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Abstract: Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method,
and their NH3-SCR activities were tested. The results showed that Er modification could obviously
promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and
mechanism were explored in detail using various techniques, such as BET, XRD, H2-TPR, XPS,
TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2

catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which
was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through
the “fast SCR” reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3

species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between
adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates
formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on
FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation
or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the
presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption
on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to
proceed in E–R mechanism rather than L–H mechanism.

Keywords: FeMn/TiO2; Er modification; SCR; SO2 resistance; low temperature

1. Introduction

Nitrogen oxides (NOx) emitted from diesel engines and industrial processes are
significant atmospheric pollutants, which can lead to a number of environmental problems,
such as acid rain, photochemical smog, ozone depletion, and greenhouse effects [1–4].
During the past decades, a number of NOx removal technologies have been developed with
the purpose of abating NOx emissions. Among them, selective catalytic reduction (SCR)
with NH3 (or urea) as a reductant is an effective and economic NOx removal technique.
It has been widely used in stationary and mobile sources [5–7]. In SCR systems, catalysts
play a critical role in creating an efficient reaction and controlling the construction cost [8].
At present, V2O5-WO3/TiO2 and V2O5-MoO3/TiO2 catalysts have been used extensively
in commercial projects. However, there are still several disadvantages, such as the narrow
catalytic temperature window (300–400 ◦C) and toxic effect of vanadium species, limiting
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their further applications [9,10]. Therefore, it is of great significance to develop vanadium-
free SCR catalysts with excellent catalytic activities at low temperatures (<250 ◦C).

In recent years, more and more researchers around the world are trying to develop
high-activity low-temperature SCR catalysts. Several kinds of transition metals, such as
Mn, Co, Fe, Cu, and Ni, have been extensively studied and exhibited promising SCR
performance [11–15]. It is worthy to point out that FeMn/TiO2 catalysts have been investi-
gated extensively due to their advantages of excellent low-temperature SCR performance,
environmentally friendly nature, and low cost [16–18]. However, there are still some chal-
lenging problems for FeMn/TiO2 catalysts to overcome, including poor N2 selectivity and
weak tolerance to SO2 and H2O.

Generally, when a certain concentration of SO2 gas co-exists in flue gas, ammonium
sulfates and/or metal sulfates are unavoidably formed on the SCR catalyst surface. They
block and destroy active sites on SCR catalyst surface, causing the deactivation of low-
temperature catalysts. To enhance SO2 resistance of FeMn/TiO2 catalysts, a promising
method is to modify the catalysts with other metal elements, further inducing some syner-
getic effects between the dopants and Fe-Mn-Ti oxides [19–21]. Jiang et al. demonstrated
that doping Zr in FeMn/TiO2 catalyst could enhance the formation of NO2 in the SCR
reaction, thus improve the tolerance of SO2 [19]. Hou et al. found that the addition of
proper amount of praseodymium (Pr) to FeMn/TiO2 catalyst could restrain the deposition
of ammonium sulfates, thus improve the catalyst stability against SO2 poisoning [22]. A
similar conclusion was drawn from their other work in whichSO2 resistance for NH3-SCR
at low temperature was enhanced by the doping of lanthanum (La) [23]. The adsorption
and oxidation of SO2 on the catalyst were inhibited by La modification.

Erbium (Er) is a kind of rare earth element. It has been applied as a doping additive
in various fields due to the incompletely occupied 4f and empty 5d orbitals [24]. For
example, Er-doped ZnO (EZO) have been widely studied and expected as one of the
promising materials for ZnO based optoelectronic device. The incorporation of Er could
affect the band gap and optical constants of ZnO thin films [25]. Er was also used to
enhance the sonocatalytic performance of organic dye degradation [26]. The prepared
Er3+:YAlO3/TiO2-Fe2O3 composite demonstrated a good sonocatalytic activity. Er3+ ion is
an attractive optical activator and displays the richest spectra in the UV-vis-IR range due
to its rich energy level structure.

The application of Er in the field of NH3-SCR catalysts is rare. However, it has been
used as doping additives to enhance the NH3-SCR performance of V and Ce based catalysts.
Vargas et al. found that Er modification on V2O5-WO3/TiO2 catalyst could improve the
catalytic activity of catalysts after ageing [27], and the addition of Er caused modifications
in symmetric deformation modes of ammonia coordinated on Lewis acid sites. Casanova
et al. found that Er mixed with FeVOx supported on TiO2-WO3-SiO2 could enhance the
structural and textural stability of the system by hindering the transformation of anatase to
rutile, thus enhance activity after thermal treatment [28]. Kim et al. found that Er doping in
CeVOx catalyst could enhance redox features and improve the quantities of acid sites and
defects. This led to the high-performance of NH3-SCR reaction [29]. Jin et al. found that
Er doping could increase oxygen storage capacities and oxygen vacancy concentrations
of CeZr/TiO2 catalysts, resulting in excellent SCR activity and SO2 resistance [30]. It was
considered that the introduction of Er into SCR catalysts was in favor of enhancing the
structural and textural stability, redox property, improving the mounts of acid sites and
oxygen vacancy, and blocking anatase transformation to rutile. It was possible to improve
the activity and SO2 resistance of FeMn/TiO2 catalysts by doping with Er. However, to
the best of our knowledge, the promotional effect of Er incorporation on SO2 resistance for
NH3-SCR at low temperature over FeMn/TiO2 catalysts has not been investigated yet.

In the present study, a series of Er-modified FeMn/TiO2 catalysts with different Er/Mn
molar ratios were successfully synthesized via the wet impregnating method. NH3-SCR
activity and SO2 resistance over the prepared catalysts were tested. The promotional effects
of Er modification on SO2 resistance were studied systematically by various characteriza-
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tion techniques with the fresh and used catalysts. Finally, the possible mechanisms for the
excellent SO2 tolerance over Er-modified FeMn/TiO2 catalysts were discussed.

