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Abstract: This review article highlights atom-level control of the heterojunction and homojunction
in SnO2-TiO2 nanohybrids, and the effects on the photocatalytic property. Firstly, a comprehensive
description about the origin for the SnO2-TiO2 coupling effect on the photocatalytic activity in the
conventional SnO2-TiO2 system without heteroepitaxial junction is provided. Recently, a bundle of
thin SnO2 nanorods was hetero-epitaxially grown from rutile TiO2 seed nanocrystals (SnO2-NR#TiO2,
# denotes heteroepitaxial junction). Secondly, the heterojunction effects of the SnO2-NR#TiO2 system
on the photocatalytic activity are dealt with. A novel nanoscale band engineering through the
atom-level control of the heterojunction between SnO2 and TiO2 is presented for the photocatalytic
activity enhancement. Thirdly, the homojunction effects of the SnO2 nanorods on the photocatalytic
activity of the SnO2-NR#TiO2 system and some other homojunction systems are discussed. Finally,
we summarize the conclusions with the possible future subjects and prospects.
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1. Introduction

Nanohybrid photocatalysts consisting of metals and semiconductors is the key mate-
rial for solar-driven chemical transformations [1–5]. The enhancement in the photocatalytic
activity stems from the effective interplay between the components depending on the
interface quality. Among the nanohybrid photocatalysts, the system consisting of SnO2
and TiO2 is the representative one [6]. TiO2-SnO2 (or fluorine-doped SnO2, FTO) is also the
basic electrode for various photoelectrochemical devices for solar-to-electric and chemical
conversions [7–10]. From a view of practical point, the SnO2-TiO2 coupling system is a
very promising material owing to the robustness, harmlessness, and inexpensiveness. The
remarkable SnO2-TiO2 coupling effect on the photocatalytic activity is well recognized
for various reactions as reported in recent papers on degradations of phenol [11] and
dyes [12–15]. However, the fundamental mechanism has not been fully understood so
far. Further, the effects of atomically commensurate junctions in the SnO2-TiO2 coupling
system on the photocatalytic activity have recently been clarified [16,17].

This article reviews atomic level control of the heterojunction and homojunction in the
SnO2-NR#TiO2 system, and the effects on the photocatalytic property. Section 2 describes
the origin for the remarkable SnO2-TiO2 coupling effect on the photocatalytic activity.
Section 3 deals with the heterojunction effects of the SnO2-NR#TiO2 system on the photo-
catalytic activity. Section 4 discusses the homojunction effect of the SnO2-NR#TiO2 system
on the photocatalytic activity. Finally, in Section 5, the conclusions are summarized with the
future subjects and prospects. Recently, the research of homojunction photocatalysts includ-
ing the p-n homojunction type [18–20] and the morphological homojunction type [21–25]
is currently in rapid progress. This article would also contribute to the development of the
homojunction photocatalysts.
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2. Origin for the SnO2-TiO2 Coupling Effect

This section describes the general features of the conventional SnO2-TiO2 nanohybrid
photocatalysts without atomically commensurate junction (Scheme 1). The photocatalytic
activity of TiO2 can be greatly boosted by coupling with SnO2 for various reactions [11–17].
It is worth noting that the electron acceptor in common with these reactions is molecu-
lar oxygen.
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Scheme 1. Energy diagram of the SnO2-TiO2 hybrid-photocatalyzed reaction system.

As an example, here we take gas-phase decomposition of acetaldehyde by a pat-
terned TiO2/SnO2 bilayer type photocatalyst [26]. Samples nonpatterned and patterned
TiO2 films on SnO2/soda lime (SL)-glass are designated as TiO2/SnO2/SL-glass and pat-
TiO2/SnO2/SL-glass, respectively. In the pat-TiO2/SnO2/SL-glass, 1 mm wide stripes of
TiO2 film regularly appeared on the SnO2/SL-glass substrate in a 1 mm pitch. In this study,
acetaldehyde was used as a model for harmful organic gas (Figure 1).
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Figure 1. Time courses of decomposition of CH3CHO upon illumination in the presence of SnO2/SL-
glass (a), TiO2/quartz (b), TiO2/SnO2/SL-glass (c), and pat-TiO2/SnO2/SL-glass (d). The figure is
taken from ref. [26].

