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Abstract: Sulfolane is an emerging industrial pollutant detected in the environments near many
oil and gas plants in North America. So far, numerous advanced oxidation processes have been
investigated to treat sulfolane in aqueous media. However, there is only a few papers that discuss the
degradation of sulfolane using photocatalysis. In this study, photocatalytic degradation of sulfolane
using titanium dioxide (TiO2) and reduced graphene oxide TiO2 composite (RGO-TiO2) in a light-
emitting diode (LED) photoreactor was investigated. The impact of different waters (ultrapure water,
tap water, and groundwater) and type of irradiation (UVA-LED and mercury lamp) on photocatalytic
degradation of sulfolane were also studied. In addition, a reusability test was conducted for the
photocatalyst to examine the degradation of sulfolane in three consecutive cycles with new batches
of sulfolane-contaminated water. The results show that LED-based photocatalysis was effective in
degrading sulfolane in waters even after three photocatalytic cycles. UVA-LEDs displayed more
efficient use of photon energy when compared with the mercury lamps as they have a narrow
emission spectrum coinciding with the absorption of TiO2. The combination of UVA-LED and TiO2

yielded better performance than UVA-LED and RGO-TiO2 for the degradation of sulfolane. Much
lower sulfolane degradation rates were observed in tap water and groundwater than ultrapure water.

Keywords: sulfolane; diisopropanolamine; photocatalysis; UVA; LED; reduced graphene oxide

1. Introduction

Sulfolane (tetrahydrothiophene-1,1-dioxide), an organosulfur compound, is com-
monly used as an industrial solvent in the Sulfinol process to remove impurities from
sour natural gas [1]. It is also used as a solvent for extraction, extractive distillation, pro-
duction of polymers, and other electrical applications [2]. Sulfolane is highly soluble in
water, with a solubility of 1266 g/L at 20 ◦C [2]. It does not easily volatilize from water
or soil, as shown by its low vapor pressure (0.01 kPa at 20 ◦C) and low Henry’s constant
(8.9 × 10−10 atm·m−3·mol−1). According to adsorption studies conducted on aquifer sedi-
ments collected in western Canada, sulfolane displays a low average soil-water partition
coefficient (kd) of 0.08 L/kg and an organic carbon partition coefficient (KOC) of log 0.07 [3].
Extensive industrial application of sulfolane in gas processing has led to increasing ac-
counts of accidental release into the environment. Sulfolane contamination varying from a
few ppb to hundreds of ppm was reported in groundwater and soil near gas processing
plants as well as chemical manufacturing facilities, with the most prevalent cause being
the mishandling and improper disposal of process waste and spent sulfolane catalysts [4].
Sulfolane is highly mobile in subsurface waters, eventually reaching ecological and human
receptors far from the contaminated source [2]. Toxicity studies conducted on various test
species have shown the potential adverse effects sulfolane exposure may have on ecological
receptors. Acute doses of sulfolane have been shown to inhibit thermoregulatory response
of metabolic rate in rats [5]. Sub-acute levels of sulfolane caused convulsions, inflamed
lungs, and death in most test species [6]. A recent study involving zebrafish embryos
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showed significant developmental impairment after exposure to sulfolane levels found
in contaminated environment [7]. As a result, sulfolane has emerged as a contaminant of
public concern. In Canada, the Canadian Council of Ministers of the Environment (CCME)
established the tolerable daily intake (TDI) for human receptors as 0.0091 mg/kg-bw/day
and the guideline for groundwater sulfolane levels as 0.09 mg/L [2].