2. Results
2.1. Low Temperature SCR Activity and SO2 Resistance

Figure 1a and Figure S1a show the activities of ErxFeMn/TiO2 catalysts prepared
with different Er/Mn molar ratios across a temperature window of 60–240 ◦C. Compared
to the FeMn/TiO2 catalyst, Er0.01FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts exhibited
higher NOx conversion efficiencies over the whole temperature range. But the activity at
low temperature (<120 ◦C) decreased sharply when further increasing Er doping amount.
The result indicated that, the low-temperature catalytic performance of FeMn/TiO2 cat-
alyst could be enhanced by doping only a small amount of Er. As shown in Figure 1a,
Er0.05FeMn/TiO2 catalyst possessed more than 95% NOx conversion efficiency in the tem-
perature range of 120–240 ◦C. Since the NOx conversion performance of Er0.05FeMn/TiO2
catalyst was better than those of other catalysts over the whole temperature range, a proper
Er doping molar ratio of 0.05 (Er/Mn) was chose for further investigation in this work.
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Figure 1. NOx conversion (a), resistance to sulfur poisoning test (b), resistance to water vapor poisoning test (c), resistance
to water vapor and sulfur poisoning test (d) during the NH3-SCR reaction over FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts.
(Reaction conditions: 1 mL catalyst, [NO] = [NH3] = 500 ppm, [O2] = 5 vol.%, [SO2] = 100 ppm (when used), 5% H2O (when
used), balanced with N2, GSHV = 30,000 h−1).

The N2 selectivity of the prepared catalysts in the temperature range of 60–240 ◦C is
illustrated in Figure S1b. It could be seen that the N2 selectivity of FeMn/TiO2 catalyst
at 100 ◦C was 92.4%, but quickly decreased to 18.8% as reaction temperature increased
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to 240 ◦C. N2 selectivity of the prepared FeMn/TiO2 catalyst was not so good, and this
result was similar to that of some previous work [31]. The poor N2 selectivity could
be ascribed to the formation of unwanted N2O through some side reactions [32]. When
the Er doping molar ratio was 0.01, the effect of Er doping on N2 selectivity in the whole
temperature range was negligible. However, when further increasing Er doping molar ratio,
N2 selectivity of Er-modified catalysts improved obviously. The higher the Er doping molar
ratio was, the better N2 selectivity was. Here, the enhancement effect on N2 selectivity was
mainly ascribed to the inhibition of N2O formation by the introduction of Er element.

In order to investigate the SO2 tolerance of FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts,
the SO2 resistance of these two catalysts was tested in the presence of 100 ppm SO2. As
shown in Figure 1b, the NOx conversion efficiency of FeMn/TiO2 catalyst decreased quickly
from 100% to 56.0% after introducing SO2 in feeding gas for 6 h, and it could be restored to
61.0% after stopping SO2 for 2 h. Compared with FeMn/TiO2 catalyst, Er0.05FeMn/TiO2
catalyst displayed much better SO2 resistance performance. After the introduction of SO2
in feeding gas, NOx conversion efficiency of Er0.05FeMn/TiO2 catalyst decreased slowly,
and it could be maintained at 90.8% after exposure to 100 ppm SO2 for 6 h. After stopping
the injection of SO2 for 2 h, NOx conversion efficiency of Er0.05FeMn/TiO2 catalyst could
recover to 95.5%. This result indicated that the introduction of Er element could greatly
improve SO2 resistance performance of FeMn/TiO2 catalysts.

Generally, a small amount of H2O vapor will exist in the flue gas of stationary and mo-
bile sources. Here, 5% H2O was introduced in the feeding gas to test the H2O resistance of
the selected catalysts. As shown in Figure 1c, the NOx conversion efficiency of FeMn/TiO2
catalyst decreased gradually from 100% to 88.0% after introducing 5% H2O for 6 h, and
it could be recovered to 100% quickly by stopping H2O injection. This indicated that the
deactivation of FeMn/TiO2 catalyst by H2O was reversible. By contrast, Er0.05FeMn/TiO2
catalyst exhibited excellent H2O resistance performance. The introduction of 5% H2O had
little effect on the NOx conversion efficiency of Er0.05FeMn/TiO2 catalyst during the whole
reaction process.

The effect of coexistence of 100 ppm SO2 and 5% H2O in feeding gas on NOx conver-
sion performance of FeMn/TiO2 catalysts with and without Er modification was also eval-
uated, and the results are illustrated in Figure 1d. It was clear that coexistence of SO2 and
H2O imposed a much greater impact on FeMn/TiO2 catalyst than that for Er0.05FeMn/TiO2
catalyst. NOx conversion efficiency of FeMn/TiO2 catalyst decreased quickly from 100% to
18.0% after introducing SO2 and H2O for 6 h. As to Er0.05FeMn/TiO2 catalyst, the change
trend of NOx conversion efficiency was similar to the case exposed to single SO2. NOx
conversion efficiency of Er0.05FeMn/TiO2 catalyst decreased slowly from 100% to 84.7%
after injection of SO2 and H2O for 6 h. Therefore, a conclusion could be drawn that the
resistance to SO2 and H2O of FeMn/TiO2 catalyst could be enhanced obviously by Er
modification.

