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Abstract: Colloidal semiconductor quantum dots (QDs) have been proven to be excellent photo-
catalysts due to their high photostability, large extinction coefficients, and tunable optoelectrical
properties, and have attracted extensive attention by synthetic chemists. These excellent properties
demonstrate its promise in the field of photocatalysis. In this review, we summarize the recent
application of QDs as homogeneous catalysts in various photocatalytic organic reactions. These
meaningful works in organic transformations show the unique catalytic activity of quantum dots,
which are different from other semiconductors.

Keywords: quantum dots; organic synthesis; homogeneous photoredox

1. Introduction

The efficient use of clean, sustainable, and pollution-free solar energy provides an
effective solution to the energy crisis and environmental pollution. Photocatalytic organic
synthesis has become one of the most promising technologies to direct conversion of solar
energy into chemical energy. Approximately 40% of sunlight is visible light, so an ideal
photocatalyst needs to extend the maximum absorption wavelength to 800 nm. Over the
last few decades, a large number of visible light catalysts have been reported and applied,
such as transition metal ruthenium and iridium coordination compounds [1–4], organic
dyes [5], and all kinds of novel bulk semiconductor materials, such as TiO2, WO3, CdS,
etc. [6–13]. However, solar energy cannot be used very effectively by using heterogeneous
semiconductor catalysts. Fortunately, colloidal quantum dots (QDs) have exhibited great
potential with precisely controlled compositions, structures, and surface properties [14].

Colloidal semiconductor quantum dots, one of the semiconductor nanocrystals, are
mostly between 2 and 20 nm and are smaller than the Bohr exciton diameter, which
produce their superior properties including wide and strong absorption for light harvesting,
size-dependent band gap for tunable and selective driving force of redox reaction, large
surface-to-volume ratio for charge extraction, rich reaction sites, and potentially good
photochemical stability due to size effects and surface effects [15].

Initially, quantum dots were loaded on other semiconductor catalysts and used as
heterogeneous catalysts in the reaction systems. Normally, QD-based photocatalysts were
mainly used for H2 evolution [16–22] and CO2 reduction [23–25], and then extended to
organic synthesis. In 2001, Peng et al. [26] found that photocatalytic dimerization of thiol
ligands could generate disulfides when they were studying the photochemical instability
of thiol-coated CdSe nanocrystals in water. In 2016, Jensen [27] proved that CdS QDs were
much better than CdS powder for the rate of photocatalysis nitrobenzene degradation.
A 2018 report from Weiss et al. [28] mentioned that small-size CdS QDs (<20 nm) behaved
much better than CdS nano particles (NPs) (>20 nm) for photocatalytic conversion of
2-phenoxy-1-phenylethanol. Especially when the QDs size was 4.4 nm, the conversion
of 2-phenoxy-1-phenylethanol and the yield of acetophenone and phenol were over four
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times than that of NPs. Additionally, the energy bond position increased from 2.35 eV (NPs,
>20 nm) to 2.74 eV (4.4 nm-QDs). Besides, CdS QDs exhibited higher catalytic efficiency
than CdS NPs, and could be reused 10 times without any loss of catalytic activity. It
is clear that QDs have great potential in visible-light-catalyzed organic reactions. Here,
we present the recent advances in QDs as homogeneous photocatalysts in organic reactions.
The literature on the degradation of organic pollutants and hydrogen generation, as well
as the reduction of carbon dioxide, is not the focus of this review.

2. Cadmium Containing QDs
2.1. CdS QDs

CdS QDs have good photosensitivity properties, less dosage, and high efficiency, and
absorb visible light to stimulate reactants to produce free radicals, thus catalyzing organic
synthesis reactions.

