
catalysts

Article

Synthesis of N-rGO-MWCNT/CuCrO2 Catalyst for the
Bifunctional Application of Hydrogen Evolution Reaction and
Electrochemical Detection of Bisphenol-A

Subramanian Sakthinathan 1,* , Arjunan Karthi Keyan 1, Ramachandran Rajakumaran 2, Shen-Ming Chen 2,
Te-Wei Chiu 1,* , Chaofang Dong 3 and Sivaramakrishnan Vinothini 4

����������
�������

Citation: Sakthinathan, S.; Keyan,

A.K.; Rajakumaran, R.; Chen, S.-M.;

Chiu, T.-W.; Dong, C.; Vinothini, S.

Synthesis of

N-rGO-MWCNT/CuCrO2 Catalyst

for the Bifunctional Application of

Hydrogen Evolution Reaction and

Electrochemical Detection of

Bisphenol-A. Catalysts 2021, 11, 301.

https://doi.org/10.3390/

catal11030301

Academic Editor: Carlo Santoro

Received: 30 January 2021

Accepted: 23 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Materials and Mineral Resources Engineering, National Taipei University of Technology,
No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; karthikeyan100596@gmail.com

2 Department of Chemical Engineering and Biotechnology, National Taipei University of Technology,
No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; rajvsragzz@gmail.com (R.R.);
smchen78@ms15.hinet.net (S.-M.C.)

3 Corrosion and Protection Center, Key Laboratory for Corrosion and Protection (MOE),
University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 100083, China;
cfdong@ustb.edu.cn

4 Department of Computer Science and Information Engineering, National Taipei University of Technology,
No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan; vinodhinisakthinath@gmail.com

* Correspondence: sakthinathan@ntut.edu.tw (S.S.); tewei@ntut.edu.tw (T.-W.C.)

Abstract: A glassy carbon electrode (GCE) coated with delafossite CuCrO2 loading on the nitrogen-
doped reduced graphene oxide (N-rGO) and multiwalled carbon nanotubes (MWCNT) composite
(N-rGO-MWCNT/CuCrO2) was applied to the hydrogen evolution reaction and Bisphenol-A (BPA)
detection. First, the N-rGO-MWCNT composite was prepared by in situ chemical reduction with
caffeic acid as a reducing agent. Then, CuCrO2 was accumulated on the N-rGO-MWCNT surface
to form N-rGO-MWCNT/CuCrO2 composite. The morphology structure of the N-rGO-MWCNT/
CuCrO2 composite was analyzed by different characterization techniques. Besides, the GCE/N-rGO-
MWCNT/CuCrO2 composite electrode was investigated for hydrogen evolution reaction (HER),
which shows an excellent electrocatalytic activity with a low over-potential, increasing reduction
current, and a small Tafel slope of 62 mV·dec−1 at 10 mA·cm−2 with long-term stability. Moreover,
the electrochemical determination of BPA was in the range of 0.1-110 µM, and low detection limit of
0.033 µM (S/N = 3) with a higher sensitivity of 1.3726 µA µM−1 cm−2. Furthermore, the prepared
GCE/N-rGO-MWCNT/CuCrO2 electrode shows effective detection of BPA in food samples with
acceptable recoveries. Hence, the finding of GCE/N-rGO-MWCNT/CuCrO2 can be observed as an
impressive catalyst to the electrocatalytic activity of HER and BPA oxidation.

Keywords: nitrogen-doped reduced graphene oxide; multiwalled carbon nanotubes; copper chromium
dioxide; hydrogen evolution reaction; bisphenol-A; electrochemical sensor

1. Introduction

Increasing the energy crisis, environmental pollution, climate change, and energy
shortages by excessive fossil fuel consumption, so the need to seek clean, cheap, safe
and viable renewable energy resources has become very important [1]. Hydrogen (H2)
has received considerable attention recently as a next-generation energy carrier. Besides,
H2 is used as a fuel in automobiles, fuel cells, and aerospace industries by transforming
chemical energy into electrical energy [2]. Moreover, H2 is one of the most efficient
sustainable chemical fuels and preferred environmentally sustainable green energy carriers,
which can provide fast various forms of energy in the future energy infrastructure [3,4].
Furthermore, H2 is a prospective fuel, it is produced as a by-product of the reaction of
carbon dioxide with water. At present, the predominant method for H2 production is
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the non-renewable steam reforming process, which increases fossil fuel usage and carbon
dioxide emission [1,5]. Among the other H2 production methods, water splitting technology
is the most favorable, environmental-friendly, and efficient for H2 generation [6,7]. Besides,
HER is the most promising solution due to its energy efficiency, sustainability, low cost,
and the possibility for easy commercialization. Furthermore, water electrolysis is an
environmentally sustainable technology that creates high-purity H2 flow, but the high
energy consumption of this process is the major draw-back [8,9].

Water electrocatalysis has two half-reactions, producing H2 at the cathode component
by the hydrogen evolution reaction (HER) and producing oxygen at the anode by the
oxygen evolution reaction (OER) [10,11]. The produced H2 is used as a fuel and blended
into the atmosphere with O2. Currently, Pt, Au, Ru, and Pd-based catalyst has been working
as a superior HER process, but it has some flaws, such as high cost and the minimum
amount of H2 output [6,7,10–12]. Therefore, alternative water electrolysis materials must
be produced with an economical and effective catalyst relative to the aforementioned HER
catalyst. For that reason, the best ways to mitigate manufacturing costs and reduce the
over-potential of HER have also been evaluated with various electrocatalytic materials [13].