Sulfolane is considered a persistent contaminant that can be challenging to treat due
to its chemical properties. Natural attenuation of sulfolane in oxygen-deficient conditions,
such as subsurface aquifers, is insignificant [8]. However, studies conducted on aquifer
sediments from sulfolane-contaminated sites found that sulfolane can be biodegraded
aerobically by indigenous microbes in nutrient-rich conditions [9,10]. Treatment of sul-
folane using biological activated carbon has also been demonstrated on a pilot scale [11].
Although biological treatment has widespread application for water treatment purposes,
management and maintenance of a microbial population can be a serious limitation. Studies
investigating sulfolane degradation using advanced oxidation processes (AOP) have also
emerged more recently. Yu et al. [12] found that ultraviolet (UV) irradiation in combination
with either peroxide (H2O2) or ozone (O3), alone, or H2O2 and O3, together, all effectively
degraded sulfolane in an aqueous medium. In an extension to this study, Mehrabani-
Zeinabad et al. [13] achieved similar results using UVC/O3/H2O2 combination, finding
that more than 99% of sulfolane could be mineralized to carbon dioxide (CO2), water,
and sulfate ions (SO4

2−). Izadifard et al. [14] demonstrated that activated persulfate with
UVC and UVC/O3 successfully degraded sulfolane in water. Khan et al. [15] successfully
reduced degradation time by using an integrated aerobic biodegradation and UVC/H2O2
process to treat sulfolane-contaminated water.

A drawback for the reporting AOPs used for sulfolane treatment is the transportation,
management, and costs of hazardous chemical oxidants [16]. Photocatalysis is a type
of AOP that uses light energy and a semiconductor catalyst to generate hydroxyl (·OH)
radicals in the presence of water, which does not require handling of large amounts of
hazardous chemical oxidants. Heterogeneous photocatalysis using titanium dioxide (TiO2)
has been widely used as a means to treat organics from water due to its chemical stability,
durability, low cost, non-toxic nature, and mild operating requirements [17,18]. When
TiO2 in solution is irradiated by photons with higher energy than its bandgap energy,
photogenerated holes and electrons on the surface of TiO2 react with electron donors and
acceptors to generate ·OH radicals [19–21]. In recent years, studies have shown that efficacy
of TiO2 photocatalysis can be improved by introducing graphene/reduced graphene oxide
(RGO), which is claimed to suppress the recombination of photogenerated electron-hole
pairs and narrow the bandgap of the catalysts [22–26]. Graphene-based TiO2 photocatalyst
showed higher photocatalytic degradation of dyes such as methylene blue, rhodamine B,
and acid orange II [26].

The objective of this study is to investigate the application of UV-LEDs in the photo-
catalytic degradation of sulfolane using a commercial TiO2 powder (P25) and RGO-P25
composite synthesized from the hydrothermal method. LEDs have emerged as a source
of irradiation that offer many advantages over mercury lamps, which are conventionally
used for photocatalytic applications. LEDs have the ability to emit a narrower band of
wavelengths, making them a tunable source of light [27]. They have also been associated
with better reactor design owing to longer lifetime and compact size [28]. Apart from
being energy efficient, LED lamps offer a non-toxic alternative to mercury UV lamps,
which require careful handling and disposal due to their toxic constituents [29]. The ap-
plication of photocatalysis using TiO2 in conjunction with LED light sources has been
reported for treatment of many organics [30–32]. Dharwadkar et al. [33] reported that
photocatalytic degradation of sulfolane in a LED reactor can be enhanced with addition
of oxidants/adsorbents. In this study, the performance of a LED reactor in photocatalytic
degrading sulfolane was compared to fluorescent (mercury) lamps. Matrix effects as well
as the impact of a common co-contaminant, diisopropanolamine (DIPA), on photocatalytic
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degradation of sulfolane was examined. Finally, the photocatalytic activity of TiO2 for
degradation of sulfolane was evaluated in repeated photocatalytic cycles.