In early 2016, Weiss et al. [27] explored the reduction reaction of nitrobenzene to aniline
with CdS QDs (diameter = 4.5 nm) as visible-light photocatalysts and 3-mercaptopropionic
acid (MPA) as sacrificial agents. Notably, nitrobenzene experienced six sequential pho-
toinduced, proton-coupled electron transfers. MPA here captured the hole on the QDs to
form QD•− and then the electron was transferred to nitrobenzene or the intermediates
nitrosobenzene and phenylhydroxylamine to the final product aniline (Scheme 1). Interest-
ingly, the reaction system maintaining an acidic pH not only solved QDs poisoning due to
adsorption of the photoproduct aniline on the QDs surface, but promoted protonation of
intermediates.
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Scheme 1. Mechanism of the entire process of nitrobenzene converting to aniline on the acidic condition. Reprinted with 
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In 2017, Weiss et al. [29] developed a ligand-dependent C–C coupling reaction be-
tween 1-phenyl pyrrolidine and phenyl trans-styryl sulfone, with the participation of 
photocatalyst CdS QDs (diameter = 3.7 nm). No sacrificial agents or co-catalyst were 
needed (Scheme 2). Holes transferred to 1-phenyl pyrrolidine through the surface of 
QDs were proven by kinetic analysis to be a rate-limiting step, and that the product in-
creased linearly with the concentration of 1-phenyl pyrrolidine (that is, the initial rate) in 
the first 15 min. For this reason, the ligand shell of the QDs was key to the rate of entire 
reaction. They added octylphosphonate ligands to replace some native oleate ligands of 
CdS QDs by a one-step ligand exchange. The ligand exchange disordered the ligand 
shell and increased the initial reactions rate by a factor of 2.3, and the energy efficiency 
by a factor of 1.6 when QDs pre-treated by 250 eq. of octylphosphonate (OPA) ligands 
were used. 
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In 2017, Weiss et al. [29] developed a ligand-dependent C–C coupling reaction be-
tween 1-phenyl pyrrolidine and phenyl trans-styryl sulfone, with the participation of
photocatalyst CdS QDs (diameter = 3.7 nm). No sacrificial agents or co-catalyst were
needed (Scheme 2). Holes transferred to 1-phenyl pyrrolidine through the surface of QDs
were proven by kinetic analysis to be a rate-limiting step, and that the product increased
linearly with the concentration of 1-phenyl pyrrolidine (that is, the initial rate) in the first
15 min. For this reason, the ligand shell of the QDs was key to the rate of entire reaction.
They added octylphosphonate ligands to replace some native oleate ligands of CdS QDs by
a one-step ligand exchange. The ligand exchange disordered the ligand shell and increased
the initial reactions rate by a factor of 2.3, and the energy efficiency by a factor of 1.6 when
QDs pre-treated by 250 eq. of octylphosphonate (OPA) ligands were used.
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Scheme 2. The reaction for the photocatalytic reaction of 1-phenyl pyrrolidine and phenyl trans-
styryl sulfone.

Later, Weiss et al. [30] reported that the photocatalysis oxidation of benzyl alcohol to
benzaldehyde with 99% selectivity, or to hydrobenzoin by carbon–carbon coupling, reacted
with 91% selectivity using colloidal CdS QDs (diameter = 3.6 nm) as the photocatalyst.
The control of selectivity was mainly affected by the amount of Cd0 photo deposited on the
surfaces of the QDs in situ, and then by the concentration of benzyl alcohol. The deposition
of Cd0 on QDs, that is, the addition of Cd(ClO4)2, enabled the benzaldehyde to undergo
the re-reduction to the C–C coupling products. However, the addition of anthroquinone-2-
sulfonate (AQ), an electron scavenger, led to a second hole from a second photoexcitation
of the QD transferring to radical intermediate to form benzaldehyde with high probability
(Scheme 3). When using the thiolate-free system, there is no concern about the co-catalyst
being poisoned by thiols or low yield due to the photo-oxidizing of the thiolate ligands to
form disulfides. In that case, the CdS QDs can recycle for four times without the loss of
catalytic efficiency.
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Cheng et al. [28] found that CdS QDs (diameter = 4.4 nm), as efficient photocatalysts,
not only broke the β–O—4 bonds in various lignin models (e.g., 2-phenoxy-1-phenylethanol
(PP-ol)), but also transformed native lignin within biomass to functionalized aromatics
under visible light without affecting other components in lignocellulose when they studied
the full used of the lignocellulosic biomass (Scheme 4). The photogenerated electrons and
holes of QDs about the cleavage of β–O–4 bonds were used fully. Additionally, a reversible
aggregation-colloidization strategy could separate QDs from the reaction system and then
be reused.
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As shown above, this group effectively manipulated the organic ligands on the surface
of CdS QDs (diameter of about 4.4 nm) for the photocatalytic reaction from native lignin
to functionalized aromatics [31]. The hydrophilicity/oleophilicity of ligands is the key
to the interaction between QDs and lignin, which facilitate the electron-transfer process.
These researchers changed the type of coordination group and the length of ligands, and
finally found that short-chain ligands or ligands with low barrier potential boosted the
photocatalytic conversion. The effect of 3-mercaptopropionic acid-capped CdS QDs (CdS-
C3 QDs) was better than CdS-C6 QDs and CdS-C11 QDs.