However, there is a significant problem of reducing the overpotential for OER and,
among other criteria, improving catalyst density and stability [14]. Therefore, for renewable
energy and the global economy, there is an immediate need to design a more successful
and efficient electrocatalyst from earth-abundant materials for water electrolysis [15,16].
Presently, delafossite metal oxides have further consideration for applications due to the
higher electrocatalytic activity and well metal-oxygen bond interaction [17,18].

The general formula of the delafossite structure is the ternary oxide composition of
MIMIIIO2. It is split into two groups; monovalent cations (MI = Ag+ and Cu+) are the
first and the trivalent cations (MIII = Al3+, Cr3+, Fe3+, In3+, Co3+) are the second [19,20].
The arrangement of the delafossite has the stacking layers of two tightly packed oxygen
occupied by MIII cations, linked to form a triangular network by planes of MI cations.
Two oxygen anions from the above and below planes linearly coordinate each MI cation.
Depending on the size of the MIII cations, various oxygen intercalation spaces are required
in the triangular network of MI cations [21,22]. Even though, CuCrO2 has more interest
as compared with other ternary oxides due to their wide ranges of optical clarity and
electrical conductivity [23]. However, the CuCrO2 complex has a low surface area so it is
more important to boost the activity. Therefore, the CuCrO2 complex needs to be decorated
with a highly active and broad surface area material [24,25]. The high surface area of
carbon nanomaterials such as graphene, carbon nanofibers, and carbon nanotubes (CNTs)
have been used to help these delafossite copper complexes for greater electrocatalytic
activity [26–28].

Among the numerous carbon materials, reduced graphene oxide (rGO) has received
more attention such as high surface area, interconnected macroporous structures, higher
stability, and conductivity [29–31]. Now a day, various types of reduction methods are used
to prepare rGO including chemical vapor deposition (CVD), epitaxial growth, mechanical
exfoliation, electric arc discharge, and chemical reduction methods [32]. Among these
aforesaid methods used a significant number of toxic reducing agents such as dimethyl-
hydrazine, NaBH4, and hydrazine are used for the preparation of rGO [33,34]. Therefore,
it is more important to define an environmentally friendly reductant to reduce Graphene
oxide (GO) for the formation of rGO. Currently, eco-friendly chemicals have been used for
the preparation of rGO [35]. For this reason, environmentally friendly caffeic acid (CA) is
used for the rGO preparation. Besides, rGO has a high surface area; however, due to the
low active sites, they have insufficient catalytic activity, hence it is more important to insert
heteroatom on the graphene surface to increase the catalytic activity [36].

An introduction of nitrogen (N) on the rGO surface to be developed activation centers
for HER [37]. However, N-rGO also has some defects owing to the interaction between the
rGO sheets be aggregated and reduce the surface area [38]. To solve this problem, the N-
rGO incorporated with MWCNT to inhibit the rGO aggregation and to enhance the surface
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area of the N-rGO-MWCNT composite [39,40]. Besides, these carbon composites have been
used to increase the surface area and higher electron transfer of the CuCrO2 complex [41,
42]. The ultrafine N-rGO-MWCNT/CuCrO2 composite was prepared and decorated on
the polished GCE for the HER reaction. The obtained GCE/N-rGO-MWCNT/CuCrO2
electrode shows strong stability with efficient HER performance.

Bisphenol-A (BPA) is the key material for manufacturing epoxy resins, polycarbonate
plastic, resins, and coatings on food material pockets [43,44]. Besides, BPA is one of the
endocrine damaging compounds that are polluted by the milk bottles, landfill leachates,
paper, packaging, and plastics industries in the environment [45]. In comparison, BPA
not only impacts the growth of the fetus, but also raises the risk of diseases such as
heart disease, diabetes, and cancer [46]. Therefore, a basic and sensitive technique for the
detection of BPA is more important to create [47]. Various types of techniques, such as
immune sensors, molecular imprinting process, high-performance liquid chromatography
(HPLC), mass spectrometry, and electrochemical methods have currently been used to
detect BPA [48,49]. Among these methods of detection, electrochemical BPA detection
has greater attention with simple planning, low cost, rapid reaction, surface renewal
ease, bulk adjustment, high sensitivity, and selectivity [50]. Electrode modification by
various materials is the most important strategy for the electrochemical sensor. Hence, the
GCE/N-rGO-MWCNT/CuCrO2 electrodes were used for the electrochemical detection of
BPA. [51,52]. To investigate the limit of detection, stability, repeatability, interference ability,
and practical application in the detection of BPA. The electrodes of GCE/N-rGO-MWCNT/
CuCrO2 demonstrated impressive electrochemical sensor properties and sensitivity in
BPA detection. In this paper, the GCE/N-rGO-MWCNT/CuCrO2 electrode exhibited an
excellent electrocatalytic response toward the HER and BPA detection.

2. Results and Discussion
2.1. X-ray Diffraction (XRD) Studies

The XRD sequence of pristine (A) N-rGO, (B) MWCNT, (C) CuCrO2, and (D) N-rGO-
MWCNT/CuCrO2 composites are shown in Figure 1. The XRD spectra of N-rGO illustrate
a broad diffraction peak at 2θ = 24.8◦ for belongs to the (002) plane of amorphous nature
hexagonal graphitic carbon. Besides, the typical XRD patterns of MWCNT display (002)
and (100) peaks were found at 26.33◦ and 43.69◦, respectively. Also, the reflective spectra
of CuCrO2 complex were obtained at the 2θ values of 30.26◦, 34.52◦, 35.38◦, and 62.55◦

corresponding to the (006), (101), (012), and (110) hexagonal crystal planes of CuCrO2
(JCPDS no: 740983, PDF#39-0247). This is following the previously finding CuCrO2
diffraction. The XRD pattern of the N-rGO-MWCNT/CuCrO2 composite observes the
reflections corresponding to the N-rGO-MWCNT and CuCrO2 crystalline peaks validate
that the composite formation.
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2.2. FESEM and EDX Studies