This reaction is categorized as photocatalytic on the basis of the fact that both illumina-
tion and TiO2 are needed for the decomposition to occur (a) and a turnover number of >103.
The photocatalytic activity of TiO2/SnO2/SL-glass (c) is higher than that of TiO2/quartz (b).
However, the rate in the former system decreases with irradiation time, while the rate in the
latter system is almost constant. Strikingly, the patterning of the TiO2 film (d) drastically
increases the photocatalytic activity without causing the decay. The high photocatalytic
activity of the SnO2-TiO2 coupling system partly stems from effective charge separation by
the interfacial electron transfer from TiO2 to SnO2, which was substantiated by labeling and
visualizing the reduction sites using the Ag photodeposition method [26]. Consequently,
SnO2 and TiO2 act as reduction and oxidation sites, respectively, in the SnO2-TiO2 coupling
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system. However, the conduction band (CB) minimum of SnO2 is situated at −4.92 eV vs.
vacuum at pH 0 [26], which is too low to cause one-electron oxygen reduction reaction
(ORR) (Equation (1), Scheme 1).

O2 + e− → O2
− (1)

To determine the electron number of ORR (n), linear sweep voltammograms (LSVs)
were measured at electrode potential (E vs. hydrogen electrode potential, SHE) from−0.8 V
to +0.2 V for FTO and TiO2 film-coated FTO (TiO2/FTO) electrodes in argon-bubbled and
aerated electrolyte solutions (Figure 2a). In the LSV for TiO2/FTO, the cathodic current
flows at E < −0.4 V regardless of the absence and presence of O2, and the current is
ascribable to the reduction of TiO2 [27]. On the other hand, in the LSV for FTO with O2,
the current-onset potential shifts to approximately 0 V with the magnitude of current
drastically increased, while no current is observed without O2. The current was measured
as a rotating rate of the FTO electrode in aerated electrolyte solution. The Koutecky–Levich
plot of the FTO electrode for the current in the presence of O2 at E = −0.8 V provides a
straight line from the slope of which the n value was calculated to be 1.6 (Figure 2b). This
finding indicates that two-electron ORR can partially occur on FTO (or SnO2), whereas TiO2
is electrocatalytically inactive for ORR. The electrons in the CB of SnO2 also has a potential
sufficient to proceed two-electron ORR (Equation (2), Scheme 1). Thus, another reason
for the effective SnO2-TiO2 coupling effect is ascribable to the electrocataltyic activity of
SnO2 for two-electron ORR. On the basis of this scheme, the photocatalytic activity of
pat-TiO2/SnO2/SL-glass much higher than that of nonpatterned sample is rationalized in
terms of the balanced areas of the surfaces where oxidation (TiO2) and reduction (SnO2)
sites occur in the former system.

O2 + 2H+ + 2e− → H2O2 (2)
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Figure 2. (a) Linear sweep voltammogram obtained with the TiO2/FTO and FTO electrodes in argon
gas-bubbled and aerated 0.1 M NaClO4 electrolyte solution (pH 5.70) with a potential sweep rate of
20 mVs−1. Jre expresses the current density per real surface area of the electrode. (b) Koutecky-Levich
plots of the FTO electrode for the current as E = −0.8 V.

3. Atom-Level Heterojunction Effect

This section deals with the hetero-epitaxial junction effect on the charge separation
and photocatalytic activity of the SnO2-TiO2 nanohybrid system [16]. The effective charge
separation can arise from the smooth interfacial electron transfer from TiO2 to SnO2-NR
through the high-quality junction and subsequent efficient charge separation due to the
lattice strain-induced unidirectional potential gradient of the CB minimum in the SnO2-NR.
This nanoscale band engineering presents a novel methodology for the effective charge
separation to enhance the activity of the nanohybrid photocatalysts.