Feng et al. [32] presented the first example of photocatalyzed cyclization of functional-
ized difluoromethyl chlorides and inactivated olefins to afford the desired difluoromethy-
lated products with CdS QDs (diameter = 3.5 ± 0.3 nm) as a photocatalyst (Scheme 5) by
breaking the carbon(sp3)–chlorine bond of difluoromethyl chlorides. The reaction system
could tolerate different difluoromethyl chlorides as fluorine sources and be appropriate for
a series of substrates, which was efficient for preparing CF2-containing azaheterocycles.
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2.2. CdSe QDs

Wu et al. [33], in 2013, showed a highly-efficient and easily controlled process for the
coupling of thiols using CdSe QDs (diameter = 1.9 nm) as a photocatalyst quantitatively
and selectively, without sacrificial agents or oxidants. Usually, the synthesis of disulfides
from thiols needs stoichiometric oxidants, such as Oxone or 2,3-Dichloro-5,6-dicyano-1,4-
benzoquinone (DDQ) [34,35]. CdSe QDs are reusable and suitable for water systems and
stable in some reactions under aerobic conditions. Ingeniously, CdSe QDs can absorb
disulfides on the surface to keep them from oxidizing. This work also proposed the
mechanism for photocatalytic transformation of thiols to disulfides and clear H2 (Scheme 6).
The process can be facilitated by promoting H2 evolution with the addition of nickel (II) ions
with the turnover number (TONs) of the QDs more than 2000. Isotope experiments showed
that the hydrogen source was the solvent of water, not thiols in the H2 produced above.
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Then in 2017, Wu et al. [36] found that alcohols could selectively convert to aldehy-
des/ketones without external oxidants in water using 3-mercaptopropionic acid (MPA)-
coordinated CdSe QDs (diameter = 2.3 nm) as a photocatalyst and hydrogen as the only
by-product. (Scheme 7). The photocatalytic process is clean and highly efficient, with
Ni2+ ions as cocatalyst. In this paper, a reactive radical was formed by a relay process
with MPA, and water as relay reagents established a new opportunity to explore QDs as a
photocatalyst for organic transformations. Additionally, benzyl alcohols were more easily
oxidized compared with aliphatic alcohols, due to the less bond dissociation energy of the
benzylic C–H bonds (Scheme 8).
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Early in 2017, Weix and Krauss [37] reported that oleate-capped CdSe QDs (diameter
of about 3.3 nm) behaved well in visible-light-induced C–C bond-forming reactions. They
then conducted five organic transformation reactions using lower loading of CdSe QDs to
replace the traditional catalysts of Ru or Ir complexes (Scheme 9). In some cases, the TON
and turnover frequency (TOF) already surpassed the best reported traditional dyes.