Previous studies reported that there were two main reasons for the deactivation of
catalysts suffered from SO2 poisoning [33–35]. On one hand, NH3 used as NO reductant
would react with SO2 at low temperature, and the generated ammonium sulfates would
cover on the catalyst surface which would block the active sites. One the other hand, the ac-
tive species of the catalysts would also react with SO2 to form inactive metal sulfates, which
were destructive to the NH3-SCR reaction. According to the SO2 resistance tests in this
work, the introduction of Er element could greatly improve SO2 resistance performance of
FeMn/TiO2 catalysts at 200 ◦C. It is known that ammonium sulfates can be decomposed at
230–400 ◦C [36], while metal sulfates can be decomposed at a much higher temperature [37].
In view of this, it was possible that Er modification restrained the formation of ammonium
sulfates and inactive metal sulfates to some extent, thus preventing the active sites being
blocked or deactivated. The mechanisms of the enhancement effect of Er modification on
SO2 resistance were further analyzed through the following characterizations.
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2.2. BET Results

N2 adsorption-desorption isotherms of FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts
are shown in Figure 2. According to IUPAC classification, the adsorption isotherms of
all the catalysts were type IV, suggesting that the mesoporous structures of the prepared
catalysts were not changed after SO2 resistance tests [38]. The specific surface areas, pore
volumes, and pore sizes of these catalysts were shown in Table S1. The specific surface
areas of FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts were 58.6 and 59.5 m2/g, respectively.
After SO2 resistance tests, the specific surface area of FeMn/TiO2-S catalyst decreased by
10.9%, while that of Er0.05FeMn/TiO2-S catalyst decreased by 3.5% only. It implied that a
certain amount of ammonium sulfates had been formed on the surface of both kinds of
catalysts due to the reaction between NH3 species and SO2 [33]. As the decrease in specific
surface area of Er0.05FeMn/TiO2 catalyst was much less than that of FeMn/TiO2 catalyst, it
demonstrated that Er modification could effectively restrain the formation of ammonium
sulfates on the surface of FeMn/TiO2 catalyst.
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Figure 2. N2 adsorption/desorption isotherms of the fresh and used FeMn/TiO2 and
Er0.05FeMn/TiO2 catalysts.

2.3. XRD Analysis

Figure 3 presents the XRD patterns of FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts.
The diffraction peaks of 2θ at 25.3◦, 36.9◦, 38.6◦, 48.0◦, 53.9◦, 55.1◦, and 62.7◦ could be
assigned to anatase TiO2 characteristic peaks (ICCD PDF-2, 21-1272), and the diffraction
peaks of 2θ at 33.0◦, 38.2◦, and 55.1◦could be assigned to Mn2O3 characteristic peaks (ICCD
PDF-2, 65-7467). It could be seen that all catalysts exhibited distinct anatase TiO2 diffraction
peaks, and no obvious diffraction peaks of rutile TiO2 were found. The diffraction peaks
of MnOx in the prepared FeMn/TiO2 catalyst matched well with the standard powder
diffraction pattern of Mn2O3, implying Mn2O3 was the main crystal phase. The diffraction
peaks of Mn2O3 in Er-modified FeMn/TiO2 catalysts were not obvious. This suggests that
Er modification promoted the transformation of MnOx from crystalline state to highly
dispersed amorphous state, which was beneficial to enhance the catalytic performance at
low temperature [39,40]. After the SO2 resistance test, there were more peaks appeared
in the diffraction pattern of the used FeMn/TiO2 catalyst, which could be ascribed to the
formation of Ti(SO4)2 on catalyst surface (ICCD PDF-2, 18-1406) [41]. However, the same
diffraction peak of Ti(SO4)2 was not observed in the diffraction pattern of Er0.05FeMn/TiO2-
S catalyst. Since sulfates would cover active sites on the surface of FeMn/TiO2 catalysts, it
might be the main reason for the FeMn/TiO2 catalyst’s low SCR activity. This result also
agreed well with the aforementioned SO2 resistance test results. Furthermore, it could
also demonstrate that Er doping in FeMn/TiO2 catalysts was in favor of inhibiting the
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formation of sulfates on the catalyst surface, thus improving SO2 tolerance of Er-modified
FeMn/TiO2 catalysts.
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2.4. H2-TPR Analysis

The redox properties of FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts were investigated
via H2-TPR, and the results are shown in Figure 4. The reduction peak temperatures and H2
consumption values were listed in Table S2. As for the FeMn/TiO2 catalyst, there were three
reduction peaks: the low temperature reduction peak centered at 313 ◦C could be assigned
to the reduction of MnO2 to Mn2O3, the peak centered at 389 ◦C belonged to the reduction
of Mn2O3 to MnO or Fe2O3 to Fe, and the peak centered at 582 ◦C belonged to the reduction
of Mn3O4 to MnO [18,42]. Compared to ErFeMn/TiO2 catalyst, all the reduction peaks
of Er0.05FeMn/TiO2 catalyst were shifted toward low temperature direction, indicating
that Er0.05FeMn/TiO2 catalyst had a better redox ability at low temperature. As shown
in Table S2, the total H2 consumption value of Er0.05FeMn/TiO2 catalyst was much more
than that of FeMn/TiO2 catalyst, indicating the number of reductive species on the surface
of Er0.05FeMn/TiO2 catalyst was much more than that of FeMn/TiO2 catalyst. The low
reduction temperature and high H2 consumption value demonstrated that Er modification
could improve the low-temperature redox ability of FeMn/TiO2 catalysts [33]. This result
also agreed well with the improved SCR activity of Er-modified FeMn/TiO2 catalysts at a
low temperature.
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After SO2 resistance tests, the reduction peaks of the used catalysts shifted toward a
higher temperature zone. As shown in Figure 4b, there were three reduction peaks in the
profiles of these two kinds of catalysts. Their strongest peaks were centered at 457 ◦C and
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460 ◦C, respectively, which were related to the reduction of sulfate species (Mn sulfates) [33].
The corresponding H2 consumption value (151.6 cm3/g STP) for the strongest reduction
peak of Er0.05FeMn/TiO2-S catalyst was less than that (194.8 cm3/g STP) of FeMn/TiO2-S
catalyst. It suggested that less amount of sulfate species had been formed on the surface
of Er0.05FeMn/TiO2 catalyst. The peaks centered at 379 and 360 ◦C could be assigned to
the reduction of MnO2 and Mn2O3 [38], and the corresponding H2 consumption value
(39.3 cm3/g STP) for Er0.05FeMn/TiO2-S catalyst was much more than that (24.1 cm3/g
STP) of FeMn/TiO2-S catalyst. It indicated that Er modification was favorable to maintain
the redox ability of FeMn/TiO2 catalyst when SO2 coexisted in feeding gas. It was possible
that Er modification on FeMn/TiO2 catalyst could alleviate the deactivation due to the
reaction between active species and SO2, thus inhibiting the formation of Mn sulfate species
on the catalyst surface.