2. Results and Discussion
2.1. Photocatalytic Degradation of Sulfolane Using Different Configurations of TiO2

Degradation of sulfolane was studied using P25 and RGO-P25. It is noted that the
dosage of P25 and RGO-P25 were the same. The normalized concentrations of sulfolane
over the duration of the 30 min dark and 3 h irradiation experiments are shown in Figure 1a.
The dark experiment revealed that the adsorption of sulfolane on P25 and RGO-P25 was
weak. RGO-P25 even exhibited a lower capacity on adsorbing sulfolane. RGO-P25 was
reported to show a high adsorption for dyes [34], but a low adsorption for Bisphenol
A [35]. The sample containing P25 powder degraded over 99% of sulfolane in 3 hours of
irradiation. Although RGO-P25 was successful in reducing sulfolane concentration, it only
degraded about 47% of the original 50 mg/L of sulfolane in 3 hours of irradiation. The
pseudo-first-order degradation rate of sulfolane using P25 powder was 70% faster when
compared with RGO-TiO2.
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Figure 1. (a) Adsorption and photocatalytic degradation of sulfolane using P25 and RGO-P25, (b) the change of TOC
concentrations during photocatalytic degradation of sulfolane by P25.

The concentration of total organic carbon (TOC) was measured for photocatalytic
degradation of sulfolane using P25. The normalized TOC concentrations, at 30 min intervals
and for a total of three hours of irradiation time, are shown in Figure 1b. After three hours,
TOC was reduced to 22% of the initial concentration, indicating that 78% mineralization
of sulfolane was achieved. Degradation of sulfolane during photocatalytic oxidation
took place by way of attack by hydroxyl radicals generated through activation of the
photocatalyst by photons (λ ≈ 365 nm) emitted by the UVA-LEDs. The pathway for
sulfolane degradation by oxidation is not yet well-studied. Yu et al. [12] proposed that the
hydroxyl radical may react with sulfolane to produce intermediate radical species by either
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the extraction of a hydrogen atom or by reacting with the sulfur atom, triggering the fission
of the C-S bonds.

Graphene/carbon-based TiO2 composites have been reported to display enhanced
photocatalytic performance for the degradation of dyes and other compounds when com-
pared with pure TiO2 photocatalysts [36–40]. Li et al. [34] observed that adsorption of
reactive black 5 (RB5) by TiO2 was increased from less than 5% to more than 50% with the
presence of graphene. A faster RB5 degradation rate was also observed with TiO2-graphene
composite. Ruidiaz-Martinez et al. [26] synthesized RGO-TiO2 composites for ethylparaben
degradation and found that the photocatalytic degradation rate was increased from 0.031
to 0.096 min−1 when the RGO content in RGO-TiO2 composite was changed from 0% to 7%.
However, Yu et al. [35] found that RGO-TiO2 composite containing >3% RGO reduced the
catalytic degradation of Bisphenol A as the color of the catalyst becomes darker to shield
the light.

The enhancement observed in previous works can be attributed to (1) bandgap re-
duction and (2) the adsorb and shuttle phenomena. The wavelength of light required to
achieve activation of the photocatalyst is determined by the bandgap energy (Eg) of the
photocatalyst. The bandgap of P25-TiO2 is in the range of 3.10–3.2 eV, corresponding to
the energy of photons with a wavelength of 387–400 nm [41,42]. Studies have shown that
graphene-based composites can be used to reduce the bandgap of TiO2 and extend its
photocatalytic application into longer wavelengths [43,44]. Doping with RGO, a graphene
derivative, also led to better charge separation, slower recombination, and more efficient
production of radical species on the surface of TiO2 [35]. In the case of the adsorb and
shuttle phenomena, a mechanism is proposed to explain the advantage of TiO2 coated
with carbon-based adsorbents based on a two-phase approach. The first phase acts as
an adsorbent, adsorbing the substrate, which then transfers it via diffusion to the second
phase, the photoactivated site [39]. On the RGO phase, a large number of π–π conjugated
double bonds facilitate the adsorption of organic molecules onto the graphene surface [35].
In addition, RGO-TiO2 were reported to have a larger BET (Brunauer, Emmett, and Teller)
surface area than TiO2 [26,34], which might favor adsorption.