Figure 2 shows the field emission scanning electron microscope (FESEM) experi-
ments that have identified the morphological composition of (A) N-rGO, (B) MWCNT,
(C) CuCrO2, and (D) N-rGO-MWCNT/CuCrO2 composites. The FESEM morphologies
of the N-rGO show good wrinkles and folding nanosheets on the top surface. Besides,
transparent graphene nanosheets with a much more heavily wrinkled surface are seen by
the N-rGO. The wrinkled structure raises the surface area of nanosheets and decreases
the Π–Π stacking phase of their interlayer. Moreover, the FESEM image of the MWCNT
indicates that the typical tube-like structures with the smooth surface of tangled tubes
consisting of agglomerated structure. The surface of the tubes tends to be well-formed with
increased thickness. On the other hand, the FESEM picture of CuCrO2 had a translucent,
thick cotton-like texture. It was found that the CuCrO2 powder has emitted a significant
volume of gas during the glycine-nitrate process (GNP). Finally, the FESEM images of the
N-rGO-MWCNT/CuCrO2 composite reveals that the N-rGO-MWCNT surface is coated
by a CuCrO2 complex. This indicating that the close interaction between the CuCrO2
and N-rGO-MWCNT composite. The N-rGO-MWCNT/CuCrO2 composite consists of
N-rGO- MWCNT and CuCrO2 complex combined structure. A hierarchically porous
interconnected structure with a wide internal surface area is illustrated by the N-rGO-
MWCNT/CuCrO2 composite.

Catalysts 2021, 11, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 1. XRD spectra of (A) N-rGO, (B) MWCNT, (C) CuCrO2 and (D) N-rGO-MWCNT/CuCrO2. 

2.2. FESEM and EDX Studies 
Figure 2 shows the field emission scanning electron microscope (FESEM) experi-

ments that have identified the morphological composition of (A) N-rGO, (B) MWCNT, 
(C) CuCrO2, and (D) N-rGO-MWCNT/CuCrO2 composites. The FESEM morphologies of 
the N-rGO show good wrinkles and folding nanosheets on the top surface. Besides, trans-
parent graphene nanosheets with a much more heavily wrinkled surface are seen by the 
N-rGO. The wrinkled structure raises the surface area of nanosheets and decreases the Π–
Π stacking phase of their interlayer. Moreover, the FESEM image of the MWCNT indicates 
that the typical tube-like structures with the smooth surface of tangled tubes consisting of 
agglomerated structure. The surface of the tubes tends to be well-formed with increased 
thickness. On the other hand, the FESEM picture of CuCrO2 had a translucent, thick cot-
ton-like texture. It was found that the CuCrO2 powder has emitted a significant volume 
of gas during the glycine-nitrate process (GNP). Finally, the FESEM images of the N-rGO-
MWCNT/CuCrO2 composite reveals that the N-rGO-MWCNT surface is coated by a Cu-
CrO2 complex. This indicating that the close interaction between the CuCrO2 and N-rGO-
MWCNT composite. The N-rGO-MWCNT/CuCrO2 composite consists of N-rGO- 
MWCNT and CuCrO2 complex combined structure. A hierarchically porous intercon-
nected structure with a wide internal surface area is illustrated by the N-rGO-
MWCNT/CuCrO2 composite. 

 

Figure 2. FESEM image of (A) N-rGO, (B) MWCNT, (C) CuCrO2, and (D) N-rGO-MWCNT/CuCrO2

composite.

2.3. TEM and STEM Studies

Figure 3 shows a typical TEM image of (A) N-rGO, (B) MWCNT, (C) CuCrO2, and
(D) N-rGO-MWCNT/CuCrO2 composite. TEM image of N-rGO revealed that transparent,
edges, wrinkles, and folds that are curved. In the carbon sites, the observed edges may
be due to the doping of nitrogen atoms. The TEM images of the MWCNT observe the
tubular structures with the multiple walls and they agglomerate by reason of van der Waals
interaction between the MWCNT. The narrow pipe wall structure was clear in the cross-
section of the MWCNT. It is revealed that the inner cavity of the tunnel was hollow, which
could potentially be used for modification. As exemplified the N-rGO-MWCNT/CuCrO2
composite shows the surface of N-rGO is covered by the well-dispersed CuCrO2 particles
with uniform size. The TEM image CuCrO2 was firmly attached to the N-rGO-MWCNT
composite. Based on the above results, the N-rGO-MWCNT composite is beneficial to
anchoring CuCrO2 and effectively improve the composite formation. The morphological
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structure of CuCrO2 powder exhibits quasi-hexagonal agglomeration morphology. Besides,
the crystalline size of the CuCrO2 particle was around 20 nm.
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The N-rGO-MWCNT/CuCrO2 elemental distribution was evaluated by STEM-EDS,
and the findings are mentioned in Figure 4A. All the elements (B) Cu, (C) Cr, (D) C, (E) N,
and (F) O distributions were identical and they were well scattered. The elemental mapping
findings that the composite has simple and well-dispersed regions due to the small size
of the particles. The STEM-EDS spectrum confirms that the N-rGO-MWCNT/CuCrO2
composite has been successfully established.
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2.4. FT-IR and Raman Studies

