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Abstract: The pervasive use of toxic nitroaromatics in industrial processes and their prevalence in
industrial effluent has motivated the development of remediation strategies, among which is their
catalytic reduction to the less toxic and synthetically useful aniline derivatives. While this area of
research has a rich history with innumerable examples of active catalysts, the majority of systems rely
on expensive precious metals and are submicron- or even a few-nanometer-sized colloidal particles.
Such systems provide invaluable academic insight but are unsuitable for practical application. Herein,
we report the fabrication of catalysts based on ultralow loading of the semiprecious metal ruthenium
on 2–4 mm diameter spherical alumina monoliths. Ruthenium loading is achieved by atomic layer
deposition (ALD) and catalytic activity is benchmarked using the ubiquitous para-nitrophenol,
NaBH4 aqueous reduction protocol. Recyclability testing points to a very robust catalyst system with
intrinsic ease of handling.

Keywords: nitrophenol reduction; alumina support; ruthenium catalysis; aqueous pollutant degradation

1. Introduction

Nitroaromatics represent a family of broadly used compounds in industrial processes;
for example, in pesticide, fungicide, textile and pharmaceutical manufacturing. Conse-
quently, they are a common pollutant in aqueous industrial effluent, notably displaying
acute toxicity and potential carcinogenicity. This has motivated the study of remediation
strategies, namely the mild-conditions -NO2 group reduction to yield their less toxic and
synthetically useful aniline (-NH2) derivatives. Among this general reaction family, the
catalytic reduction of para- or 4-nitrophenol (4NP) specifically has emerged as the bench-
mark test for catalysts—not only for relevant environmental remediation, but also as a
universal rapid screening test for heterogeneous catalyst reduction activity [1–3]. Most
typically, catalytic reduction of 4NP is conducted in deionized water (DIW) with a large
excess of a hydrogen source, such as sodium borohydride (NaBH4), which provides surface
-H species; H2 generated by competing NaBH4 hydrolysis may also play a role under
certain conditions. The reaction is readily monitored through Ultraviolet–Visible (UV–Vis)
spectrophotometry by tracking the decrease in absorbance at λmax = 400 nm, associated
with 4-nitrophenolate (4NP*), the anionic derivative of 4NP which forms in the presence
of NaBH4. Reaction kinetics (kapp = apparent rate) are derived from the slope of ln(A/A0)
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which correlate to 4NP* concentrations (C/C0) (Equation (1)). The reaction is typically de-
scribed in terms of the Langmuir–Hinshelwood model, and the large excess of NaBH4 not
only provides an ample H-source, but also creates a pseudo-first-order process, allowing
facile interpretation of kinetics [4–6].

− kappt = ln
(

A
Ao

)
= ln

(
C
Co

)
(1)

Historically, catalytic reduction of 4NP has been promoted primarily with catalytic no-
ble metal nanoparticles [7–12], to a lesser extent with non-noble metal nanoparticles [13–17],
and more recently nonmetal species [18–21]. A significant majority of these catalyst systems
are submicron- or even a few-nanometer-sized colloidal particles. Although very catalyti-
cally efficient for lab-scale testing and generation of fundamental knowledge, the use of
nanocatalysts in the environment can be challenging to manage, and their fate and transport
are complex and may pose hazards [22–28]. We endeavored to develop a robust and more
applicable nitroaromatic reduction catalyst, which circumvents the need for submicron
or even ultrasmall colloidal nanoparticles. Herein, we report the fabrication of catalysts
based on ultralow loading of semiprecious metal ruthenium on 2–4 mm diameter spherical
alumina monoliths. Controllable, ultralow ruthenium loading is achieved by atomic layer
deposition (ALD). ALD is a self-limiting technique which provides a highly precise and
reproducible coating thickness. Because of the high level of control afforded, it is not
surprising that ALD is emerging as a powerful tool for catalyst synthesis. ALD-synthesized
catalysts have been previously studied for hydrolysis reactions [29–31]; notably, Jiang et al.
reported the use of an ALD-Ni coated catalyst for nitrophenol reduction [32]. Ruthenium
was chosen due to its well-established catalytic activity in reduction reactions [33–38],
lower cost compared to Pd and Au catalysts which dominate nitroaromatic reductions, and
the availability of a well-defined ALD process for Ru films, as developed by one of our
groups [39]. The ALD-Ru on alumina monolith catalysts is highly active, exhibiting reac-
tion rates competitive with precious metal catalysts, and is recyclable for up to five trials as
tested with no significant loss in activity from trials 2 to 5. Notably, the millimeter-sized
materials are robust, and facile to handle and separate from reaction solutions.