2.5. XPS Analysis

The surface compositions and elementary oxidation states of the fresh and used
catalysts (FeMn/TiO2 and Er0.05FeMn/TiO2) were analyzed by X-ray photoelectron spec-
trometer (XPS). The spectra of Mn 2p, O 1s and S 2p are shown in Figure 5, and the
analysis results of surface atomic concentration ratios are presented in Table S3. As shown
in Figure 5a, two main peaks assigned to Mn 2p3/2 and Mn 2p1/2 were observed in the
spectra of the catalysts. The overlapping peaks of Mn 2p3/2 could be divided into sev-
eral sub-peaks with Shirley-type background. The obtained peaks could be ascribed to
Mn2+ (640.9–641.7 eV), Mn3+ (642.0–643.0 eV) and Mn4+ (643.3–644.5 eV), respectively [37].
The atomic ratio of Mn4+ to Mnn+ was decided according to the peak area. As shown in
Table S3, the atomic ratios of Mn4+/Mnn+ for FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts
were 31.9% and 33.9%, respectively. It suggested that more surface Mn4+ species were
generated with the introduction of Er. This result was in accordance with the result of H2-
TPR, in which the area of the reduction peak ascribed to MnO2 to Mn2O3 in the profile of
Er0.05FeMn/TiO2 catalyst was larger than that of FeMn/TiO2 catalyst. Kapteijn et al. found
that NO removal efficiency at low temperature for manganese oxides decreased in an order
of MnO2 > Mn5O8 > Mn2O3 > Mn3O4 [43]. The high catalytic activity of MnO2 (Mn4+) was
ascribed to its lattice defects [44]. Here, it could be inferred that the formation of more
surface Mn4+ species was conducive for achieving a high NOx conversion efficiency over
Er0.05FeMn/TiO2 catalyst, as shown in Figure 1a. Compared with the fresh FeMn/TiO2
and Er0.05FeMn/TiO2 catalysts, the peaks of Mn 2p3/2 for the used catalysts were shifted
toward higher binding energy (from 641.8 and 642.1 to 642.3 and 642.5 eV, respectively). It
indicated that Mn atoms in the used catalysts were not only bonded to O atoms, but also
to the atoms with lower electronegativity [38]. According to S 2p spectra in the XPS and
the analysis results of H2-TPR, it was speculated the atoms with lower electronegativity
might be originated from Mn sulfates [37,38]. The shift of binding energy of the used
FeMn/TiO2 catalyst before and after SO2 resistance test was more obvious than that for
Er0.05FeMn/TiO2 catalyst. It implied that Er modification inhibited the formation of sul-
fates to a certain extent. In addition, Mn atomic concentration on the surface of FeMn/TiO2
catalyst decreased by 4.4% after SO2 resistant test, while that of Er0.05FeMn/TiO2 catalyst
decreased by only 0.5%. It demonstrated that Er modification could also inhibit the loss of
Mn active species on the surface of catalysts, and thus improving the SO2 resistance.
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XPS spectra of O 1s over the fresh and used catalysts were divided into two sub-
peaks, and the results are presented in Figure 5b. The sub-peaks centered at 529.7–530.3 eV
could be assigned to lattice oxygen O2− (denoted as Oβ). The sub-peaks centered at
530.9–531.9 eV could be assigned to surface chemisorbed labile oxygen (denoted as Oα), in-
cluding defect oxide (O2

2–) and hydroxyl-like group (O−) [45,46]. The surface chemisorbed
labile oxygen (Oα) was not only beneficial for oxidizing NO into NO2, but also contributive
to the generation of more active intermediate species such as –NH2 and adsorbed NO2
during the NH3-SCR process [31,47]. Thus, the surface chemisorbed labile oxygen could
exhibit better catalytic activity than lattice oxygen. The ratio of Oα to (Oβ + Oα) was
calculated according to the relative peak areas. As shown in Table S3, Oα/(Oβ + Oα) ratio
of Er0.05FeMn/TiO2 catalyst was 45.7% which was much higher than that of FeMn/TiO2
catalyst (20.9%). It indicated that Er modification was favorable for forming more surface
chemisorbed labile oxygen species on the catalyst surface. This result was in accordance
with that of catalytic activity tests in which Er0.05FeMn/TiO2 catalyst exhibited higher NOx
conversion efficiency than that of FeMn/TiO2 catalyst. Here the increase of chemisorbed
labile oxygen ratio was ascribed to the interaction between Er and Ti, which could enhance
the formation of oxygen vacancies on the catalyst surface [30]. After SO2 resistance tests,
both binding energy peaks of surface chemisorbed labile oxygen (Oα) and lattice oxygen
(Oβ) were shifted toward higher values compared to those of the fresh catalysts. It im-
plied that O− and O2

− might be bonded with other substances when the catalysts were
poisoned by SO2. Despite that, the surface chemisorbed labile oxygen (Oα) concentration
of Er0.05FeMn/TiO2-S catalyst was still much higher than that of the FeMn/TiO2-S catalyst.
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The XPS spectra of S 2p for the used catalysts are shown in Figure 5c. The two sub-
peaks could be ascribed to S6+ in the form of SO4

2– (168.6–168.9 eV) and S4+ in the form of
SO3

2– (169.7–170.1 eV), respectively [33,48,49]. It demonstrated that sulfate and sulfite salts
had been formed on the catalyst surface after SO2 resistance tests, possibly as ammonium
or Mn salts. This result could not only explain the shift of binding energy found in XPS, but
also confirm Ti(SO4)2 diffraction peak detected in XRD. In addition, as shown in Table S3,
the contents of S and N on the surface of Er0.05FeMn/TiO2 catalyst were 2.8% and 1.6%,
respectively, which were much less than those of FeMn/TiO2 catalyst (5.3% and 2.2%),
suggesting that Er modification could inhibit the formation of sulfate and/or sulfite salts
on the catalyst surface when SO2 coexisted in feeding gas.