SnO2 NRs were grown from rutile TiO2 seed nanocrystals in an alkaline SnCl4 solution
by a hydrothermal process for a given time (tHT). Low- and high-magnification scanning
electron microscopy (SEM) images of the sample prepared at tHT = 72 h (Figure 3a,b)
shows that NRs are grown from every TiO2 particle with a specific orientation by the
hydrothermal reaction. The powder X-ray diffraction (XRD) pattern (Figure 3c) has the
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diffraction peaks of rutile TiO2, and after the hydrothermal reaction, new peaks appear at
2θ = 26.52◦, 34.42◦, and 52.46◦ assigned to the diffraction from the (110), (101), and (211)
crystal planes of SnO2, respectively. The high resolution-transmission electron microscopy
(HR-TEM) image of SnO2-NR/TiO2 (Figure 3d) shows an SnO2(110) lattice fringe parallel
to its growth direction. Clearly, SnO2-NRs grow in the [001] direction from the rutile TiO2
surface. Conversely, the solvothermal preparation of rutile TiO2 nanowire arrays with the
[001] orientation on FTO electrode has recently been reported [28].
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ment of the green process for the selective synthesis of acetaldehyde from biomass-de-
rived ethanol under mild conditions is very significant (Equation (3)) [33]. 

Figure 3. Low (a) and high (b) magnification SEM images for SnO2-NR/TiO2 (tHT = 72 h). The inset in (a) shows SEM
image for pristine rutile TiO2. (c) XRD patterns for SnO2-NR/TiO2, and pristine TiO2 for comparison. (d) HR-TEM image
for SnO2-NR/TiO2. The figure is taken from ref. [16].

In the bulk system, an a-axis mismatch of 3.11% is present between SnO2 and rutile
TiO2. Surprisingly, a heteroepitaxial junction was formed in the nanoscale system [16]
in spite that the formation of heteroepitaxial junction is limited to the systems with
the lattice mismatch smaller than 0.1% in the bulk systems [29]. This finding suggests
that even if the heteroepitaxial junction cannot be formed in the bulk state, it is possi-
ble in the nanoscale [30]. A junction model was presented with the SnO2-NR grown
in the [001] direction from the rutile TiO2 surface having a heteroepitaxial relation of
SnO2{001}/TiO2{001} (SnO2-NR#TiO2). Previously, oriented SnO2 nanowire arrays were
formed on rutile TiO2(001) single crystal by a chemical vapor deposition method [31].

In today’s time, acetaldehyde is industrially produced by the Wacker oxidation of
ethylene using a PdCl2-CuCl2 catalyst at ~1 MPa and ~400 K [32], and, then, the develop-
ment of the green process for the selective synthesis of acetaldehyde from biomass-derived
ethanol under mild conditions is very significant (Equation (3)) [33].

CH3CH2OH (g) + 1/2O2 (g)→ CH3CHO (g) + H2O (l) (3)

We have recently found that rutile TiO2 exhibits high photocatalytic activity for
the partial oxidation of ethanol to acetaldehyde at ambient temperature and pressure,
whereas ethanol is completely oxidized to carbon dioxide in the anatase TiO2 photocatalytic
system [34,35].
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The photocatalytic activity of various samples was studied for gas-phase oxidation
of ethanol to acetaldehyde (Figure 4a). The loading amount and rod length of SnO2 are
denoted as xSnO2 and lNR, respectively. UV-irradiation of TiO2 produces acetaldehyde of
which amount increases with an increase in irradiation time, while SnO2 is completely inert.
Rutile TiO2 shows much higher photocatalytic activity than anatase TiO2, and the former
activity is further enhanced by mixing with 10.0 mass% SnO2. Strikingly, SnO2-NR#TiO2
(lNR = 61.4 nm, xSnO2 = 11.0 mass%) exhibits a high level of photocatalytic activity far
exceeding even that of the physical mixture of rutile TiO2 and SnO2, whereas no reaction
proceeded in the dark or under UV-light irradiation without O2. The apparent quantum
yield or external quantum yield (φex) defined by Equation (4) reached 25.6% at λex = 365 nm
in the SnO2-NR#TiO2 system.

