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Abstract: A formal homogeneous gold-catalyzed A3-coupling, starting from benzyl alcohols, is
reported for the straightforward synthesis of propargylamines. This is the first process where these
highly valuable compounds have been synthesized, starting from the corresponding alcohols in a
one-pot oxidation procedure using MnO2, followed by a HAuCl4·3H2O catalyzed multicomponent
reaction. The final products are obtained with very good yields in short reaction times, which is
of fundamental interest for the synthesis of pharmaceuticals. The usefulness and efficiency of our
methodology is successfully compared against the same reaction starting from aldehydes.

Keywords: benzyl alcohols; gold; multicomponent; one-pot; propargylamine

1. Introduction

Nowadays, organic synthesis is more focused on both efficiency and environmental
sustainability due to increasing concern about the prevention of pollution and waste mini-
mization, as the main aims of Green Chemistry. Among the number of developed processes,
one-pot procedures [1–4] and multicomponent reactions (MCR) [5–7] are at the forefront
of these green and eco-friendly approaches. In the last decade, these protocols have been
the center of great attention, especially in the pharmaceutical industry, because of the easy
formation of large libraries of organic compounds with biological activities [8–11]. These
processes are interesting due to the necessity of a single reaction vessel, while minimizing
chemical waste, saving time, solvents and energy, and simplifying practical aspects.

The oxidation of primary alcohols is one of the main reactions in organic synthesis to
directly obtain aldehydes [12]. Many organic reactions start from aldehydes and some of
them lead to products of biological interest. However, the direct use of different aldehydes
could be considered sometimes somewhat toxic, more expensive and overall, more difficult
to handle and work with. Moreover, we realized that when using aldehydes, the catalytic
traces of acid contained in these reagents could negatively affect the results of the processes
(yield and/or enantioselectivity), which might inhibit the catalyst performance [13]. In this
field, we pioneered one of the scarce approaches where the in situ-generated aldehyde was
further used in an ulterior organocatalytic reaction [14]. It is remarkable that although there
exist different protocols for the oxidation of alcohols, the subsequent use of the carbonyl
group generated in the oxidation step in a cascade catalytic process is rarer [15–19]. We
envisaged that the catalytic reactions starting from the corresponding alcohol would be
more convenient than those starting from aldehydes, mainly due to the higher availability
and easy handling of the former. Additionally, it is interesting for the final outcome of
the reaction, since sometimes the high reactivity of the aldehyde could interfere in other
aspects of the multi-step synthesis.
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Among the plethora of reactions in the literature that start from an aldehyde, the
three-component A3-coupling for the synthesis of propargylamines and catalyzed by a
transition metal between an aldehyde, an alkyne and an amine is of great relevance [20–26].
This approach is the focus of continued interest and has been established as a general route
for the construction of nitrogen-containing compounds, giving rise to appealing scaffolds
with interesting biological properties (Figure 1). It is remarkable the presence of propargy-
lamine cores in compounds such as Pargyline I, a biological active compound involved
in the inhibition of MAO-B (Monoamine Oxidase B) and used against neurodegenerative
diseases such as Parkinson’s or Alzheimer’s [27,28]. DPC 961 II is also an interesting active
compound, used as a second-generation NNRTI (non-nucleoside reverse transcriptase
inhibitors) drug with enhanced activity compared to Efavirenz, the treatment of human
immunodeficiency virus (HIV) infection [29–31]. Moreover, 1,2,3,4-tetrahydroisoquinoline
alkaloids III and IV are interesting natural products also obtained after a propargylamine
intermediate [25].
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On the other hand, in the last two decades, the chemistry of gold as a catalyst has
emerged as a powerful tool to promote numerous organic transformations [32–43]. It is
worth noting that the use of gold catalysts, in homogeneous catalysis, for the preparation
of propargylamines has been reported so far [44–55]. There are also pivotal examples of
the use of gold nanoparticles in heterogeneous catalysis [56–67]. Due to the importance of
the propargylamine structural cores, the development of new more straightforward and
sustainable methodologies for building these skeletons is still of great interest. During
the preparation of this work, Hwang’s group reported the pioneering preparation of
propargylamines by a visible-light-mediated copper-catalyzed photoredox hydrogen-atom
transfer process [68]. The process was developed using CuCl (5 mol%) and benzoquinone
(1.2 equiv.) at room temperature with blue LEDS (light-emitting diodes) and after, up
to 24 h. Later on, Shahverdizadeh’s group reported the use of silica-encapsulated gold
nanoparticles as a nano-reactor for aerobic oxidation of benzyl alcohols and heterogeneous
tandem preparation of final propargylamines [69]. It is also remarkable the work pioneered
by Dabiri’s group in 2014 in a similar reaction, using gold nanoparticles supported on
graphene oxide with ionic liquid framework (Au@GO-IL) using high temperature (100 ◦C)
and water as a solvent [70]. However, and to the best of our knowledge, the method
reported here is the simplest one to synthesize propargylamines starting from an alcohol
and with commercially available oxidant and catalyst. Therefore, this work could represent
a crucial precedent of this undeveloped approach (Scheme 1).
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Scheme 1. Hypothesis of work for a A3-coupling reaction starting from benzyl alcohols.