2.6. TG Analysis

In order to further investigate the surface compounds of the catalysts poisoned by
SO2, thermogravimetric analysis of FeMn/TiO2-S and Er0.05FeMn/TiO2-S catalysts were
performed, and the TG-DTG curves are presented in Figure 6. Four temperature steps
could be found in the weight loss curves of the catalysts. In the temperature range from
room temperature to 200 ◦C (Step 1), the weight losses were assigned to the evaporation
of physically absorbed H2O on the catalysts [50]. As (NH4)2SO4 and NH4HSO4 would
be decomposed completely when heating temperatures were above 230 and 350 ◦C, re-
spectively [51], the weight losses in the temperature range of 200 to 400 ◦C (Step 2) was
mainly ascribed to the decomposition of (NH4)2SO4 and NH4HSO4. In the temperature
range of 500–650 ◦C (Step 3), the weight losses were related to the phase transformation
of metal oxides [52]. The weight losses in the temperature range of 650–900 ◦C (Step 4)
were mainly attributed to the decomposition of MnSO4 [37]. The weight loss in the second
step for Er0.05FeMn/TiO2-S catalyst was 0.281% which was obviously less than that for
FeMn/TiO2-S catalyst (0.671%). The intensities of DTG curves (Step 2) for Er0.05FeMn/TiO2-
S catalyst were lower than those of FeMn/TiO2-S catalyst. It indicated that less (NH4)2SO4
and NH4HSO4 were formed on Er-modified catalyst compared with FeMn/TiO2 catalyst.
These results agreed well with the XPS spectra of S 2p. The TG-DTG results further proved
that less sulfates formed on the surface of Er-modified FeMn/TiO2 catalysts during SCR
reaction in the presence of SO2.
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2.7. In-Situ DRIFTS

Aiming to get further insight into the adsorption behavior and the reaction mechanism
during NH3-SCR process in the presence of SO2 at low temperature, in-situ DRIFTS
experiments were performed at relatively low temperature (200 ◦C).

2.7.1. Adsorption of SO2

Figure 7 shows in-situ DRIFTS spectra of SO2 adsorption over FeMn/TiO2 and
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Er0.05FeMn/TiO2 catalysts. After pretreatment of each catalyst sample, 500 ppm SO2
(50 mL/min) was introduced for 30 min, and then IR spectra were recorded. Several bands
were observed in the ranges of 800–2000 cm−1. The bands at 1060, 1162, 1284 cm−1 were
ascribed to the mononuclear bidentate sulfate complex [38]. The band around 1613 cm−1

was attributed to the sulfates formed by the weak adsorption of SO2, while the band at
1344 cm−1 was ascribed to the asymmetric stretching vibration of O=S=O in sulfates [38].
It could be seen that the intensities of all the bands over Er0.05FeMn/TiO2 catalyst were
similar with those over FeMn/TiO2 catalyst, implying that Er modification had no obvious
effect on the SO2 adsorption over the FeMn/TiO2 catalyst.
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2.7.2. Effect of SO2 on NH3 Adsorption on Catalyst Surface

In order to investigate the effect of SO2 on NH3 adsorption on the catalysts, in-
situ DRIFTS spectra of the co-adsorption of NH3 + SO2 at 200 ◦C were analyzed. After
pretreatment, the catalysts were pre-adsorbed with 500 ppm NH3 (50 mL/min) for 30 min,
then 100 ppm SO2 was introduced, and the IR spectra were measured as a function of time.

As shown in Figure 8a, several bands were found in the spectra of FeMn/TiO2 catalyst
after the adsorption of NH3 for 30 min. The strong absorbed bands (1166 and 1605 cm−1)
were assigned to coordinate NH3 on Lewis acid sites, and the weak band (1450 cm−1)
was assigned to NH4

+ species on Brønsted acid sites [37,45,53]. After the introduction
of SO2, the absorbance intensities of all the adsorbed bands increased obviously. With
the introduction of SO2, the absorbance intensity of the band (1166 cm−1) assigned to
NH4

+ species on Brønsted acid sites was enhanced gradually, and a new band (1678 cm−1)
assigned to NH4

+ species on Brønsted acid sites appeared in the spectra. Zhang et al.
also reported that SO2 could promote the generation of NH4