Egap et al. [38] reported that CdSe QDs (diameter = 3.0 nm) were successfully used
for light-mediated radical polymerization of (meth)acrylates and styrene to construct block
copolymers with high conversion and narrow polydispersity (Scheme 10). QDs were
applied as a photocatalyst for atom transfer radical polymerization (ATRP) to achieve
various types of polymerization reactions. The authors also pointed out that QDs are
a promising catalyst in the field of photopolymerization due to their facile synthetic
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and purification preparation, low catalyst loading, and ability to easily tune redox and
electronic properties.
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Maiti et al. [39] reported a new method for borylation of diazonium salts, which was
catalyzed 3-Mercaptopropionic acid (MPA)-capped by CdSe QDs (diameter = 4.0 nm) in
water without an external additive. They applied an acidic condition of pH = 6, not only
preventing the formation of by-product disulfide, but also avoiding the decomposition of
diazonium salt in organic solvents by a biphasic mixture of water and dichloromethane.
The corresponding biphenyl products were obtained by photocatalytic coupling of final
borane products or boric acid by using CdSe QDs (Scheme 11). Additionally, the photo
catalytic reaction system has a very high TON value of larger than 105.

In 2019, Cossairt et al. [40] disclosed a selective photocatalysis with the aid of CdSe
QDs (diameter = 3.3 nm) for the fracture of the Cα–O bond in lignin model substrates
(Scheme 12). Compared to the iridium complexes, less than 333 times the QDs were needed
to produce the same reaction rate. Another highlight of this work is that the joining of
shorter-chain trans-4-cyanocinnamic acid ligand on the QDs’ surface can greatly improve
the conversion rate due to its better rigidity and conjugated structure.
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Scheme 12. The oxidation and photochemical reduction of a lignin model substrate.

Photoinduced enantioselective intermolecular [2+2] photocycloadditions have been
extensively researched. Weiss et al. [41] achieved regioselective and diastereoselective
intermolecular [2+2] cycloadditions of 4-vinylbenzoic acid derivatives using CdSe QDs
(diameter = 2.8 nm) as photocatalysis (Scheme 13). Apart from acting as photosensitizer,
the QDs here were also triplet exciton donors and self-assembly scaffolds, of which triplet
energy was tunable by controlling QDs’ size to selectively sensitize one component among
the reaction system of cycloadditions. In this case, 1.4 nm CdSe QDs selectively transferred
energy to 1 without sensitizing 3, while 1.0 nm CdSe QDs and noble metal complexes could
not achieve that (Scheme 13). Notably, CdSe QD photocatalysis provided non-normal
syn products with a diastereomeric ratio of >40:1, while the metal complexes tended to
generate antiproducts with diastereomeric ratio of <12:1. They found that it resulted from
the carboxylate of the substrate absorbed to the QD surface, creating an intermolecular π–π
interaction among the 4-vinylbenzoic acid derivatives occur. Additionally, head-to-head
(HH) products or head-to-tail (HT) products were selectively generated by adjusting the
position of carboxylate on the substrates. It was also associated with the interaction of the
carboxylate and Cd2+ on the QD surface.

In 2019, Weiss et al. [42] presented a series of aqueous acrylamides and acrylates that
polymerized though photoinduced electron transfer reversible addition-fragmentation
chain transfer (PET-RAFT) with high efficiency, low dispersity, and ultralow catalyst
loading (Scheme 14). The water-soluble MPA-capped CdSe QDs (diameter = 2.8 nm)
photocatalyst could be separated from the system by using protein concentrators and
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reused four times with high activity, and the monomer in the reaction mixture could be
isolated selectively by different pore sizes of protein concentrators in the same way.
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Scheme 14. Photoinduced electron transfer radical reversible addition–fragmentation chain transfer
(PET-RAFT) polymerization catalyzed by CdSe QDs.

Following that, Egap et al. [43] also designed a PET-RAFT polymerization to synthe-
size core-shell polymer-QDs (diameter = 3.8 nm) nanocomposites using CdSe quantum dots
in a polar solvent. Herein, CdSe QDs (diameter = 3.2 nm) were not only the photocatalyst,
but also the inorganic building block for nanoparticle–polymer hybrid nanocomposites.
CdSe QDs were stable in polar solvents such as Dimethyl Formamide (DMF) and dimethyl-
sulfoxide (DMSO) due to the ligand exchange by chain transfer agents on the surface of
CdSe QDs.