2. Results and Discussion

Focused on our previous work [14] and analyzing many different oxidants reported
in the literature, we chose activated manganese dioxide, MnO2, as the mildest oxidant
and as the most selective and efficient one to straightforward obtain the corresponding
aldehydes [71].

We started with a selection of representative and accessible metallic salts (Table 1,
entries 1–5). Interestingly, all catalysts assayed were able to promote the catalytic reaction,
adding all the reagents in a one-pot/multicomponent procedure, without the necessity
of isolating the in situ-generated aldehyde 2a. Remarkably, the gold derivative afforded
a total conversion of the process after 2 h of reaction, with a 5 mol% of catalyst and with
better results in comparison with the other tested species (Table 1, entry 1).

Table 1. Screening of the reaction condition using a model reaction (a).
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(a) Otherwise indicated: benzyl alcohol 1a (0.5 mmol) was solved in 0.5 mL of toluene and MnO2 (1–5 equiv.)
was further added. Then, the oxidation step was performed at 80 ◦C for 30 min. Subsequently, HAuCl4·3H2O
(1–5 mol%), piperidine 4a (0.55 mmol) and phenylacetylene 3a (0.6 mmol) were added to the same vessel at 80 ◦C
for 2.5 h. (b) Yields calculated by 1H-NMR vs the aldehyde as the limiting reagent.

In a second step, we studied the variation of catalyst loading, using HAuCl4·3H2O
from 5 to 1 mol% (Table 1, entries 1, 6–9). In all cases, the final products were obtained with
excellent results after a short reaction time (3 h). At this point, we decided to continue with
2 mol% of gold in the subsequent study. Finally, we explored in more detail the oxidation
of benzylic alcohol 1a to give the corresponding benzaldehyde 2a with different amounts of
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MnO2 (Table 1, entries 10–13). To our delight, the best conditions were obtained using only
3 equiv. of MnO2 in toluene at 80 ◦C and after only 30 min of reaction for the oxidation step.
It is worth noting that the normal conditions using MnO2 in other oxidation processes of
benzyl alcohols required longer reaction times (1 to 70 h or longer) and greater amounts of
equivalents of MnO2 (between 5 and 20) [12]. Therefore, we have successfully achieved to
smooth the reaction conditions for this step, considerably decreasing the necessary amount
of oxidation source.

With the best reaction conditions in hand, we explored the viability of our working
hypothesis studying the scope of the reaction using different alcohols 1, alkynes 3 and
amines 4 (Table 2).

Table 2. Scope of the one-pot/multicomponent preparation of propargylamines 5 (a).
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1 Ph, 1a Ph, 3a Piperidine, 4a 3 97
2 4-MeC6H4, 1b Ph, 3a Piperidine, 4a 6 87
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4 (d) 3-NO2C6H4,
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5 4-BrC6H4, 1e Ph, 3a Piperidine, 4a 6 94
6 4-ClC6H4, 1f Ph, 3a Piperidine, 4a 3 93
7 3-ClC6H4, 1g Ph, 3a Piperidine, 4a 3 98
8 4-FC6H4, 1h Ph, 3a Piperidine, 4a 3 94
9 Ph, 1a Ph, 3a Pyrrolidine, 4b 4 98

10 Ph, 1a Ph, 3a Morpholine, 4c 3 96
11 4-CNC6H4, 1i Ph, 3a Morpholine, 4c 6 85
12 Ph, 1a Ph, 3a Bu2NH, 4d 18 95
13 Ph, 1a Ph, 3a Et2NH, 4e 18 96