+ species on Brønsted acid
sites [38]. However, the band (1166 cm−1) corresponding to NH3 species on Lewis acid
sites decreased gradually, and almost disappeared after 5 min of SO2 injection. At the
same time, three bands appeared at 1261, 1144 and 1033 cm−1 which were ascribed to
sulfates, and they were also enhanced with the increase of SO2 injection duration [38]. It
indicated that the adsorption of NH3 on Lewis acid sites was inhibited by the introduction
of SO2, thus reducing the SCR activity at low temperature. As shown in Figure 8b, the
change in absorbed bands of Er0.05FeMn/TiO2 catalyst was similar to that of FeMn/TiO2
catalyst. However, the intensity of the band (1169 cm−1) corresponding to NH3 species on
Lewis acid sites increased gradually with the introduction of SO2 for 30 min. According
to the previous study, adsorbed NH3 species on Lewis acid sites played a key role in SCR
activity at low temperature [54]. Here it was concluded that the inhibition of competitive
adsorption between SO2 and NH3 species on Lewis acid sites was a contributive factor to
high SO2 tolerance of Er-modified FeMn/TiO2 catalysts.
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Figure 8c exhibits the in-situ DRIFTS spectra of NH3 adsorption on FeMn/TiO2-S and
Er0.05FeMn/TiO2-S catalysts at 200 ◦C. After adsorption of 500 ppm NH3 for 30 min and
N2 purging, several bands ascribed to various NH3 species were found in the spectra of
the fresh catalysts. The strong absorbed bands (1166 and 1605 cm−1) were assigned to
asymmetric and symmetric bending vibrations of the N–H bonds in NH3 coordinated to
Lewis acid sites, and the weak band (1450 cm−1) was assigned to the asymmetric bending
vibrations of ionic NH4+ bonded to the Brønsted acid sites [37,45,53,55]. The intensities of
all of bands over Er0.05FeMn/TiO2 catalyst were higher than those over the FeMn/TiO2
catalyst. It demonstrated that there were more Lewis acid sites and Brønsted acid sites
existed on the surface of Er0.05FeMn/TiO2 catalyst. As to the used catalysts, the intensity
of the bands (1609 and 1084 cm−1) ascribed to NH3 species adsorbed on Lewis acid sites
decreased obviously due to the formation of new bands (1260 and 1032 cm−1) ascribed
to sulfate species [37,38]. However, the intensities of the bands (1684 and 1443 cm−1)
ascribed to NH4+ species adsorbed on Brønsted acid sites increased remarkably due to
the formation of sulfate species during the SO2 resistance tests. Some previous studies
reported that the formation of sulfates on the catalyst surface could result in an increase in
the amount of NH4+ species adsorbed on Brønsted acid sites and a decrease in the amount
of NH3 species adsorbed on Lewis acid sites [17,55,56]. Here the decrement of adsorbed
NH3 species on Lewis acid sites and the increment of adsorbed NH4+ species on Brønsted
acid sites over Er0.05FeMn/TiO2-S catalyst were much less compare to FeMn/TiO2-S
catalyst. It demonstrated that Er modification improved the NH3 adsorption on Lewis
acid sites of Er0.05FeMn/TiO2-S catalyst, and less sulfate species formed on the surface of
Er0.05FeMn/TiO2-S catalyst. As a result, Er modification on FeMn/TiO2 catalyst improved
the SO2 tolerance during the NH3-SCR process at a low temperature.
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2.7.3. Effect of SO2 on NO + O2 Adsorption on Catalyst Surface

To understand the effect of SO2 on NOx adsorption on FeMn/TiO2 and Er0.05FeMn/TiO2
catalysts, each catalyst was exposed to 500 ppm NO and 5% O2 at 200 ◦C for 30 min, then
100 ppm SO2 was introduced. As shown in Figure 8a, with the introduction of NO + O2
for 30 min, several bands of adsorbed NOx species appeared at 1575, 1380, 1366, and
1262 cm−1 in the spectra of FeMn/TiO2 catalyst, which were ascribed to bidentate nitrate
(1575 cm−1) [53], M-NO2 nitro compounds (1380 and 1366 cm−1) [53], and monodentate
nitrate (1262 cm−1) [53], respectively. With the introduction of SO2, all bands in the spectra
of FeMn/TiO2 catalyst exhibited an obvious decrease in intensity. Moreover, several new
bands (1602, 1270, 1159 and 1069 cm−1) ascribed to sulfates appeared with the injection of
SO2, and the absorbance intensities of these bands increased gradually. It indicated that
SO2 could restrain the adsorption of NOx species on FeMn/TiO2 catalysts. In other words,
there was obvious competitive adsorption between NO and SO2 which would inhibit the
SCR reaction under L-H mechanism. It might be the reason for the low NOx conversion
efficiency in the presence of SO2 for FeMn/TiO2 catalyst [57]. The inhibiting effect of
SO2 on NOx adsorption on Er0.05FeMn/TiO2 catalyst surface was quite similar to that for
FeMn/TiO2 catalyst. But the absorbance intensity of the band (1601 cm−1) assigned to
sulfates was obviously lower than that of FeMn/TiO2 catalyst, indicating that less sulfate
species formed on Er0.05FeMn/TiO2 catalyst.

Figure 9c exhibits the in-situ DRIFTS spectra of 500 ppm NO and 5% O2 adsorption on
FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts at 200 ◦C. After adsorption of NO and O2 for
30 min and purging with N2, several bands were found in the spectra of the fresh catalysts,
which could be ascribed to bidentate nitrate (1575 cm−1) [53], M-NO2 nitro compounds
(1380 and 1366 cm−1) [53], and monodentate nitrate (1262 cm−1) [53], respectively. After
SO2 resistance tests, the intensities of the bands ascribed to NOx species in the spectra
of both used catalysts decreased dramatically. It implied that the formation of nitrate
species could be inhibited by SO2 adsorption. In addition, the negative bands (1326 and
1311 cm−1) ascribed to the displacement of the sulfates were found on FeMn/TiO2-S and
Er0.05FeMn/TiO2-S catalysts. This indicated that competitive adsorption between NO and
SO2 occurred on the surface of FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts [58].