φex (%) = {2 × (number of acetaldehyde molecules)/number of incident photons} × 100 (4)
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Figure 4. (a) Time courses for gas-phase photocatalytic oxidations of ethanol to acetaldehyde under
UV-light irradiation (λex > 300 nm). The amount of acetaldehyde is normalized by the specific
surface area of the photocatalyst. (b) Relation between the photocatalytic activity and SnO2 loading
amount. The corresponding SnO2-NR length is shown in the figure. (c) Time courses for gas-phase
photocatalytic decomposition of acetaldehyde under UV-light irradiation (λex > 300 nm) in the
SnO2-NR#TiO2 (lNR = 61.4 nm) system, and anatase and rutile TiO2 system for comparison. (d)
PL spectra for authentic rutile TiO2 and SnO2-NR#TiO2 with varying mean SnO2-NR length under
irradiation of light with wavelength of 340 nm at 77 K. The figure is taken from ref. [16].

This value surpasses the values reported for the TiO2 photocatalytic oxidation of
ethanol to acetaldehyde (<~10%) [34,36]. These findings evince the importance of the
junction state between SnO2 and TiO2 for the activity in the hybrid photocatalyst.

Further, the initial photocatalytic activity of SnO2-NR#TiO2 (v0/mol h−1) increases
with an increase in xSnO2 (Figure 4b). In addition, there is a clear trend that the photocat-
alytic activity increases with increasing lNR. On the other hand, there is linear relations
between the amount of acetaldehyde produced and the amount of ethanol consumed in the
SnO2-NR#TiO2 and unmodified rutile TiO2 systems. The selectivity was calculated from
the slope in the SnO2-NR#TiO2 (lNR = 61.4 nm) system to be ~100%. The photocataltyic
decomposition of acetaldehyde was further examined with SnO2-NR#TiO2, anatase and
rutile TiO2 particles. Rutile TiO2 and SnO2-NR#TiO2 exhibit much lower photocatalytic
activity than anatase TiO2 (Figure 4c). Ethanol oxidation has so far been reported for the
photocatalsyts of anatase TiO2 and P-25 (anatase-rutile mixture). These studies reported
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that ethanol undergoes complete oxidation to carbon dioxide, and the selectivity to ac-
etaldehyde is lower than 50% [34,37–39]. Therefore, the high selectivity in the rutile TiO2
and SnO2-NR#TiO2 systems results from the suppression of the ethanol overoxidation.

The insight into the charge separation in the hybrid photocatalysts can be gained by
photoluminescence (PL) measurements [40]. TiO2 has a broad PL band arising from the
emission from vacancy levels around 520 nm (Figure 4d) [41]. In the spectra for SnO2-
NR#TiO2, the emission band extremely weakens. In addition, selective TiO2 excitation of
SnO2-NR#TiO2 in AgNO3 aqueous solution led to preferential deposition of Ag NPs on
SnO2-NR [26]. Evidently, UV-light irradiation of SnO2-NR#TiO2 induces smooth interfacial
electron transfer from TiO2 to SnO2-NR followed by the effective charge separation through
the high-quality heterojunction.

The SnO2(110) d-spacing in the NR was determined as a function of the distance
from the interface with TiO2 (dFIF) from the HR-TEM analysis [16]. The a-axis length
calculated from the (110) d-spacing gradually increased with an increase in dFIF from 4.52 Å
at dFIF = 1 nm to 4.73 Å at dFIF = 75 nm, which is equal to the value for bulk SnO2. The
formation of the heteroepitaxial junction causes the shrinkage of the a-axis near the interface
to relax in the [001] direction of SnO2-NR from the root to the tip. Density functional theory
(DFT) simulations were performed for model slabs of the SnO2-NR hetero-epitaxially
grown from TiO2. The energy diagram created by using the calculated values qualitatively
reproduced the increase in the band gap with decreasing rod length. More importantly,
the energy diagram showed that a significant downward bending in the CB minimum
potential is induced in the direction from the root to the tip of SnO2 NR. A recent paper
has reported that in the SnO2 thin film epitaxially grown on the Al2O3(0001) substrate, the
interfacial tensile strain generated in the SnO2 lattice conversely lowers the band gap [42].