14 (c) Ph, 1a 4-MeC6H4, 3b Piperidine, 4a 5 98
15 (c,e) Ph, 1a Me3Si, 3c Piperidine, 4a 18 98
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(a) Alcohol 1a–i (0.5 mmol) was solved in 0.5 mL of toluene and MnO2 (1.5 mmol, 144.9 mg) was further added.
Then, the oxidation step was performed at 80 ◦C for 30 min. Subsequently, HAuCl4·3H2O (2 mol%), amine 4a–e
(0.55 mmol) and alkyne 3a–c (0.6 mmol) were added to the same vessel at 80 ◦C for the necessary reaction time.
(b) Isolated yield after column chromatography (neutral alumina, n-hexane:diethylether 95:5). (c) Using 3 mol% of
HAuCl4·3H2O. (d) The oxidation step takes 1 h to be completed. (e) Using 2 equiv. of ethynyltrimethylsilane 3c.
(f) For a preparative scale, 4 mmol of 1a is used.

In general, the final propargylamines 5 were obtained with very good yields (up to
98%) after column chromatography. The results do not suggest a clear correlation between
the reactivity of the process with the electronic properties of the starting alcohols. However,
it can be inferred that there is a slightly reduced reactivity when the in situ-generated
aldehydes bear electron donor substituents, as would be expected (see 1b and 1c, entries 2
and 3). Interestingly, the reaction worked well for different cyclic and non-cyclic secondary
amines (4a–e) and various alkynes (3a–c), obtaining in all cases almost quantitative yields
(>95%). It is remarkable that this catalytic system allows for scaling up the reaction, since
the same excellent result, in terms of reactivity, was obtained when the reaction was scaled
up 8 times (Table 2, entry 16).

The structures of the final products of this protocol have been also confirmed by the
single-crystal analysis of compounds 5aaa and 5caa (Figure 2).
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Figure 2. X-ray crystal structures of 5aaa and 5caa.

In order to prove that our methodology is efficient and that it could be the best option,
we have compared the results of the process starting from the alcohol 1d–g,i or from the
corresponding commercially available aldehyde (without purification) 2d–g,i (Table 3).

Table 3. Comparative one-pot/multicomponent process starting from the alcohol 1d–g,i and the
aldehyde 2d–g,i (a,b).
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(a) Alcohol 1d–g,i (0.5 mmol) was solved in 0.5 mL of toluene and MnO2 (1.5 mmol, 144.9 mg) was further added.
Then, the oxidation step was performed at 80 ◦C for 30 min. Subsequently, HAuCl4·3H2O (2 mol%), amine 4a,c
(0.55 mmol) and alkyne 3a (0.6 mmol) were added to the same vessel at 80 ◦C for the necessary reaction time.
(b) HAuCl4·3H2O (2 mol%) was solved in 0.5 mL of toluene and then, aldehyde 2d–g,i (0.5 mmol), amine 4a,c
(0.55 mmol) and alkyne 3a (0.6 mmol) were added at 80 ◦C for the necessary reaction time. (c) Conversion by
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It is remarkable that starting from the alcohols 1d–g,i, the reaction gives rise to better
conversions in all cases after the same reaction time, in comparison with aldehydes 2d–g,i.
Hence, quantitative conversions are obtained with alcohols, while the reactions with the
aldehydes are slower. As commented in the Introduction Section, it is well-known that
aldehydes have traces of acid, generated in the bottle of the reagents over time. However,
we believe that these traces are not generated during the oxidation step, since between
the in situ generation of the aldehyde and the successive catalytic gold process, where the
aldehyde is consumed, only a short time goes by (3–18 h). Therefore, when aldehydes
are used, these traces can influence the reactivity of the process and, consequently, the
yield of the reaction, supporting the differences found, as we previously observed for other
different processes [13,14].
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Additionally, in order to know if the MnO2 can participate somehow in the successive
catalytic step, beyond the oxidation step, we have first performed a background reaction
starting from aldehyde 2a and in the absence of gold (Scheme 2a). However, the propargy-
lamine is not formed. Therefore, the MnO2 does not catalyze the process by itself alone and
the gold catalyst is necessary. An additional proof has been carried out, also adding 3 equiv.
of MnO2 in the catalytic gold reaction starting from aldehyde 2e and 2f (Scheme 2b) in
order to know if the presence of MnO2 in the medium can increase the yield of the reaction.
In these cases, almost the same conversions were found (87% and 87%) as those reported in
entries 4 and 6 (Table 3), respectively. Therefore, we can discard, as far as we know, the role
and participation of the MnO2 in the successive steps of the catalytic mechanism, neither
catalyzing the formation of the propargylamine by itself nor helping in some of the steps
of the catalytic cycle. These findings support the use of alcohols in many processes instead
of the corresponding aldehydes, as a more convenient, stable and easier to handle reagent,
and the importance of our developed methodology.
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After an in situ oxidation of the alcohol, the generated aldehyde 2 initially reacts
with the secondary amine, giving rise to the iminium ion A. A concomitant step is the
formation of a π-metal–alkyne intermediate B, involving a C–H activation of the alkyne
by the gold catalyst. Complex B should make the alkyne proton more acidic for further
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abstraction. The in situ-generated metal acetylide C reacts with the iminium ion A, leading
to the formation of the propargylamines 5, releasing the gold catalyst for the subsequent
catalytic cycle (Scheme 3).