According to the in-situ DRIFTS results mentioned above, it can be confirmed that
the adsorption of NO on FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts was deeply inhibited
by SO2, while the inhibition effect of SO2 on NH3 adsorption over the Er0.05FeMn/TiO2
catalyst was much weaker than that over the FeMn/TiO2 catalyst. As a result, the reac-
tion through the Langmuir–Hinshelwood (L–H) mechanism for these two catalysts was
suppressed severely. While the inhibiting effect on the reaction through Eley–Ridel (E–R)
mechanisms for Er0.05FeMn/TiO2 catalyst was obviously weaker than that for FeMn/TiO2
catalyst. Therefore, Er modification promoted SO2 resistance of the FeMn/TiO2 catalyst
during the NH3-SCR process at low temperature.
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3. Discussion

In our present work, compared to the FeMn/TiO2 catalyst, Er0.05FeMn/TiO2 exhibited
better SCR activity and SO2 tolerance at a low temperature. According to the analysis results
of H2-TPR, XPS and in-situ DRIFTS, the increased amounts of Mn4+ (Equations (5) and (6)),
surface chemisorbed labile oxygen (Equation (4)) and Lewis acid sites (Equation (1)) were
considered as the dominant factors which were beneficial to achieve high SCR activity
at low temperature for Er0.05FeMn/TiO2 catalyst. When SO2 was introduced in feeding
gas, the adsorbed NH3 species and Mn4+ active species could react with the adsorbed SO2
species (Equations (10) and (11)). The generated (NH4)2SO4 and MnSO4 could not only
block the active sites, but also suppress the redox cycles and the relevant reactions [59,60].
Based on the analysis results of BET, XRD, H2-TPR, XPS, TG-DTG and in-situ DRIFTS,
the amounts of ammonium sulfates and metal sulfates generated on Er0.05FeMn/TiO2
catalyst were obviously less than those for FeMn/TiO2 catalyst. Thus, the SO2 tolerance of
FeMn/TiO2 catalyst was remarkably enhanced by Er modification.

NH3 (g)→ NH3 (ad)(Lewis acid sites) (1)

NO (g)→ NO (ad) (2)

SO2 (g)→ SO2 (ad) (3)

O2 (g)→ 2O−(ad) (4)
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NH3 (ad) + Mn4++O−(ad)→ NH2 (ad) + Mn3+ + OH (5)

NO (ad) + Mn4++O−(ad)→ Mn3++NO2(ad) (6)

NO (g) + NH2(ad)→ NH2 NO(ad) (7)

NH2NO(ad)→ N2(g) + H2O(ad) (8)

2NH3(ad) + NO2 (ad)+NO(g)→ 2N2+3H2O (9)

4NH3(ad) + 2SO2(ad) + O2+2H2O→ 2(NH 4)2SO4 (10)

MnO2+SO2(ad)→ MnSO4 (11)

2NH3 + NO + NO2 → 2N2 + 3H2O (12)

According to the result of in-situ DRIFTS, competitive adsorptions of SO2 with NO and
NH3 would occur after the introduction of SO2. Therefore, the adsorption and activation
of NO and NH3 on FeMn/TiO2 catalyst would be inhibited greatly (Equations (1) and (2)),
further suppressing the subsequent SCR reactions. However, coexisting SO2 only imposed
a slight impact on NH3 adsorption on Lewis acid sites of Er0.05FeMn/TiO2 catalyst, thus
NH3-SCR reaction through E-R mechanism could proceed in a normal way. It played
a key role for achieving excellent SO2 tolerance over the Er0.05FeMn/TiO2 catalyst. In
addition, XPS analysis results indicated that the amounts of Mn4+ and surface chemisorbed
labile oxygen on the surface of Er0.05FeMn/TiO2 catalyst were much more than those
for FeMn/TiO2 catalyst. It was reported that abundant Mn4+ and surface chemisorbed
labile oxygen species were beneficial for fast SCR reaction (Equation (12)) [61,62], which
would accelerate the consumption of adsorbed NH3 species on Er0.05FeMn/TiO2 catalyst.
Therefore, the competitive adsorption of SO2 and NH3 species could be inhibited by Er
modification on FeMn/TiO2 catalyst. The reaction between adsorbed SO2 and NH3 species
was limited, resulting in less ammonium sulfates formed on the surface of Er-modified
FeMn/TiO2 catalyst. According to the results and discussions mentioned above, the
promotional effect and mechanism of Er modification on SO2 resistance for NH3-SCR at
low temperature over FeMn/TiO2 catalysts are illustrated in Figure 10.
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4. Materials and Methods
4.1. Catalysts Preparation

A facile wet impregnating method was used to prepare Er-modified FeMn/TiO2
catalysts. The molar ratio of Fe/Mn/Ti was fixed at 2:6:15 while Er/Mn molar ratios
varied in the range of 0–0.2. In a typical preparation process, 1.686 g Fe(NO3)3·9H2O,
3.143 Mn(NO3)2·4H2O and a certain amount of Er(NO3)2·6H2O were dissolved in 100 mL
deionized water, successively. 2.5 g TiO2 powder (Degussa P25) was added into the mixture
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solution, followed by stirring thoroughly at 80 ◦C for 2 h. Then, the ammonia solution
(28 wt.%) was added dropwise until solution pH reached at 10. Subsequently, the precipi-
tate was collected by vacuum filtration, dried at 120 ◦C overnight, and calcined at 500 ◦C for
3 h in air. All the catalysts were crushed and sieved to 40–60 mesh for activity evaluation.
Here Er-modified FeMn/TiO2 catalysts were denoted as ErxFeMn/TiO2, where x repre-
sented various Er/Mn molar ratios (0.01, 0.05, 0.1 and 0.2). For comparison, FeMn/TiO2
catalyst without Er modification was also prepared by using the same method without the
addition of Er salt. The FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts after SO2 resistance
experiments were denoted as FeMn/TiO2-S and Er0.05FeMn/TiO2-S, respectively.