The action mechanism of SnO2-NR#TiO2 in the photocatalytic gas-phase selective
oxidation of ethanol to acetaldehyde can be explained on the basis of the energy diagram
in Scheme 2, where the energy levels are shown with respect to the vacuum level (at pH 0).
The flat band potentials of rutile TiO2 and SnO2 electrodes were previously determined to
be−4.50 V [43] and−4.92 V [26] by the Mott–Schottky plots. SnO2-NRs are grown on rutile
TiO2 with a heteroepitaxial relation of SnO2{001}/TiO2{001} by the present hydrothermal
reaction. The positive a-axis mismatch generates a compressive strain in the SnO2-NR
near the interface to induce the continuous increase in the a-axis length extending over
60 nm towards the SnO2[001] direction from the root to the tip. As a result, a downward
band bending is formed in the interior of the SnO2-NR. UV-light irradiation of SnO2-
NR#TiO2 promotes the electrons in the VB of TiO2 to the CB. The excited electrons in
the CB with ECBM = −4.50 eV are smoothly transferred to the CB of SnO2-NR with the
ECBM = −4.92 eV through the atomically commensurate interface, while the holes are left
in the VB of TiO2 because the VB maximum of SnO2 is located much lower with respect
to that of TiO2. In addition, the electrons can be separated from the VB-holes in TiO2 due
to the unidirectional downward potential gradient in the CB minimum in the SnO2-NR.
The CB-electrons in the SnO2-NR have sufficient energy to cause a two-electron oxygen
reduction reaction (E0(O2/H2O2) =−5.14 V), while the VB-holes in TiO2 selectively oxidize
ethanol to acetaldehyde because of the suppression of the overoxidation. The enhancement
of the photocatalytic activity with increasing rod length can be rationalized in terms of
the long-range charge separation. The groups of Majima and Choi have recently shown
that the reactive oxygen species photogenerated on rutile TiO2 are the surface bound OH
radicals (or surface trapped holes, ·OHs) limiting the oxidation mainly to the surface,
whereas the oxidation on anatase TiO2 can occur at the place far away from the surface
in the former system because of the diffusion of OH radicals from the surface (or free
OH radicals) [44]. Further, we have found that the adsorption of acetaldehyde on rutile
TiO2 is suppressed in the presence of adsorbed water [45]. Consequently, in the present
SnO2-NR#TiO2 photocatalytic reaction system, the highly selective and efficient oxidation
of ethanol to acetaldehyde proceed.
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4. Atom-Level Homojunction Effect
4.1. SnO2-TiO2 Homojunction Systems

In the as-grown SnO2-NR#TiO2, the apparent single SnO2-NR is actually composed
of a bundle of thin SnO2 NRs. This section discusses the effect of the formation of homo-
junction between the thin SnO2 NRs on the photocatalytic activity [17]. The photocatalytic
activity-heating temperature (Tc) curve in the SnO2-NR#TiO2 system shows a volcano-
shaped profile with the maximum activity at Tc = 500 ◦C. The increase in the photocatalytic
activity by the heating at Tc = 500 ◦C results from the high electron mobility in the SnO2
NRs with the fusion of the thin SnO2 NRs.

SEM observation was carried out for SnO2-NR#TiO2 prepared at varying Tc in air for
1 h (Figure 5a,b). As-grown SnO2-NR#TiO2 consists of a bundle of thin SnO2 NRs. The
heat treatment at 500 ◦C induces fusion of the bundle forming a monolithic SnO2 NR.
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Further, the HR-TEM image shows that the SnO2 moiety of SnO2-NR#TiO2 (Tc = 500 ◦C)
has good crystallinity (Figure 5c). On the other hand, heating at 700 ◦C causes many
disjuncture in the lattice fringe due to the fine segmentation of the SnO2 NRs (Figure 5d).