2. Results and Discussion

Synthesis and Characterization: Prospective catalysts were prepared by coating 2–4 mm
diameter spherical Al2O3 monoliths (Figure 1A) with an ultrathin layer of Ru by ALD.
Growth was achieved utilizing an A-B cycle of alternating η4-2,3-dimethylbutadiene ruthe-
nium tricarbonyl (Ru(DMBD)(CO)3) as a zero-valent ruthenium precursor and water as
a co-reactant (Figure 1B). Previous work from one of our groups has shown this specific
process to produce metallic Ru [39]. Using A-B cycle sets of 50 and 75, two different
materials were prepared: denoted as Ru50@Al2O3 and Ru75@Al2O3, respectively. In this
instance, the as-deposited Ru materials are a combination of metallic Ru0 and Ru4+ oxides.
Further details are provided in the Materials and Methods.

To delineate the effect of Ru deposition on pore size, N2 physisorption was performed
on an uncoated “blank” Al2O3 sphere, Ru50@Al2O3 and Ru75@Al2O3 (Figure 1C). The blank
displayed a bimodal pore size distribution with the bulk of pore radii between 13.25 and
20.25 Å with pore volumes of 0.009–0.071 cc/g, respectively. After 50 (Ru50@Al2O3) and
75 cycles (Ru75@Al2O3), the pore volume centered around pore radii of 20.25 Å decreased
to 0.031 and 0.029 cc/g, respectively, and pore volumes centered around pore radii of
13.25 Å increased to 0.013 and 0.014 cc/g, respectively. This result is attributed to the Ru
deposition and conformal coverage of the porous network ultimately reducing the total
volume and increasing the number of smaller pores. The increase in pore radius after
75 cycles compared to the blank may be due to changes in the internal structure during
ALD. Overall, the total pore volume decreased as the Ru deposition constricted the pores
after ALD; this is consistent with prior literature [39,40].
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Figure 1. Blank Al2O3 spheres (A); schematic representation for atomic layer deposition (ALD) growth of Ru film (B);
pore volume (C); Scanning Electron Microscopy (SEM) micrographs (D,E); Energy Dispersive X-ray analysis (EDX) of
Ru75@Al2O3 (F).