Figure 5A displays the FT-IR spectra of (a) N-rGO, (b) MWCNT, (c) CuCrO2, and
(d) N-rGO-MWCNT/CuCrO2. The FT-IR spectra of two absorption peaks at 1597 and
1270 cm−1 were seen by N-rGO, which can be a reason for the C=N and C-N bands, indi-
cating that the successful formation of N-rGO. The FT-IR studies of MWCNT reveal peaks
at 3500–3000 cm−1 for O-H stretch and 1747–1600 cm−1 for C=O stretching vibration. Be-
sides, the bending motion of C-O and O-H displays at 1310–1010 cm−1 and 950–890 cm−1,
respectively. Besides, the MWCNT displays a peak at 1680–1640 cm−1 for suggesting
that stretching vibration of -C=C-. The FT-IR spectrum of CuCrO2 indicated that the
absorption peak at about 3200–3500 cm−1 is delegated to the stretching vibration of the
-OH groups. The absorption peaks at 1480 cm−1 were CH2 symmetric vibrations. The
peaks of 1410 cm−1 and 1465 cm−1 are attributed to the symmetrical vibration of the N-
CH3 and -C-H group, respectively. In the FT-IR spectra of stretching vibrations of Cr-O
peak at 727 cm−1. Furthermore, the Cu-O bond absorption peak shows at 498 cm−1. Fi-
nally, the FT-IR spectrum of N-rGO-MWCNT/CuCrO2 composite exhibits the vibrational
bands of the CuCrO2 to confirm the effective incorporation of the copper complex into the
N-rGO-MWCNT composite.
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Raman spectroscopy can be used to describe the structural properties of carbon
materials. Figure 5B displays the Raman spectrum of (a) MWCNT, (b) CuCrO2, and (c)
N-rGO-MWCNT/CuCrO2 composite have consisted of the number of distinct peaks. The
Raman spectra of N-rGO shows at 1351 cm−1 and 1596 cm−1 can be attributed to the D
and G bands, respectively. The distinctive D-band is indicated for breathing modes and
the G-band is indicated for the vibrations mode of sp2 carbon (Figure S1). The Raman
spectra of the MWCNT show two peaks were seen at about 1329 cm−1 (D-band) and
1575 cm−1 (G-band). The D-band refers to the disordered or sp3-hybridized carbons and
the vibrations of sp2-bonded carbon atoms in MWCNT are assigned to the G-band. The
Raman spectra for the CuCrO2 sample show the peaks at 212, 447, 561, and 698 cm−1 for
the c-plane. Besides, the N-rGO-MWCNT/CuCrO2 composites could also be confirmed
by the Raman spectra. The G-band of the N-rGO changes to 1585 cm−1 and the D-band
is transferred to 1357 cm−1. Compared with N-rGO, MWCNT, and CuCrO2, the D-band



Catalysts 2021, 11, 301 7 of 20

of N-rGO-MWCNT/CuCrO2 shifts from 1335–1360 cm−1, while the G-band shifts from
1600–1610 cm−1, indicating the effective interaction between N-rGO-MWCNT composite
and CuCrO2. The N-rGO-MWCNT/CuCrO2 composite intensities ratios slightly decreased
from N-rGO, MWCNT, and CuCrO2, respectively. For the reason that the decrease in the
sp2 domain size of carbon atoms during the chemical reaction. The G-band of N-rGO-
MWCNT/CuCrO2 composite peak is moved relatively to that between N-rGO-MWCNT
composite and CuCrO2 due to the Π–Π interaction.

2.5. XPS Studies

The chemical compositions and morphological structure of the N-rGO-MWCNT/CuCrO2
composite were studied by X-ray photoelectron spectroscopy (XPS). Figure 6A shows the
full-scale survey XPS spectrum of Cu, Cr, O, C, and N indicating the formation of single-phase
N-rGO-MWCNT/CuCrO2. The N-rGO-MWCNT/CuCrO2 composite XPS survey spectra
were observed at 932 eV, 289 eV, 533.6 eV, 576 eV, and 397 eV for Cu, C, O, Cr and N, re-
spectively (Figure 6B–F). The XPS results show binding energies at 286.2 eV and 288.2 eV
represent C–N and HN–C=O, respectively. The main peak centered at 284.8 eV could be
attributed to sp2 hybridized C atoms in the reduced graphene oxide, and the left part can be
resolved into three components centered at 285.5, 288.3, and 289.9 eV, which can be assigned
to N–sp2C, –C=O, and -COOH, respectively. The finding confirms that the N atoms were
well binding onto the rGO surface. Besides, Cu2+ can be easily determined by the satellite
peaks for the binding energy of the 2p−13d9 state. Two extreme peaks located at around 952.2
and 932.5 eV are observed, which can be assigned to Cu 2p1/2 and Cu 2p3/2 as seen in the
Cu2p core level range. Furthermore, they appeared very weak satellite peaks due to the small
level of Cu2+ and Cu0 species in the samples. The XPS spectra of Cr 2p consist of Cr 2p3/2
and Cr 2p1/2 peaks that are situated at 576 eV and 586 eV, in good agreement with previous
literature. Finally, the XPS studies of CuCrO2 mentioned that the Cu and Cr are in +1 and
+3 electronic states. Hence, the above XPS results are strongly confirmed that the successful
formation of the N-rGO-MWCNT/CuCrO2 composite.