3. Materials and Methods

Purification of reaction products was carried out by column chromatography using
silica-gel (0.063–0.200 mm). Analytical thin-layer chromatography was performed on
0.25 mm silica gel 60-F plates. ESI (electrospray ionization) and MicroTof-Q mass analyzer
(Zaragoza, Spain) were used for HRMS (high resolution mass spectrometry) measurements.
1H NMR spectra were recorded at room temperature on a BRUKER AVANCE 400 spec-
trometer (Zaragoza, Spain) (1H, 400 MHz) or on a BRUKER AVANCE II 300 spectrometer
(Zaragoza, Spain) (1H, 300 MHz), with chemical shifts (ppm) reported relative to the
solvent peaks of the deuterated solvent. CDCl3, CD3CN and CD3COCD3 were used as
the deuterated solvents. Chemical shifts were reported in the δ scale relative to residual
CHCl3 (7.28 ppm), CH3CN (1.94 ppm) and CH3COCH3 (2.05 ppm) for 1H-NMR and to
the central line of CDCl3 (77.16 ppm), CD3CN (1.32 ppm) and CD3COCD3 (29.84 ppm) for
13C-APT NMR.

All reactions were performed under air atmosphere and solvents and reagents were
used as received without further purification or drying. All reagents were commer-
cially available.

The spectroscopic data recorded for the products obtained: 5aaa [72], 5baa [73],
5caa [74], 5daa [75], 5eaa [74], 5faa [74], 5gaa [73], 5haa [75], 5aab [76], 5aac [75], 5iac [77],
5aad [78], 5aae [79], 5aba [77] and 5aca [77], are in agreement with values previously re-
ported by other authors. However, we report in the Supplementary Material the 1H NMR
and 13C-APT NMR spectra for each final compound as a proof of their obtainment.

3.1. General Procedure for the Au-Catalyzed One-Pot/Multicomponent A3 Synthesis of
Propargylamines 5

Alcohol 1a–i (0.5 mmol) was solved in 0.5 mL of toluene and MnO2 (1.5 mmol,
144.9 mg) was further added. Then, the oxidation step was performed at 80 ◦C for 30 min.
Subsequently, HAuCl4·3H2O (2 mol%), amine 4a–e (0.55 mmol) and alkyne 3a–c (0.6 mmol)
were added to the same vessel at 80 ◦C for the necessary reaction time (Table 2). When the
reaction is over, the remaining MnO2 is filtered, washing the crude with AcOEt, the solvent
was evaporated under vacuum, and the extract was purified by column chromatography
(neutral alumina, n-hexane:diethylether 95:5), giving rise to the corresponding final adducts
5 with very good results.

3.2. Characterization of Propargylamines 5

1-(1,3-Diphenylprop-2-ynyl)piperidine (5aaa) [72]: Following the general procedure
described in Table 2, compound 5aaa was isolated by column chromatography after 3 h of
reaction at 80 ◦C as a yellow solid in 97% yield. HRMS (ESI+) calcd for C20H21N 276.1747;
found 276.1739 [M + H].

1-(3-Phenyl-1-p-tolylprop-2-ynyl)piperidine (5baa) [73]: Following the general proce-
dure described in Table 2, compound 5baa was isolated by column chromatography after
6 h of reaction at 80 ◦C as a yellow solid in 87% yield. HRMS (ESI+) calcd for C21H24N
290.1903; found 290.1910 [M + H].

1-(1-(Naphthalen-1-yl)-3-phenylprop-2-ynyl)piperidine (5caa) [74]: Following the
general procedure described in Table 2 but using 3 mol% of HAuCl4·3H2O, compound
5caa was isolated by column chromatography after 4 h of reaction at 80 ◦C as a yellow
solid in 90% yield. HRMS (ESI+) calcd for C24H24N 326.1903; found 326.1891 [M + H].