The surface morphology of Ru75@Al2O3 was imaged by Scanning Electron Microscopy
(SEM) (Figure 1D,E). The material exhibits a complex microstructure with numerous
fissures and pores commensurate with the findings of the N2 sorption analysis. Energy
Dispersive X-ray analysis (EDX) of the surface was used qualitatively. Nonetheless, EDX
confirmed the deposition of Ru (Figure 1F) as well as oxygen, aluminum, and argon
(Ar). The presence of Ar can be attributed to the Ar gas used in the purge steps of the
ALD super cycles. Mass percent of Ru for both materials was determined via inductively
coupled plasma mass spectrometry (ICP-MS)—1.70 × 10−3 ± 3.63 × 10−4% by mass for
Ru50@Al2O3 and 1.98 × 10−3 ± 1.04 × 10−4% by mass for Ru75@Al2O3. The increase
in Ru loading is commensurate with the 50% increase in number of ALD cycles. Our
initial attempt to characterize the nature of Ru by XPS on Ru50@Al2O3 did not result in
a significant Ru signal. We can attribute this to the highly porous structure of the Al2O3
sphere and the presence of high C on this surface. It is to be noted that the Ru-3d signal
(280.1 with a spin-orbit splitting of 4.17 eV) strongly overlapped with carbon-1s (284.5 eV),
making the analysis necessarily difficult in the first place. These results suggest that a
simpler analogue to monitor the chemical state of Ru on Al2O3 needs to be formulated.
Therefore, we have taken a planar substrate consisting of a Si wafer with 10 nm of Al2O3
deposited using ALD followed by 5 nm of ALD Ru. This system reasonably represents
the chemical nature of the Ru that is present on the Al2O3 spheres without the surface
topological complexity and porosity that the Al2O3 spheres present. Therein, the Ru is
a mixture of metal (Ru0) and Ru4+ at 43.22 and 56.78 atomic %, respectively (Figure S1,
Table S1).

Catalytic Testing: The catalytic activity towards the reduction of 4NP of both materials
was tested in the presence of excess NaBH4. To validate both the ease of handling and
recyclability of the catalysts, five consecutive recycle trials were performed. This was
repeated a second time and the results were averaged. Reactions were conducted in
a 1 cm quartz cell and monitored directly by UV–Vis spectroscopy for the decrease in
absorbance for 4NP* at λmax = 400; 4NP is deprotonated to form 4-nitrophenolate (4NP*)
in the presence of excess NaBH4. This decrease in absorbance was accompanied by an
increase at λmax = 300 nm, pertaining to the formation of 4-aminophenolate (4AMP*)
(Scheme 1). As noted in the introduction (vide supra), the reaction is typically interpreted
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according to the Langmuir–Hinshelwood model, and due to the large excess of H-source
(NaBH4), the kinetics are treated as a pseudo-first-order process. Thus it was surprising
that the initial catalytic trial for both Ru50@Al2O3 and Ru75@Al2O3 could be fitted with
superior confidence to a zero-order process (Figure 2A,B). However, subsequent recycle
trials (2–5) for both materials yielded kinetics which fit a first-order process. We attributed
this to leaching of very reactive Ru-based species upon introduction to a high pH (~10.4)
NaBH4-rich environment. This likely creates an environment with multiple active catalysts,
prohibiting the clear determination of a reaction order. Subsequent trials show remarkably
steady performances, commensurate with a robust, highly recyclable catalyst.

Scheme 1. Reduction of 4-nitrophenol (4NP) in water with large excess NaBH4.

1 
 

 
 
 

 
 

 

Figure 2. One 5-trial sequence of pseudo-first-order kinetics plotted for the reduction of 4NP using Ru50@Al2O3 (A) and
Ru75@Al2O3 (B). Kinetic rates normalized to the mass of Ru over five trials for the Ru50@Al2O3 (C) and Ru75@Al2O3 (D);
dashed line shown to facilitate rate comparison. (E) Photograph highlighting ease of handling.

Interestingly, while the mass-normalized (to Ru) observed rates (K) for Ru50@Al2O3
and Ru75@Al2O3 differed dramatically in the initial run (Ru50@Al2O3 K = 16,500 ±
2042 min−1gRu

−1; Ru75@Al2O3 K = 41,857 ± 4235 min−1gRu
−1), they rapidly normal-

ize to ca. K = 10,000 min−1gRu
−1 for both catalysts in recycle trials 2–5 (Figure 2A–D).

We postulate this similarity in trials 2–5 regardless of initial Ru loading is likely due to the
presence of loosely bound surface species which arise after an initial coating threshold is
reached after X number of ALD cycles (X < 50). Thus, Ru deposited beyond this threshold
is amenable to leaching, likely as highly reactive nanoparticles. Accordingly, the higher
loading Ru75@Al2O3 yielded a higher observed rate in the first run due to more catalytically
active material being released into the solution.