2.6. Electrochemical Impedance Spectroscopy Studies

Electrochemical impedance spectroscopy (EIS) has become a valuable method for
studying the electrode interface charge transfer. Figure 7 shows the EIS Nyquist map
of bare (a) GCE, (b) GCE/MWCNT, (c) GCE/CuCrO2, (d) GCE/rGO, and (e) GCE/N-
rGO-MWCNT/CuCrO2 electrodes was obtained in a 5.0 mM [Fe(CN)6]3−/4− solution
containing 0.1 M KCl at 100 mHZ to 100 KHz frequency. The plot typically consists of
two zones namely the linear zone and semicircle zone. A typical Nyquist plot indicating
that the semicircle section described the electron transfer resistance at a higher frequency
and the linear section described the diffusion-limited process on the electrode at a lower
frequency. It is observed that the bare GCE exhibits an Rct value of 175.12 Ω for the poor
electron transfer of the GCE electrode surface. The GCE/MWCNT and GCE/CuCrO2
electrode show the Rct value of 121 Ω and 62 Ω, respectively. The obtained Rct value of
GCE/MWCNT and GCE/CuCrO2 electrode is lower than the bare GCE. Furthermore,
the GCE/N-rGO electrode Rct value of 27.44 Ω is lower than GCE, GCE/MWCNT, and
GCE/CuCrO2 electrode. Because the GCE/N-rGO electrode has lower resistance and has a
large surface area is attributed to the higher conductivity on the electrode surface. After that,
the GCE/N-rGO-MWCNT/CuCrO2 electrode significantly delivers a very low Rct value
of 13 Ω for the synergistic effect of CuCrO2 and N-rGO-MWCNT. Besides, this suggested
that the N-rGO accelerated the electron transfer and CuCrO2 increase the electrocatalytic
activity the GCE/N-rGO-MWCNT/CuCrO2 electrode was decorated on GCE. After that,
the synergistic effect of the GCE/N-rGO-MWCNT/CuCrO2 electrode substantially offers
a very low Rct value than other modified electrodes. In addition, this mentioned that the
electron movement was accelerated by the N-rGO-MWCNT and CuCrO2 enhanced the
electrocatalytic reaction in the GCE/N-rGO-MWCNT/CuCrO2 electrode.
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and (e) GCE/N-rGO-MWCNT/CuCrO2 modified electrodes in 0.1 M KCl at 5 mM [Fe(CN)6]3−/4−.
(Inset. Enlarged image of EIS spectra).
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2.7. Hydrogen Evolution Reaction

The electrocatalytic hydrogen evolution reactions (HER) performance of N-rGO-
MWCNT/CuCrO2 were conducted in N2-saturated 0.5 M H2SO4 versus Ag/AgCl by linear
sweep voltammetry (LSV) studies and compared with N-rGO, CuCrO2, MWCNT, and
Pt/C catalysts. As shown in Figure 8A, LSV polarization studies of the N-rGO-MWCNT/
CuCrO2 catalyst specifically indicated high-efficiency performance with a lower potential of
around −198 mV at 10 mA·cm−2. The N-rGO-MWCNT/CuCrO2 composite was obtained
higher current density compared with N-rGO, CuCrO2, and MWCNT catalysts and close
to the industrial Pt/C catalyst. The low onset potential of the N-rGO-MWCNT/CuCrO2
composite in the cathodic region demonstrates high electrocatalytic performance. The
cathodic region over-potential of the GCE/N-rGO, GCE/CuCrO2, GCE/MWCNT was
observed to be approximately −378 mV, −410 mV, −570 mV at a current density of
10 mA·cm−2. This is also indicating that the current density is directly proportional to the
evolution of the volume of hydrogen. The corresponding HER reaction at the cathode
part is

2H2O + 2e− → H2 + 2OH− (1)
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The high HER performance of GCE/N-rGO-MWCNT/CuCrO2 is shown by the Tafel
slopes. The Tafel slope values determined from LSV curves indicate that the 62 mV·dec−1

slope of the N-rGO-MWCNT/CuCrO2 catalyst is much lower than that of the rGO
(119 mV·dec−1), CuCrO2 (124 mV·dec−1), and MWCNT (167 mV·dec−1). However, the
commercial Pt/C catalyst indicates the slope value of 51 mV·dec−1 as shown in Figure 8B.
Note that the bubble formation during the HER reduces the active surface area and the elec-
trode Ohmic resistance. As observed with N-rGO, CuCrO2, and MWCNT, these variables
can distort the Tafel slope. The low Tafel slope indicates that the HER on the N-rGO-
MWCNT/CuCrO2 catalyst pursues the Volmer-Heyrovsky reaction with a rate-limiting
process of desorption.

To identify the electrochemically active surface areas (ECSA) for electrodes were
identified by Cyclic Voltammetry (CV) curves were recorded under non-Faradaic potential
range. The electrochemical double-layer capacitance (Cdl) is used to evaluate the ECSA of
the electrode. As mentioned in Figure 9A, the CV response of N-rGO-MWCNT/CuCrO2
was identified at various scan rates (10–50 mVs−1). The capacitive currents of the electrode
were calculated in a potential range and the faradic process was not observed. The obtained
CV peak currents were plotted for different scanning rates and the slope is shown in
Figure 9B. The N-rGO-MWCNT/CuCrO2 electrodes have the highest Cdl versus RHE
compared with other electrodes, inferred that the efficient active sites, high surface area,
and their remarkable catalytic activity for HER.
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Figure 9. (A) CV curves of N-rGO-MWCNT/CuCrO2 were recorded at different scan rates (10–50 mVs−1) in the region of
non-faradaic potentials (0–0.30 V versus. RHE), (B) Cdl plots were obtained by linear fitting of the corresponding capacitive
current against the scan rate.