The advantages of RGO-P25 due to the two phenomena, however, were not observed
in this study, as (1) the LED light source applied in this study has a maximum emission at
365 nm with narrow emission band. Most of the photons emitted from this light source
were already available for photocatalysis with P25. Therefore, the reduction of bandgap
energy of photocatalyst did not significantly increase the number of photons contributing
to photocatalytic degradation of sulfolane. (2) Our dark adsorption experiments showed
that the adsorption of sulfolane on both P25 and RGO-P25 particles are less than <3%. The
adsorption of sulfolane on RGO-P25 was too weak to demonstrate the benefit of adsorb-
shuttle. A loss of two-dimensional structure of graphene can be caused by aggregation of
graphene during the reduction of graphene from graphene oxide and synthesis of RGO-
P25 [45,46]. This significantly alters graphene’s electrical conductivity, surface area, and
optical transparency, potentially blocking active sites on the surface of TiO2. Reducing the
surface area of TiO2 exposed to irradiation and water molecules also reduces electron hole
and hydroxyl radical formation, therefore reducing photocatalytic activity [47]. Further-
more, Akhavan et al. [48] reported a decrease of carbon content in TiO2-RGO composite by
increasing the irradiation time from 4 to 24 h, indicating that a long irradiation might lead
to a degradation of RGO by TiO2 and lower its the catalytic efficiency.

2.2. Effect of Type of Lamp on Photocatalytic Degradation of Sulfolane

In order to study the effect of different sources of irradiation on the photocatalytic
oxidation of sulfolane, the performances of UVA and UVC fluorescent mercury lamps were
compared with that of UVA-LEDs. The normalized concentrations of sulfolane over varying
energy doses from each of the irradiation sources tested are shown in Figure 2. The results
show that all irradiation sources used were able to degrade over 99% of sulfolane with
less than 600 Joules (J) of photon energy. The bandgap energy of TiO2 defines that optimal
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photocatalytic performance occurs when used with light at wavelengths under 387 nm [49].
The light sources used in this study emit the highest percent of light at wavelengths below
this threshold and, as a result, were able to achieve sufficient photoactivation of TiO2 to
oxidize sulfolane.
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Figure 2. Photocatalytic degradation of sulfolane by 2 g/L of P25 using UVA-LEDs, UVA mercury lamps, and UVC
mercury lamps.

To quantitatively compare the three lamps, the photon energy required to achieve one
order reduction of sulfolane was calculated for each lamp and summarized in Table 1. It
is noted that the photon energy calculated here refers to the energy entering the reaction
vessel and not that which is emitted by the lamps. For the UVA-LED reactor, 360 J of
photon energy was needed for a one log reduction of sulfolane. UVA mercury and UVC
mercury systems required 443 and 496 J of photon energy to remove 90% of sulfolane
from solution, which corresponds to 23% and 38% more than UVA-LED, respectively.
Yu et al. [30] observed similar results from photocatalytic degradation of a recalcitrant
pesticide, 2,4-D. They found that UVA mercury lamps took 26% more photon energy than
UVA-LED to obtain a one order reduction in 2,4-D concentration. Two possible theories
have been proposed by the author to explain this result. First, UVA-LEDs emitted photons
at a narrower range of wavelengths within the required range for photoactivation of
TiO2, which led to more efficient photon utilization. Second, UVA-LED, UVA, and UVC
mercury lamps have the maximum emissions at 365, 350, and 254 nm, respectively. A
shorter wavelength is associated with a higher photon energy requirement to degrade
the contaminant.

Table 1. Photon energy consumption in photocatalytic degradation of sulfolane.

Lamp Type Wavelength (nm) Intensity
(photon/s)

Photon Energy Required to
Reach 1-Order Reduction (J)

UVA-LED 353–377 9.06 × 1016 360
UVA (Mercury) 315–400 1.74 × 1017 450
UVC (Mercury) 235–280 1.85 × 1017 487