4.2. Catalyst Activity Test

SCR activity measurements were performed using 1 mL (~0.5 g) of catalyst sample
in a fixed-bed quartz reactor (i.d. 6 mm). Before each test, the catalyst was pretreated at
240 ◦C for 1 h in N2 stream, and then cooled down to room temperature. Then, the catalyst
was exposed to a reactant gas mixture containing 500 ppm NO, 500 ppm NH3, 5% O2,
5% H2O (if used), 100 ppm SO2 (if used), and N2 as balance gas. The total flow rate of
simulated flue gas was 500 mL/min corresponding to a gas hourly space velocity (GHSV)
of 30,000 h−1. After purging for 1 h, reactant gases adsorbed on catalyst surface reached
an adsorption-desorption equilibrium. The reaction temperature increased from room
temperature to 240 ◦C. The concentrations of NO, NO2, N2O, SO2, NH3, and H2O were
monitored continuously by a FTIR spectrometer (Antaris IGS, Thermo Fisher Scientific,
(Waltham, MA, USA) equipped with a heated low-volume multiple-path gas cell (2 m)
and a MCT detector cooled by liquid nitrogen. NOx conversion and N2 selectivity were
calculated as follows:

NOx conversion (%) =
[NO x]in − [NO x]out

[NO x]in
× 100% (13)

N2 selevtivity (%) = (1 −
[NO 2]out+2[N 2 O]out

[NO x]in − [NO x]out+[NH 3
]

in − [NH 3]out
) × 100% (14)

4.3. Catalyst Characterization

The textural properties of the prepared catalysts were measured by a physisorption
analyzer (ASAP 2020 PLUS, Micromeritics, Norcross, GA, USA). Before each test, the
catalyst was degassed under vacuum at 350 ◦C for 4 h, and the N2 adsorption-desorption
data was recorded at liquid nitrogen temperature (−196 ◦C). The specific surface areas
were calculated via the Brunauer–Emmett–Teller (BET) equation. The pore sizes and pore
volumes were calculated via the Barrett–Joyner–Halenda (BJH) method.

Powder XRD patterns were carried out using an X-ray diffraction meter (Empyrean,
PANalytical, Eindhoven, Noord-Brabant, The Netherlands) using Cu Kα as radiation
source (λ = 0.15406 nm) at 40 kV and 30 mA. The diffractogram was recorded in a 2θ range
of 10–80◦ with a scanning step size of 0.02◦.

H2-temperature programmed reduction (H2-TPR) was tested using a chemisorption
analyzer (Autochem II 2920, Micromeritics, Norcross, GA, USA). Prior to each test, the
sample was pretreated at 350 ◦C for 1 h in He stream (50 mL/min), and then cooled down
to 50 ◦C. H2 reduction data were recorded by a TCD detector from 50 to 800 ◦C at a heating
rate of 10 ◦C/min. A mixture gas of 10% H2/Ar was used as reduction gas with a flow rate
of 50 mL/min, and H2O produced in the reduction process was removed by a cold trap.

TG analysis was performed on a thermo gravimetric analyzer (TGA-50, Shimadzu,
Tokyo, Honshu, Japan). The weight loss curves of the samples were collected over a
temperature range of 0–1000 ◦C in N2 atmosphere with a programmed heating rate of
10 ◦C/min.

X-ray photoelectron spectroscopy (XPS) profiles were collected using a surface analysis
photoelectron spectrometer (AXIS-ULTRA DLD-600W, Shimadzu, Tokyo, Honshu, Japan),
with Al Kα as radiation source at 300 W. All binding energies were standardized to
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the adventitious C 1s peak at 284.8 eV. The pass energies of survey spectrum and high-
resolution spectrum were 100 and 30 eV, respectively. Line shapes with sum of Gaussian
and Lorentzian functions and Shirley-type background were applied for fitting XPS spectra.

In-situ DRIFTS measurements were performed on an FTIR spectrometer (Nicolet iS50,
Thermo Fisher Scientific, Waltham, MA, USA) equipped with a MCT/A detector cooled
by liquid nitrogen and a high-temperature reaction chamber (Praying Mantis, Harrick,
Waltham, MA, USA). Prior to each test, the catalyst was pretreated in a N2 flow at 200 ◦C for
30 min. Then, the background spectra recorded in N2 flow were automatically subtracted
from the corresponding spectra. All DRIFTS spectra were collected by accumulating
64 scans with a resolution of 4 cm−1 as a function of time.

5. Conclusions

In this work, the effect and mechanism of Er modification on SO2 resistance over
FeMn/TiO2 catalysts were investigated systematically. The results showed that Er modifi-
cation on FeMn/TiO2 catalysts could effectively improve SO2 tolerance at low temperature.
After exposure to 100 ppm SO2 for 6 h, Er0.05FeMn/TiO2 catalyst still exhibited more
than 90% NOx conversion efficiency at 200 ◦C. BET results indicated that Er doping could
alleviate the decrease of specific surface area of FeMn/TiO2 catalyst in the presence of
SO2. Less sulfates were confirmed on Er0.05FeMn/TiO2-S catalyst compared with those for
FeMn/TiO2-S catalyst. The XPS results indicated that Er modification could result in an
increase in the concentrations of surface Mn4+ species and chemisorbed liable oxygen on
both fresh and used catalyst. In-situ DRIFTS spectra revealed that Er modification could
effectively alleviate the inhibiting effect of coexisting SO2 on NH3 adsorption. NH3-SCR
reaction for Er-modified FeMn/TiO2 catalysts could proceed through E-R mechanism in
almost a normal way rather than L-H mechanism. As a result, superior NOx conversion
performance could be achieved on Er-modified FeMn/TiO2 catalyst, even in the presence
of SO2.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11050618/s1, Figure S1: (a) NOx conversion, (b) N2 selectivity in the NH3-SCR reaction
(Reaction conditions: 1 mL catalyst, [NO] = [NH3] = 500 ppm, [O2] = 5 vol.%, [H2O] = 5 vol.% (when
used), [SO2] = 100 ppm (when used), balanced with N2, GSHV = 30,000 h−1). Figure S2: EDS mapping
of FeMn/TiO2 and Er0.05FeMn/TiO2 catalysts. Figure S3: XPS survey spectrum of Er0.05FeMn/TiO2
catalyst. Table S1: Textural properties of the fresh and used catalysts. Table S2: H2-TPR results of
the fresh and used catalysts. Table S3: Calculation results of surface atomic concentration ratios of
Fe, Mn and O in the fresh and used catalysts. Table S4: Surface element contents of FeMn/TiO2 and
Er0.05FeMn/TiO2 catalysts.
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