The long-term stability performance of the N-rGO-MWCNT/CuCrO2 catalyst was
examined by the CV and chronoamperometry test. The stability of the N-rGO-MWCNT/
CuCrO2 catalyst was studied under continuous tests during the HER process. As men-
tioned in Figure 10A, the cathodic current polarization curves show a small change and
consistently high current density after 1000 cycles. The negligible variations between the
starting CV curves and after 1000 cycles of CV curves, these CV studies suggest that the
N-rGO-MWCNT/CuCrO2 has excellent electrochemical stability in HER.
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Besides, the polarization curve is shown as a sawtooth shape due to the continuous
accumulation and release of H2 on the catalyst surface during the HER process. The
chronoamperometry (CA) curve with the overpotential is seen in Figure 10B, it exhibits no
cathodic current loss over 6 h of electrolysis. After 6 h chronoamperometry run, the current
density slightly degraded from the initial which could be attributed to consumption of H+

ions and the accumulation of H2 bubbles on the electrode surface to impede the reaction.
It indicates the remarkable structural stability of N-rGO-MWCNT/CuCrO2 during the
HER process.
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3. Electrochemical Detection Performance of BPA
3.1. Different Film and Effect of Different Concentration Studies

The electrochemical efficiency of the electrode was examined by CV studies and
compared to other electrodes for the sensing of BPA. Figure 11A displays the standard
CV curves of the (a) bare GCE, (b) GCE/MWCNT, (c) GCE/CuCrO2, (d) GCE/N-rGO,
and (e) GCE/N-rGO-MWCNT/CuCrO2 electrode in the existence of 10 µM of BPA in
PBS solution (pH 7.0) at a scan rate of 50 mVs−1 in the +0.2 to 1.0 V potential range.
The bare GCE does not show a BPA detection response, which indicates a very low di-
rect electron transfer of BPA to the bare GCE. After that, the GCE/MWCNT electrode
subsequently demonstrated BPA response at 0.553 V with a current density response of
−46.58 µA. The GCE/CuCrO2 modified electrode exhibited a significant anodic peak at
0.535 V with a current density response of −62.11 µA, which could be due to the enhanced
electron transfer of CuCrO2. The GCE/N-rGO modified electrode achieved better per-
formance with a higher anodic peak current of −90.22 µA at 0.544 V compared to GCE,
GCE/MWCNT, and GCE/CuCrO2 due to the remarkable electrocatalytic performance.
Remarkably, the GCE/N-rGO-MWCNT/CuCrO2 electrode exhibited a high anodic peak
of −134.6 µA at 0.557 V for BPA detection may be due to this large surface area of N-
rGO-MWCNT and high electrocatalytic activity of CuCrO2. Moreover, Figure 11B the
GCE/N-rGO-MWCNT/CuCrO2 composite electrode was compared to unmodified GCE,
the composite modified electrode shows the high responsibility toward the detection of
BPA. Therefore, at the optimal conditions, the GCE/N-rGO-MWCNT/CuCrO2 electrode
had higher electrochemical activity, faster electron transfer rate, and higher conductivity.
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image of CV curves).

3.2. Effect of Different pH and Scan Rate Studies

The electrolyte pH condition is a significant parameter for the electrochemical sensor.
Figure 12A shows, the effect of electrolyte pH value on the electrochemical detection
of BPA by using CV. The electrolyte pH changed from 3.0 to 11.0 enhanced the BPA
detection response, and achieved a higher peak current at pH of 7.0, after which it decreased
(Figure 12B). This finding shows that hydronium ions play a vital role in BPA oxidation.
The anodic peak potential of the electrolyte solution depends on the pH. Hence, the pH 7.0
was fixed as the electrolyte pH condition for further experiments. Moreover, Figure 12C
shows, increasing the electrolyte pH condition; the anodic peak potential (Epa) of BPA
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detection was moved to the negative side and obtained the following linear correlation
coefficient value of 0.9957 and slope value of –59.8 mV/pH. The slope value was almost
similar to the theoretical value due to the deprotonation involved in the oxidation at pH 7.0.
Based on the Nernst equation and the slope value, suggested that the same number of
electrons and protons were involved in the detection of BPA [48–50].
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Evaluate the influence of the scan rate (10–90 mVs−1) on the GCE/N-rGO-MWCNT/
CuCrO2 electrode toward the detection of BPA (Figure 13A). The electrochemical reaction
is normally obtained from the correlation between the rate of the scan and the peak current.
Hence, the effect of the scan rate on BPA oxidation at the GCE/ N-rGO-MWCNT/CuCrO2
was then explored by CV. Figure 13B suggests that BPA’s oxidation peak currents steadily
increased to increase the scan rate by 10–100 mVs−1 and demonstrated a linear relation
amid the BPA response current and the corresponding scan rate. The equation of linear
regression could be expressed as Ipa (µA) = −13.653 (mVs−1) + 48.17 with the correlation
coefficient of 0.9923. Besides, the BPA oxidation potential had a positive shift for increasing
scan rate. This result shows that electrochemical oxidation of BPA over the GCE/N-rGO-
MWCNT/CuCrO2 electrode is normal and regulated by the diffusion process.

Epa = E0 + [RT/αnF]In[RTK0/αnF] + [RT/αnF]Inυ (2)

where Epa was the linear correlation, k0 was rate constant, α was transfer coefficient, n
indicated electron transfer number, E0 was the redox potential, υ was the scanning rate, R
denoted the gas constant, F was the Faraday constant and T was temperature. According
to the linear relation, the slope was equal to RT/αnF. The scan rate studies demonstrate an
equal number of electron and protons transfer reactions [53]. In that, the scan rate studies
suggested that the reaction of BPA could be represented as consisting of one proton and
one electron transfer reaction.
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3.3. DPV Performance of Bisphenol-A on the GCE/N-rGO-MWCNT/CuCrO2 Electrode