2.3. Colloidal Core/Shell QDs
2.3.1. ZnSe/CdS QDs

In the abovementioned reactions, plain-core QDs were used as photocatalysts. How-
ever, aggregation and etching strongly influence the stability of the plain-core QDs, so in
most works, they are needed to design the ligands carefully in the reaction to improve the
stability of the catalyst. The preparation of QDs into core-shell structures is an alternative
way to stabilize QDs. In 2017, König and et al. [44] applied ZnSe/CdS core/shell QDs
(diameter = 4.0 nm) as the photocatalyst to activate the C–X bonds to obtain arylation
products. (Hetero)Aryl halides obtained electrons from the active QDs and then dehalo-
genations to form the corresponding (hetero)-aryl radicals. They followed by obtaining a
hydrogen atom from the radical cation of DIPEA to be the reduced product, or to form the
C–H arylated product with the participation of some pyrrole derivatives (Scheme 15).
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2.3.2. CdSe/CdS QDs

In 2018, Shen et al. [15] aimed to use a one-pot protocol for photoreduction of imines
to corresponding amines in the presence of CdSe/CdS core/shell QDs (diameter = 3.0 nm)
and thiophenol as the hydrogen donor. The reaction system has the advantage of wide
substrate applicability, high yield, easy amplification, and a high TON value, and can be
used for synthesis of butenafine (Scheme 16).
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Scheme 16. The reduction of imines with CdSe/CdS core/shell QDs.

There are many reports on the photoreduction of carbon dioxide using quantum dots
in the recent years. In 2019, Wu et al. [45] reported the combination of the photoreduction
of CO2-to-CO conversion and oxidative organic transformation (Scheme 17). They used
stable and high-activity CdSe/CdS core/shell quantum dots (diameter = 2.0 nm) as a
photocatalyst to produce a gas product of CO and dimerization product of mono-alcohol
simultaneously, which made full use of excited electrons and holes. It must be emphasized
that appropriate introduction of CdS layers simultaneously facilitated CO2 reduction and
Cα–H activation.
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Later, in 2021, Shen et al. [46] used the same CdSe/CdS core/shell QDs (diameter = 3.0 nm)
to selectively produce either alcohols or pinacol products from aryl aldehydes and ketones.
Here, thiophenols are not only proton and hydrogen donors, but also the hole scavengers of the
excited QDs.

CdSe/CdS core/shell QDs were used as photocatalysts in this selective reduction
reaction. Yet, it is surprising that the reaction selectivity could be controlled by controlling
the amount of thiophenol or use of base (Scheme 18). Additionally, the TON of reduction
to alcohols is up to 4 × 104, while that of pinacol coupling is up to 4 × 105. Additionally,
CdSe/CdS quantum dots can be reused ten times while maintaining the same catalytic
effects in the pinacol coupling reactions.
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3. Cadmium-Free QDs
3.1. Colloidal Core/Shell QDs
3.1.1. InP/ZnS QDs

Although there have some exciting results reported using QDs as the photocatalyst for
organic reactions, most of them used toxic metal-ion-based QDs such as cadmium. Even
though the amount of catalyst is limited, it may cause some environmental problems. Some
examples with more environmentally friendly QDs were demonstrated in recent years.
In 2019, Pillai et al. [47] presented a C–C coupling reaction between 1-phenyl pyrrolidine
and phenyl-trans-styryl sulfone, which was catalyzed by cadmium-free QDs InP/ZnS
(diameter = 2.9 ± 0.3 nm) without cocatalysts or sacrificial agents. White-light illumination
proved that InP/ZnS QDs can be used to solar photocatalysis. They also transformed
ferricyanide to ferrocyanide with the help of anionic 11-mercaptoundecanoic acid-capped
InP/ZnS QDs (Scheme 19).
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3.1.2. CuInS2/ ZnS QDs