To corroborate the proposed leaching, the reaction solution post reduction of 4NP us-
ing Ru50@Al2O3 (trial 1) was measured by ICP-MS. The initial solution leached 1.83 × 10−3

± 2.27 × 10−4 µg Ru/mg catalyst. Repeating the ICP-MS measurement under similar
conditions upon completion of trial 2 indicated that 3.80 × 10−4 ± 1.77 × 10−5 µg Ru/mg
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leached—a nearly five-fold decrease. The mass percent of Ru on Ru50@Al2O3 after all five
consecutive trials was determined to be 1.63 × 10−3 ± 1.32 × 10−4% Ru by mass compared
to 1.70 × 10−3 ± 3.63 × 10−4% for Ru50@Al2O3 prior to catalysis. Thus, for Ru50@Al2O3,
the Ru coating is remarkably stable and overall the catalyst is robust, particularly from
trials 2–5. However, the small amount of Ru that does leach during the initial trial clearly
forms highly reactive nanoparticles which accounts for the intractable observed kinetics;
once these particles are removed from the system, the catalyst behavior is remarkably
consistent.

Notably, the mass-normalized observed rate of ca. K = 10,000 min−1gRu
−1 attained

in trials 2–5 for both catalysts is very competitive. To allow comparison to other, highly
reactive systems from the literature, we further normalized to reaction volume, yielding
an “activity parameter” κ (s−1g−1L) [41–43]. Therein, our catalysts had a κ value of ca.
0.5 s−1g−1L. This is competitive with a number of recent literature reports for highly
active precious metal nanoparticles: Au@Fe3O4 (0.061 s−1g−1L) [44]; Pd@Fe3O4/dextran
(3.65 s−1g−1L) [42]; Pd@Fe3O4/SiO2 (0.402 s−1g−1L) [45]; Pd@Camorphous (1.67 s−1g−1L) [43].
To confirm that no reactivity could be attributed to the Al2O3 support, a blank trial was
conducted with an uncoated sphere and no conversion was observed (Figure S4). To further
validate the broader substrate scope and potential for our catalyst system, as a proof of
concept, we tested the single run activity of Ru75@Al2O3 towards the reduction of several
amino-nitrophenols and azo dyes (methyl red and methyl orange). The catalyst performed
well, and similar trends with respect to superior fitting to zero-order vs. first-order kinetics
were observed. Further details are provided in the Supporting Information (Figures S5–S8).

For the initial run with both catalysts, there was a noteworthy induction period
(10–25 min) before the reaction proceeds. This induction period is common among pre-
viously reported 4NP catalytic reductions and has been attributed to a number of effects
including catalyst surface restructuring [11,46–50], or more recently due to the effects of
dissolved oxygen [51–53] and the influence of surface ligands [52]. In our case, dissolved O2
was clearly present both in the solution and likely within the monolith pore structure and
was likely a significant contributor to the initial induction period, thus negating significant
contribution from surface ligands (note, no efforts were made to exclude dissolved O2).
The decomposition/leaching of the ALD-adlayer, which includes both ligands and loosely
bound Ru species, also cannot be ignored as a contributor to the induction period as ICP-
MS points to an initial Ru mass loss after trial 1 which quickly stabilizes over subsequent
trials. This initial leaching is also commensurate with the very high initial kapp observed
due to what we postulate to be release of very small and highly active Ru-based nanopar-
ticles. This loss of material invariably causes some surface restructuring. Furthermore,
the subsequent stability and lack of induction period in trials 2–5 are attributed to both
the removal of this adlayer and weakly bound surface Ru, as well as the effect of a BH4

−

“treatment” in trial 1, which served to remove adsorbed O2 from the monolith; dissolved
O2 in subsequent trials was not excluded from the reaction solution so its effects were not
excluded, but are comparatively minimal with respect to the induction period. Overall,
beyond trial 1, the catalysts remain very reactive and consistent. When compounded with
the ease of handling/manipulation as pictured in Figure 2E, the ALD-Ru@Al2O3 monolith
platform is a facile, robust, and effective catalyst system.