Differential pulse voltammetry (DPV) is a more sensitive tool for identifying linearity,
sensitivity, and electrode detection limits than other cyclic voltammetry systems. The
electrocatalytic effect of GCE/N-rGO-MWCNT/CuCrO2 on the BPA oxidation had been
identified by the DPV technique. Figure 14A shows DPV responses of BPA detection over
the GCE/N-rGO-MWCNT/CuCrO2 in 0.05 M PBS with various concentrations addition of
BPA. The relationship between the concentration and peak oxidation currents of BPA on the
GCE/N-rGO-MWCNT/CuCrO2 was analyzed here by DPV and the result is mentioned
in Figure 14B. The peak current of BPA oxidation linearly increased to increase the BPA
concentration within the 0.05–10 µM range. Besides, the relation amid the concentration of
BPA and the peak current of oxidation was seen as Ipa (µA) =−0.4118 + 57.308 (R2 = 0.9904).
Also, the limit of detection (LOD) was calculated by the following formula LOD = 3 S/b;
here, b is the slope of the calibration curve and S is the normal peak current deviation.
The LOD was measured to be 0.033 µM and the electrode sensitivity was 1.3726 µA µM−1

cm−2, which exceeded the various forms of BPA sensors previously mentioned, as defined
in Table S1. The superior electrocatalytic activity of CuCrO2 and the large specific surface
area of the N-rGO-MWCNT composite establish strong electron transfer capability and
sensitivity of GCE/N-rGO-MWCNT/CuCrO2 electrode. Therefore, the electrochemical
results show that GCE/N-rGO-MWCNT/CuCrO2 electrode had a linear concentration
range, a lower detection limit, and an appropriate sensitivity for BPA detection. Thus, the
GCE/N-rGO-MWCNT/CuCrO2 electrode can be used for the real-time detection of trace
amounts of BPA in food samples.
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3.4. Selectivity, Stability, Repeatability, Reproducibility and Real Sample Studies

The selectivity performance of the GCE/N-rGO-MWCNT/CuCrO2 electrode was
studied under the optimal condition by the CV in the 20 µM of BPA presence in PBS solution
together with certain interference molecules and ions such as the 5-fold concentration of
other similar chemicals such as phenol, p-nitrophenol, hydroquinone, resorcinol, ascorbic
acid, dopamine, and uric acid. Also 10-fold higher concentration of metal ions such as Ca2+,
Na+, Mg2+, Fe3+, NO3−, I−, SO4

2− and PO4
3− etc. The GCE/N-rGO-MWCNT/CuCrO2

electrode shows that the BPA response was observed without any loss in the presence of
different interfering molecules and metal ions. The results prove that the GCE/N-rGO-
MWCNT/CuCrO2 electrode might be suitable for the selective detection of BPA. Moreover,
the operational stability behavior of the electrode was studied by a CV technique in the
presence of 20 µM BPA. The experimental performance shows a BPA peak current loss of
only 2.5% from the initial BPA response peak current. The obtained results show that the
GCE/N-rGO-MWCNT/CuCrO2 electrode has better operational stability.

Repeatability and reproducibility properties of the GCE/N-rGO-MWCNT/CuCrO2
electrode were carried out by cyclic voltammetry in PBS including 20 µM BPA. Figure 15A
shows the repeatability studies of the electrode shown an acceptable percentage of current
performance with 2.32% for five repeated measurements studied by using a single GCE/N-
rGO-MWCNT/CuCrO2 electrode. Besides, the GCE/N-rGO-MWCNT/CuCrO2 electrode
exhibits reasonable reproducibility of 2.74% for five independent electrochemical studies by
the five different modified electrodes (Figure 15B). These performances show more evidence
that the GCE/N-rGO-MWCNT/CuCrO2 electrode has excellent repeatability and repro-
ducibility behaviors. All of the above studies state that the GCE/N-rGO-MWCNT/CuCrO2
electrode has remarkable selectivity, stability, repeatability, and reproducibility behavior.
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Figure 16 shows the BPA real sample analysis of the GCE/N-rGO-MWCNT/CuCrO2
electrode was identified by the DPV technique using (A) green tea, (B) chips, (C) milk
and (D) coffee samples. The food samples were obtained from the local market in Taipei
and used for real sample analysis. The real sample studies exhibit that the food samples
did not identify any BPA response without the addition of BPA, which indicated that the
BPA concentration is lower in food samples than the detection limit. For this reason, the
recommended addition methods were used to recover the actual real sample analysis under
the optimized condition, and the results are represented in Table 1. From the real sample
analysis, the GCE/N-rGO-MWCNT/CuCrO2 electrode shows an admissible recovery
percentage between 93–99.0%. Therefore, these results indicate that the GCE/N-rGO-
MWCNT/CuCrO2 electrode has efficient for real sample analysis.
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Table 1. Detection of BPA in different samples by GCE/N-rGO-MWCNT/CuCrO2.