1-(1-(3-Nitrophenyl)-3-phenylprop-2-ynyl)piperidine (5daa) [75]: Following the gen-
eral procedure described in Table 2, compound 5daa was isolated by column chromatog-
raphy after 3 h of reaction at 80 ◦C as a yellow solid in 90% yield. HRMS (ESI+) calcd for
C20H21N2O2 321.1598; found 321.1586 [M + H].
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1-(1-(4-Bromophenyl)-3-phenylprop-2-ynyl)piperidine (5eaa) [74]: Following the gen-
eral procedure described in Table 2, compound 5eaa was isolated by column chromatog-
raphy after 6 h of reaction at 80 ◦C as a yellow solid in 94% yield. HRMS (ESI+) calcd for
C20H21BrN 354.0852; found 354.0851 [M + H].

1-(1-(4-Chlorophenyl)-3-phenylprop-2-ynyl)piperidine (5faa) [74]: Following the gen-
eral procedure described in Table 2, compound 5faa was isolated by column chromatog-
raphy after 3 h of reaction at 80 ◦C as a yellow solid in 93% yield. HRMS (ESI+) calcd for
C20H21ClN 310.1357; found 310.1346 [M + H].

1-(1-(3-Chlorophenyl)-3-phenylprop-2-ynyl)piperidine (5gaa) [73]: Following the gen-
eral procedure described in Table 2, compound 5gaa was isolated by column chromatog-
raphy after 3 h of reaction at 80 ◦C as a yellow solid in 98% yield. HRMS (ESI+) calcd for
C20H21ClN 310.1357; found 310.1357 [M + H].

1-(1-(4-Fluorophenyl)-3-phenylprop-2-ynyl)piperidine (5haa) [75]: Following the gen-
eral procedure described in Table 2, compound 5haa was isolated by column chromatog-
raphy after 3 h of reaction at 80 ◦C as a yellow solid in 94% yield. HRMS (ESI+) calcd for
C20H21FN 294.1653; found 294.1641 [M + H].

1-(1,3-Diphenylprop-2-ynyl)pyrrolidine (5aab) [76]: Following the general procedure
described in Table 2, compound 5aab was isolated by column chromatography after 4 h of
reaction at 80 ◦C as a yellow solid in 98% yield. HRMS (ESI+) calcd for C19H20N 262.1590;
found 262.1594 [M + H].

4-(1,3-Diphenylprop-2-ynyl)morpholine (5aac) [75]: Following the general procedure
described in Table 2, compound 5aac was isolated by column chromatography after 3 h of
reaction at 80 ◦C as a yellow solid in 96% yield. HRMS (ESI+) calcd for C19H20NO 278.1539;
found 278.1528 [M + H].

4-(1,3-diphenylprop-2-yn-1-yl)morpholine (5iac) [77]: Following the general proce-
dure described in Table 2, compound 5iac was isolated by column chromatography after
6 h of reaction at 80 ◦C as a yellow solid in 85% yield. HRMS (ESI+) calcd for C20H19N2O
303.1492; found 303.1489 [M + H].

N-Butyl-N-(1,3-diphenylprop-2-ynyl)butan-1-amine (5aad) [78]: Following the general
procedure described in Table 2, compound 5aad was isolated by column chromatography
after 18 h of reaction at 80 ◦C as a yellow solid in 95% yield. HRMS (ESI+) calcd for
C23H30N 320.2373; found 320.2362 [M + H].

N,N-diethyl-1,3-diphenylprop-2-yn-1-amine (5aae) [79]: Following the general proce-
dure described in Table 2, compound 5aae was isolated by column chromatography after
18 h of reaction at 80 ◦C as a yellow solid in 96% yield. HRMS (ESI+) calcd for C19H22N
264.1747; found 264.1737 [M + H].

1-(1-Phenyl-3-p-tolylprop-2-ynyl)piperidine (5aba) [77]: Following the general proce-
dure described in Table 2, compound 5aba was isolated by column chromatography after
5 h of reaction at 80 ◦C as a yellow solid in 98% yield. HRMS (ESI+) calcd for C21H24N
290.1903; found 290.1894 [M + H].

1-(1-phenyl-3-(trimethylsilyl)prop-2-ynyl)piperidine (5aca) [77]: Following the general
procedure described in Table 2, compound 5aca was isolated by column chromatography
after 18 h of reaction at 80 ◦C as a yellow solid in 98% yield. HRMS (ESI+) calcd for
C17H26NSi 272.1829; found 272.1821 [M + H].