The specific surface area (SBET) of SnO2-NR#TiO2 was measured by Brunauer–Emmett–
Teller method. As a result of an increase in Tc, the SBET gradually decreases with fusion
of the bundle of thin SnO2 NRs (Figure 6a). In addition, the crystallite size of SnO2 (D)
was estimated using the Scherrer equation from the full-width at half maximum of the
SnO2(110) diffraction peak. In the plot of D versus Tc, the D value of ~25 nm for the
as-grown sample increases with an increase in Tc, going through a maximum of ~80 nm at
Tc = 500 ◦C to steeply decrease above 600 ◦C (Figure 6a). Clearly, the growth of crystallites
with increasing Tc at ≤500 ◦C increases the D value, which then decreases due to the
segmentation at Tc ≥ 600 ◦C.
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The Tc-dependence of the photocatalytic activity for the gas-phase oxidation of ethanol
to acetaldehyde was studied. The reaction apparently follows the first-order rate law in
every system, and the pseudo-first-order rate constant (k) was calculated from the plots
of ln [C0/(C0-C)] versus t, where C0 and C are the initial concentration of EtOH and the
concentration of acetaldehyde at the irradiation time t, respectively. The plot of k vs. Tc
exhibits a volcano-shaped curve with the peak at Tc = 500 ◦C (Figure 6b), which well
resembles the D-Tc one (Figure 6a).

The heating effect on the photocatalytic activity can be explained in terms of the
change in the homojunction state in the SnO2 NRs (Scheme 3) [17]. As explained in
Section 3, SnO2-NR#TiO2 can work as an excellent charge separator owing to the smooth
interfacial electron transfer from TiO2 to SnO2 through the high-quality interface and the
subsequent electron transport in the SnO2-NR from the interface to the tip by the assistance
of the lattice strain-induced unidirectional potential gradient in the CB [16]. In this case, the
heat treatment at Tc ≤ 500 ◦C causes the fusion of the bundle of the SnO2 NRs to decrease
the resistance for the electron transport and enhance the charge separation. At Tc ≥ 600 ◦C,
the heat treatment incurs the segmentation of the SnO2 crystal, which is also evidence of
the presence of the hetero-epitaxial junction-induced lattice distortion in the SnO2 NR. The
many boundaries generated in the SnO2 NR would scatter electrons to interfere with the
electron transport or charge separation. As a result of the balance between them, there
exists an optimum heating temperature around 500 ◦C.

Zeng and co-workers constructed a branched rutile TiO2 NR array on FTO substrate
using a two-step route involving a hydrothermal synthesis and a chemical bath depo-
sition [22]. In this method, the length of the branches was controlled by the chemical
bath deposition time (tCBD). A coherent interface was observed between the TiO2 NR
and the branch by HR-TEM. The sample prepared at tCBD = 36 h exhibits a high level of
photocatalytic activity for gas-phase decomposition of benzene under UV-light irradiation
(200 nm < λex < 400 nm). The striking photocatalytic activity was ascribable to the branch-
to-NR interfacial electron transfer and subsequent charge separation due to the smooth
electron transport along the single-crystal TiO2 NR.

4.2. Other Homojunction Systems

Among various homojunction systems, those with the formation of coherent interface
confirmed are only limited. In addition to those, the works on the homojunction between
the identical crystals with only different morphologies are described in this section.
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Zou and co-workers prepared a homojunction system consisting of n-type oxygen-
defected TiO2 and p-type titanium-defected TiO2 by a multi-step process involving liquid-
phase synthesis and calcination [18]. The formation of a somewhat atomically commensu-
rate interface was confirmed by HR-TEM observation. PL and electrochemical impedance
spectroscopy (EIS) analyses indicated that effective charge separation occurs in this system.
Consequently, Pt nanoparticle-loaded p-n homojunction TiO2 (Pt/p-n homojunction TiO2)
showed higher photocatalytic activity than Pt/p-TiO2 and Pt/n-TiO2 by factors of 2.3 and
10.8, respectively, for H2 generation from a methanol aqueous solution under UV-light
irradiation. The simultaneous interfacial electron transfer from p-type TiO2 to n-type TiO2
and hole transfer in the opposite direction were assumed.