Recently, Weiss et al. [48] reported a photocatalytic deprotection of the aryl sulfonates
by using CuInS2/ZnS core/shell QDs (diameter = 3.2 nm) as photocatalysts (Scheme 20).
It was found that a substrate containing a QD-binding group improved the rate of depro-
tection. Thus, the substrate was easily absorbed on the surface of the QDs to promote the
two electrons’ transfer. The results showed that the deprotection is selective. The sulfonyl
groups with electron-withdrawing substituents are easily removed when they coexist with
tert-butoxycarbonyl (Boc-) and toluenesulfonyl-protecting groups, even with proximate
ketones.
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3.2. Halide Perovskite QDs

The perovskite quantum dots have received extensive attention from researchers in
recent years due to their high absorption coefficient and long carrier lifetime, and they
act as the star materials in photovoltaic field. In 2017, Tüysüz et al. [49] showed the
photocatalytic polymerization reaction of 2,2′,5′,2”-ter-3,4-ethylenedioxythiophene was
triggered by CsPbBr3 QDs (length of long side = 8.9 nm, length of short side = 7.8 nm)
under visible light, with 1,4-benzoquinone as the electron acceptor that maintained QDs’
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cubic phase (Scheme 21). The polymerization reaction was promoted as the concentrations
of the CsPbI3 QDs increased. It is notable that the CsPbI3 QDs entered into the polymer
networks that had formed to change into the QD–polymer composite.
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Scheme 21. Photocatalytic polymerization reaction of 2,2′,5′,2”-ter-3,4-ethylenedioxythiophene using
CsPbI3 QDs.

In 2020, Chen et al. [50] reported that they employed CsPbBr3 nanocrystals (NCs,
edge length < 10 nm) of the longer-lived charge separated state to form a C–C bond
between 2-bromoacetophenone and octanal (Scheme 22). In situ enamine formed by
octanal and dicyclohexylamine had holes to generate radical cation, to create a reaction
with acetophenone free radical that formed by 2-bromoacetophenone obtaining electrons
from CsPbBr3 nanocrystals (NCs) and releasing bromine anions.
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Scheme 22. The construction of the C–C bond between 2-bromoacetophenone and octanal.

Very recently, Chen et al. [51] used zwitterionic ligand-capped CsPbBr3 perovskite
QDs (edge length = 10.6 ± 1.2 nm) as photocatalysts to realize the stereoselective C–C
oxidative dimerization of α-aryl ketonitriles. 3-(N,N-dimethyloctadecylammonio) propane-
sulfonate as the zwitterionic ligand not only overcame the QDs stability and reuse issues,
but also reduced the reaction time and improved the yield while maintaining the high
stereoselectivities (>99%) of dl-isomer. In addition, it was found that electron-donating
groups on the para-position of the aryl ring or a larger conjugated π system was conductive
to allowing dimerization to occur (Scheme 23).
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Scheme 23. The reaction of the stereoselective C–C oxidative dimerization of a-aryl ketonitriles.

4. Conclusions

In general, the application of quantum dots as colloidal photocatalysts to complex
organic reactions has shown some surprising results. Colloidal quantum dots have the
advantages of high yield and selectivity as visible light catalysts, and the TON value is much
higher than that of traditional photocatalysts. The quantum dot size has a strong influence
on the reaction. However, the use of quantum dots as a homogeneous photocatalyst
for organic conversion is still an on-going research theme, with both opportunities and
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challenges. The advantages of quantum dots as both homogeneous and heterogeneous
catalysts have not been well-developed. The recovery and reuse of quantum dots need to
be further studied to improve the TON of quantum dots. At the moment, the application of
Cd-free quantum dots will be a future trend due to the toxicity of cadmium. The structure,
morphology, and surface ligands of quantum dots need to be well-designed and researched
to make full use of solar energy for organic conversion. It follows that the preparation and
application of quantum dots always promote each other’s development.
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