3.3. Crystal Structure Determinations

Crystals were mounted in inert oil on glass fibers and transferred to the cold gas
stream of a Bruker Apex Duo diffractometer (Zaragoza, Spain), equipped with a low-
temperature attachment. Data were collected using monochromated MoKα radiation
(λ = 0.71073 Å). Scan typeω. Absorption correction based on multiple scans was applied
using SADABS. The structures were solved by direct methods and refined on F2 using the
program SHELXL-2016 [80]. All non-hydrogen atoms were refined anisotropically. CCDC
(Cambridge Crystallographic Data Centre) deposition numbers 2067799 (5aaa) and 2067800
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(5caa) contain the supplementary crystallographic data. These data can be obtained free of
charge by The Cambridge Crystallography Data Center.

4. Conclusions

The results reported in this manuscript represent a straightforward and sustainable
synthesis of propargylamines, compounds of extraordinary importance in pharmaceutical
chemistry, starting from readily available alcohols. The procedure progresses with excellent
yields in a short time and using commercially available oxidant and catalyst. We showed
that it is not only possible to avoid starting directly from aldehydes for the preparation of
propargylamines, but also the atomic economy and yield efficiency properties are preserved
maintaining the original characteristics of a one-pot protocol followed by a MCR process.
This one-pot/multicomponent reaction starting from alcohols to generate aldehydes and a
subsequent cascade reaction with amines and alkynes to reach the desired final products
under gold catalysis could be considered as a formal A3-coupling reaction. Our developed
procedure represents a pivotal example of this undeveloped approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/catal11040513/s1, Figure S1: 1H and 13C-APT (CD3COCD3) NMR spectra of 1-(1,3-diphenylprop-2-
ynyl)piperidine (5aaa), Figure S2: 1H (CDCl3) and 13C-APT (CD3CN) NMR spectra of 1-(3-phenyl-
1-p-tolylprop-2-ynyl)piperidine (5baa), Figure S3: 1H (CD3COCD3) and 13C-APT (CD3CN) NMR
spectra of 1-(1-(naphthalen-1-yl)-3-phenylprop-2-ynyl)piperidine (5caa), Figure S4: 1H and 13C-APT
(CD3CN) NMR spectra of 1-(1-(3-nitrophenyl)-3-phenylprop-2-ynyl)piperidine (5daa), Figure S5: 1H
and 13C-APT (CD3CN) NMR spectra of 1-(1-(4-bromophenyl)-3-phenylprop-2-ynyl)piperidine (5eaa),
Figure S6: 1H and 13C-APT (CD3COCD3) NMR spectra of 1-(1-(4-chlorophenyl)-3-phenylprop-2-
ynyl)piperidine (5faa), Figure S7: 1H and 13C-APT (CD3CN) NMR spectra of 1-(1-(3-chlorophenyl)-
3-phenylprop-2-ynyl)piperidine (5gaa), Figure S8: 1H and 13C-APT (CD3CN) NMR spectra of 1-
(1-(4-fluorophenyl)-3-phenylprop-2-ynyl)piperidine (5haa), Figure S9: 1H (CDCl3) and 13C-APT
(CD3CN) NMR spectra of 1-(1,3-diphenylprop-2-ynyl)pyrrolidine (5aab), Figure S10: 1H and 13C-
APT (CD3CN) NMR spectra of 4-(1,3-diphenylprop-2-ynyl)morpholine (5aac), Figure S11: 1H and
13C-APT (CD3CN) NMR spectra of 4-(1-morpholino-3-phenylprop-2-yn-1-yl)benzonitrile (5iac),
Figure S12: 1H (CDCl3) and 13C-APT (CD3CN) NMR spectra of N-butyl-N-(1,3-diphenylprop-2-
ynyl)butan-1-amine (5aad), Figure S13: 1H and 13C-APT (CD3CN) NMR spectra of N,N-diethyl-
1,3-diphenylprop-2-yn-1-amine (5aae), Figure S14: 1H and 13C-APT (CD3CN) NMR spectra of
1-(1-phenyl-3-p-tolylprop-2-ynyl)piperidine (5aba), Figure S15: 1H (CDCl3) and 13C-APT (CD3CN)
NMR spectra of 1-(1-phenyl-3-(trimethylsilyl)prop-2-ynyl)piperidine (5aca).
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