Chen, Zhou, and co-workers prepared p-n Bi4V2O11 homojunction through Bi5+ self-
doping (Bi5+-BVO) [19]. Electrochemical analysis of the Bi5+-BVO electrode showed a
p-n junction character, while a nondoped BVO electrode has an n-type character. PL,
EIS, and time-resolved fluorescence decay spectroscopy indicated that the p-n homojunc-
tion suppresses the electron-hole recombination. Bi5+-BVO exhibited significantly larger
photocatalytic activity than nondoped BVO for Cr(VI) reduction in the presence of citric
acid under visible-light irradiation. The high photocatalytic activity was ascribable to the
effective charge separation through the p-n junction although no information about the
interface at an atomic level was provided.

Lyu and co-workers fabricated a homojunction between anatase TiO2 nanoparticles
(NPs) and a microporous anatase TiO2 layer by a two-step process involving vapor-induced
hydrothermal synthesis and subsequent photothermocatalytic treatment [23]. No informa-
tion about the junction state was provided; however, the homojunction sample provided
significantly higher mineralization efficiency in the gas-phase decomposition of toluene
than microporous and nonporous TiO2 NPs under UV-light irradiation (λex = 254 nm).
On the basis of the data on surface photovoltage spectroscopy (SPS) measurements, the
remarkable photocatalytic activity of the homojunction system was ascribable to effective
charge separation in addition to the large specific surface area.

Yang and co-workers proposed a p-n TiO2 homojunction involving amorphous and
anatase TiO2 prepared by controlling the heating temperature (Tc) of the latter around
350 ◦C [20]. The structure of the interface between amorphous and anatase TiO2 was shown
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at an atomic level resolution. The homojunction sample showed photocatalytic activity
significantly larger than amorphous TiO2 and anatase TiO2, but the reason remains unclear.

Ren, Li, and co-workers formed a homojunction between anatase TiO2 nanosheets
(NSs) and anatase TiO2 NPs by a two-step process involving vapor-induced hydrothermal
synthesis and subsequent photothermocatalytic treatment [25]. HR-TEM image showed
that the anatase TiO2 NS and NPs possess dominant {001} and {101} facets although the
junction state is unclear. The homojunction sample afforded much higher photocatalytic
activity than TiO2 NSs and NPs for gas-phase decomposition of acetone under UV-light
irradiation (300 nm < λex). The reduction and oxidation reactions were reported to primarily
occur on the {001} and {101} facets, respectively, in faceted anatase TiO2 photocatalyst. The
authors proposed a crystal facet-induced charge separation mechanism to explain the high
photocatalytic activity.

5. Conclusions and Future Prospects

Most importantly, this review article points to the general possibility of the hetero-
epitaxial junction formation between the components of the nanoscale hybrids even if it is
inhibited in the bulk state because of significant lattice mismatch. This is also valid for the
SnO2-TiO2 coupling system with an a-axis mismatch over 3%.

The improvement in the photocatalytic activity of TiO2 by the hybridization with SnO2
for the oxidative reactions originates from the charge separation because of the interfacial
electron transfer from TiO2 to SnO2 and the electrocatalytic activity of SnO2 for two-electron
ORR. A novel nanoscale band engineering of heteronanostructured photocatalysts for the
charge separation and activity enhancement is presented in a hybrid consisting of SnO2
NR and TiO2 with heteroepitaxial junction (SnO2-NR#TiO2). In addition, fusion of the
homojunctions between a bundle of thin SnO2 NRs in SnO2-NR#TiO2 further increases
the photocatalytic activity due to the lowering in the resistance of the electron transport in
the SnO2 NR. In this manner, the enhancement in the photocatalytic activity of the SnO2-
TiO2 nanohybrid can be achieved through the atomic-level control of the heterojunction
and homojunction.

SnO2-NR#TiO2 has wide and high potentials as the photocatalytic for various reactions,
and the exploitation should be a coming subject. In addition, they only respond to UV-
light, and the visible-light response is of crucial importance for the effective utilization
of the sunlight as the driving force. A promising approach to achieve this is the surface
modification by plasmonic metals such Au [46] and Ag [47,48]. Finally, the development
of various nanohybrids with atomically commensurate junctions other than the SnO2-
NR#TiO2 system can bring wide and fruitful applications.
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