As reactions were conducted in a UV–Vis cuvette with no external agitation, the
obtained rates were mass-transport limited; concomitant evolution of H2 from NaBH4
hydrolysis does, however, facilitate enhanced mixing compared to a completely non-
agitated solution. To validate mass-transport effects, we conducted a separate set of 4NP
reduction experiments with a UV–Vis dip-probe in a stirred solution. While reaction
volume and reagent concentrations were scaled six-fold, a single sphere of Ru50@Al2O3
was used to minimize H2 evolution which causes gas bubble build-up on the probe, thus
hampering accurate measurement. To negate the effects of Ru-leaching (vide supra), the
sphere was pretreated with NaBH4. Subsequent measurements fit well to pseudo-first-
order kinetics (Figure S9). Reactions conducted at 0, 250, 500, and 1000 rpm showed a clear
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increase in observed rate as a function of stirring rate (Figure 3). At 1000 rpm, Ru50@Al2O3
exhibited a κ value of ca. 7.2 s−1g−1L. Further details are provided in the Supporting
Information.
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Figure 3. Ru mass-normalized pseudo-first-order kinetics plotted for the reduction of 4NP using
NaBH4-pretreated Ru50@Al2O3 at different stir rates (rpm = revolutions per minute).

3. Materials and Methods

ALD: Atomic layer deposition of ruthenium was performed using a home-built system
coupled with a downstream quadrupole mass spectrometer (QMS), as described in our
previous work [39,54–56]. Briefly, we used a load-locked, hot-wall, viscous flow reactor, 24
in. long with a 2.5 in. internal diameter, with an internal base pressure of 6.1 × 10−3 Torr as
monitored by a Piezo/Pirani Dual Transducer (Model No TRN-910) from A&N Corporation.
Purge gas control was obtained using a mass flow controller (Parker, 601 Series) and all the
valves were pneumatically controlled ALD Valves (Swagelok). Ru(DMBD)(CO)3 (EMD
Performance Materials) and DIW were used for the metal film deposition onto alumina
supports (from Sorbtech). The Ru(DMBD)(CO)3 and DIW reactants were kept at 25 ± 1 ◦C.
The ALD furnace temperature was held at 185 ◦C and the inlet gas lines were held at 80 ◦C.
Ru(DMBD)(CO)3 was stored in a stainless steel bubbler and was carried into the reaction
chamber by 99.999% pure Ar gas at rate of 25 standard cubic centimeters per minute (sccm)
for 5 s. Each Ru(DMBD)(CO)3 pulse was followed by a purge step of 75 sccm Ar for 25 s. A
subsequent vacuum step returned the chamber pressure to baseline before the following
reactant DIW was directly introduced from a single outlet ampoule for 2s. The purge step
followed with 75 sccm Ar for 25 s then a vacuum step to finish the super cycle. The reaction
mechanism is described by Gao et al. [39], where a growth rate on planar silicon susbtrate
of 1 Å/cycle is reported.

For deposition on Al2O3 spheres, a batch of 20× spheres were loaded inside a “steel
barrel” mini-reactor. The mini-reactor had an inlet and exhaust port to allow the flow of
gases inside the holder, exposing the Al2O3 spheres to the ALD chemistry. Details of this
procedure will be provided in a subsequent publication. The mini-reactor was then inserted
inside the ALD furnace. The reactor was rotated on its cylindrical axis by magnetically
coupling it to an external servo motor (from Transfer Engineering and Manufacturing Inc.®,
Fremont, CA, USA). The rotations per minute (rpm) were fixed at 8 rpm. Each cycle was
repeated 50 and 75 times to create varying thicknesses of Ru deposition on Al2O3 spheres
targeting thicknesses of 50 and 75 Å, respectively.