Samples Measured (µM) Added (µM) Found (µM) RSD% Recovery%

Green tea 0 10 9.5 3.2 95
20 19.8 3.7 99

Chips 0 10 9.9 3.4 98
20 19.7 2.9 98.5

Milk 0 10 9.3 3.1 93
20 19 3.3 95

Coffee samples 0 10 8.9 3.1 89
20 19.2 3.3 96

4. Experimental
4.1. Materials and Methods

Multiwalled carbon nanotube (MWCNT) (>95% purity, 10–20 nm diameter), sulfuric
acid (H2SO4) (95% purity), nitric acid (HNO3) (69.5% purity), graphite (<20 µm), copper
chloride (99% purity), chromium (III) nitrate (99% purity), and caffeic acid (≥98% purity)
were acquired from Sigma Aldrich, Taiwan. The prepared materials were characterized by
suitable physical and chemical characterization studies such as field emission scanning elec-
tron microscope (FESEM) (JEOL JSM-7610F, Tokyo, Japan), Scanning transmission electron
microscopy (JEOL FE2100, 200 kV, Tokyo, Japan) with energy dispersive X-ray analysis,
Transmission electron microscopy (JEOL FE2100, 200 kV), X-ray diffraction analysis (XRD)
(D2 Phaser, Bruker, Billerica, MA, USA) under CuKα radiation (λ = 1.5418 Å), Fourier
transforms infrared spectroscopy (FT-IR) (PerkinElmer, Inc. Waltham, MA, USA), Raman
spectroscopy (UniNanoTech Co., Ltd. ACRON, Yongin-si, Giheung-gu, Korea), X-ray pho-
toelectron spectroscopy (XPS) (JEOL JPS-9030, AlKα, Tokyo, Japan), and Electrochemical
impedance spectroscopy was performed with a ZAHNER (Kroanch, Germany) impedance
analyzer at 0.1 Hz–1 MHz. The HER performance has been determined by CHI Cyclic
Voltammetry (CV) and Linear Sweep Voltammetry studies (LSV). Besides, electrochemical
studies were carried out in (CHI750A, CHI Instrument, Austin, TX, USA) electrochemical
instrument through the three-electrode system, in which a saturated Ag/AgCl electrode
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for reference, platinum needle electrode was served as counter and glassy carbon electrode
as the working electrode.

4.2. Preparation of Nitrogen-Doped Reduced Graphene Oxide (N-rGO) by Green
Reduction Method

Graphene oxide (GO) was produced from graphite followed by the hummers prepara-
tion method [54]. In the standard procedure, graphite (10 g) was added in concentrated
sulfuric acid (100 mL) and sodium nitrate (2 g) was stirred under the ice-water bath. An
exothermic response occurred, causing it to cool down. A small amount of potassium
permanganate (5.0 g) was then added to the mixture to keep the reaction temperature
lower than 20 ◦C until the solution turned green. The reaction solution was moved to a
water bath with temperature held at 35 ◦C after 400 mL of water and 20 mL of H2O2 (30%)
was applied to the reaction system with intense stirring for approximately 1 h to extract
excess potassium permanganate. Finally, to eliminate the waste of acid, the residuals were
purified and cleaned with water. The supernatant was removed and then re-washed the
residuals three times with HCl and water again. The washed GO solution was dried to
create GO powder for 24 h using a 90 ◦C oven. The resulting solid was dried and dispersed
in water by ultrasonication for 15 min to make GO aqueous dispersion (1 g/500 mL).

Reduced graphene oxide (rGO) prepared by environmentally friendly methods and
using caffeic acid (CA) as a reducing agent [36]. Typically, the prepared GO powder is
normally dispersed in DI water accompanied by an ultra-sonication to create an aqueous
suspension. At room temperature, CA powder (0.1 mg/mL) was applied into the GO
aqueous solution and heated to 95 ◦C with the help of magnetic stirring. Then NaOH
(10 mL) was applied into the rGO for dissolving unreacted materials. The related items
were obtained by filtration and 10 times washed through the deionized water and methanol.
Eventually, after drying under vacuum conditions, rGO was derived. The N-rGO was
prepared in conjunction with this protocol. The rGO (0.5 g) was put in a tightly closed NH3
autoclave and heated for 3 h at 850 ◦C with a heating rate of 5 ◦C per minute. Then, cooling
allows room temperature will be obtained N-rGO.

The N-rGO-MWCNT to be prepared by the hydrothermal method. Briefly, 10 mg
of rGO was dispersed with purified water and placed in the sonication bath for 30 min.
After that, the calculated amount of MWCNT (10 mg) was subsequently combined with
GO dispersion and sonicated for 30 min to form a solid composite. The MWCNT are
well attracted on the N-rGO surfaces due to well interaction. The reaction mixture was
transferred to the hot plate for heating at 160 ◦C for 6 h after that cooled at room temperature.
A black color solid product was centrifuged and washed with purified water to form an
N-rGO-MWCNT composite.

4.3. Preparation of CuCrO2 Decorated Nitrogen-Doped Reduced Graphene Oxide/Multi-Walled
Carbon Nanotubes Composite (N-rGO-MWCNT/CuCrO2)

For the CuCrO2 powder preparation, copper nitrate, chromium nitrate, and glycine
were used as starting reagents. It was determined that the glycine-to-metal nitrate molar
ratio was 1.5. To obtain clear solutions, the necessary quantities of copper nitrate, chromium
nitrate, and glycine solution were dissolved in water. After stirring at 80 ◦C for 2 h to
evaporate the water, and the precursor solution was heated to 100 ◦C. After that, the
solution was allowed to dry for 24 h to produce a translucent content. This transparent
substrate was heated to about 300 ◦C and then ignited forming CuCrO2 powder [23–25].

Besides, the N-rGO-MWCNT/CuCrO2 composite was prepared following these pro-
cedures. The CuCrO2 (5 mg) was dissolved in water (10 mL) and added to N-rGO-
MWCNT (10 mg) for 30 min with sonicated to form N-rGO-MWCNT/CuCrO2 composite.
The non-covalent stacking attraction between N-rGO-MWCNT and CuCrO2 leads to
the development of composites of N-rGO-MWCNT/CuCrO2. The working electrode of
GCE/N-rGO-MWCNT/CuCrO2 was prepared by following these procedures. The N-rGO-
MWCNT/CuCrO2 composite dispersion 8 µL was decorated onto the pre-cleaned GCE
and drying it at room temperature for used further electrochemical sensor studies.
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For HER studies, the N-rGO-MWCNT/CuCrO2 composite (5 mg) was dispersed in
100 µL of water and 375 µL of isopropanol with 25 µL of 5% Nafion polymer solution
was applied for 30 min by ultra-sonication. Then, 10 µL of the N-rGO-MWCNT/CuCrO2
composite dispersion liquid was decorated on the GCE and used as the working electrode
(Scheme 1) for HER studies. Usage of the same method applied for N-rGO, CuCrO2,
MWCNT, and Pt/C electrode modification for comparison studies.
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