode for the
oxygen reduction reaction.
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