Characterization: A JEOL JSM-6480 SEM was used to record images at 5.0 kV of a
blank sphere. Additionally, EDX analysis was completed on Ru75@Al2O3 with a beam
energy of 15.00 kV at a 15 mm working distance to verify Ru deposition. Nitrogen sorption
isotherms were measured at 77 K with a Quantachrome Autosorb iQ. Before measurements,
the samples were degassed in a vacuum at 400 ◦C for 1 h. The Brunauer–Emmett–Teller
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method was utilized to calculate the specific surface areas using adsorption data in a rela-
tive pressure range from 0.05 to 0.35. The pore volumes and pore size distributions were
calculated using the density functional theory model. Ru mass percent was determined
through ICP-MS using an iCAP RQ Thermoscientific mass spectrometer. Ru-101 was used
as the isotope of analysis, and kinetic energy discrimination (KED mode) was utilized to
minimize interferences. To prepare the analysis solution, each sphere was crushed and
dissolved in nearly boiling 10 M plasma grade sodium hydroxide (Thermo) and diluted
to ~2% plasma grade nitric acid (Thermo). The content was compared to a calibration
curve using standard Ru (American Standards, plasma grade, 1000 mg L−1). Three anal-
ysis solutions for each catalyst were prepared and three readings of each solution were
performed and averaged. To test for Ru-metal leaching, a similar protocol was performed
on the solution remaining post 4NP reduction and physical removal of Ru50@Al2O3.

Catalytic Investigations: UV–Vis measurements were carried out using an Agilent
Cary 60 spectrophotometer under ambient conditions. Solutions were prepared in 1 cm
quartz cuvettes and the reaction solution was scanned at timed intervals of 1 min. The
4NP solutions were prepared by dissolving 0.39 µmol of 4NP and 0.2 mmol of NaBH4 in
3 mL of DIW. Five consecutive runs were completed with a DIW rinse between each run.
Reaction rates were monitored by the decreasing absorbance at λmax = 400 nm (4NP*). Dip-
probe reactions to delineate effects of stirring rate were carried out using an Agilent Cary
60 spectrophotometer with optical dip-probe under ambient conditions and monitored
similarly as mentioned above. The 4NP solutions were prepared by dissolving 2.34 µmol
of 4NP and 1.2 mmol of NaBH4 in 18 mL of DIW.

4. Conclusions

The use of ALD facilitates the controllable ultralow loading of the semiprecious metal
Ru on commercially available Al2O3 monoliths with no additional pre- or post-treatments.
The resulting catalysts, Ru50@Al2O3 and Ru75@Al2O3, provide a stable and highly recy-
clable platform for the reduction of environmentally relevant, and the reduction catalysis
benchmark, substrate 4NP. The normalized observed rates are competitive with typical
precious metal-based nanoparticle species (e.g., Pd and Au). Critically, the millimeter-sized
Al2O3 platform allows for truly facile handling and recyclability, which when coupled
with the robust nature of the material is promising for future applications in both pollutant
remediation and organic transformations.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-434
4/11/2/165/s1, Figure S1: XPS analysis of model ALD Ru on Al2O3 film, Table S1: atomic % Ru by
XPS, Figure S2: UV–Vis spectra and kinetics for the Ru50@Al2O3 reduction of 4NP, Table S2: 1st and
0th order kinetics for the Ru50@Al2O3 reduction of 4NP, Figure S3: UV–Vis spectra and kinetics for
the Ru75@Al2O3 reduction of 4NP, Table S3: 1st and 0th order kinetics for the Ru75@Al2O3 reduction
of 4NP, Figure S4: UV–Vis spectra for the blank Al2O3 sphere test for reduction of 4NP, Figures
S5–S8: reduction of other nitro and azo-based molecules, and Figures S9 and S10: reduction of 4NP
with stirring.
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