2.3. Photocatalytic Degradation of Sulfolane in Various Water Matrices

Figure 3 shows the results for sulfolane degradation observed in milli-Q water, ground-
water, and tap water. Degradation of sulfolane was observed in all matrices tested, however,
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only the milli-Q water spiked with sulfolane reached non-detectable levels of sulfolane in
the 3 h of irradiation time, while 29% and 32% of sulfolane was remaining in tap water
and groundwater at the end of the reaction time, respectively. Degradation of sulfolane
in all matrices followed first-order kinetics, with milli-Q water showing the highest rate
of degradation. For all matrices tested, no significant decrease in sulfolane concentration
(<3%) was observed during the initial 30 min of dark time.
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Natural organic matter (NOM) and inorganic ions in natural waters may interfere
with photocatalytic degradation [50]. Bicarbonate (HCO3

−) and carbonate ions (CO3
2−)

can serve as hydroxyl radical scavengers, which react with OH· to produce CO3
·, a weak

and highly selective oxidant [51]. This reduces the amount of OH· available for reacting
with sulfolane. HCO3

− can also react with h+ formed by TiO2, adsorbing to the TiO2
surface and forming a negatively charged layer. This can inhibit the interaction between the
TiO2 surface and the target compound [52]. Studies conducted to understand the effect of
inorganic ions on photocatalytic degradation of dyes and other model organic compounds
found that, similar to HCO3

− ions, SO4
2− and Cl− can adsorb onto the TiO2 surface and

trap h+ and OH· [53]. SO4
2−, Cl−, and HCO3

− concentrations are significantly higher in
the groundwater and tap water tested, when compared to milli-Q water. It is likely that
during the initial 30 min of dark time, inorganic ions coated the TiO2 surface, resulting in
reduced photocatalytic degradation of sulfolane. Studies on cations like Ca2+ and Mg2+

showed negligible effects on photocatalytic degradation of organic pollutant [54]. This
is likely due to their inability to scavenge oxidant species as they already exist at their
maximum oxidation state.

Since DIPA and sulfolane are commonly used together in industrial processes, DIPA
is often present in sulfolane-contaminated waters [55]. The photocatalytic degradation of
samples containing 50 mg/L of sulfolane and varying concentrations of DIPA was studied
in this section. The results presented in Figure 4 show that sulfolane degradation was
observed in samples with all levels of DIPA concentrations. However, a lag in sulfolane
degradation can be observed in the samples containing 25 and 50 mg/L of DIPA. This
lag can be explained by the competing effect of DIPA. In this case, the co-contaminant
may scavenge photons, absorption sites, and/or photo-induced holes or hydroxyl radicals.
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UV-Visible spectroscopy of DIPA showed that no absorption peaks were observed above
300 nm; therefore, photon scavenging by DIPA can be disregarded. Some studies have
used TiO2 photocatalysts to treat aqueous solutions containing DIPA. Mahirah et al. [56]
demonstrated that degradation of DIPA by TiO2 took place mainly by photocatalytic
oxidation, and adsorption of DIPA onto the surface of the photocatalyst was minimal in
comparison. Since DIPA can be degraded through photocatalysis, it may be using up the
hydroxyl radicals and holes produced during photoactivation of TiO2. In this case, DIPA
may be getting preferentially degraded in the mixtures containing 25 mg/L, and greater,
of DIPA.

Catalysts 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 4. Photocatalytic degradation of sulfolane by TiO2 (2 g/L) in the presence of varying concentrations of DIPA. 

2.4. Recyclability of TiO2-P25 
P25 photocatalyst was used for three consecutive photocatalytic cycles to study the 

performance and reusability of P25. As shown in Figure 5, degradation of sulfolane was 
achieved in all three photocatalytic cycles, indicating that the TiO2 was still active during 
the final cycle. However, a slight drop in degradation rate suggests that the activity of the 
photocatalyst decreased in each consecutive cycle. The photocatalyst loading, degradation 
rate, and removal of sulfolane are shown in Table 2. About 10% and 18% of photocatalyst 
was lost during the filtering and cleaning process used to recover the P25 after cycles 1 
and 2, respectively. Loss of photocatalyst surface may contribute to the decrease in deg-
radation rate. Another factor may be the deactivation of photocatalyst surface by the prod-
ucts of sulfolane mineralization. Abdullah et al. [57] found that sulfate ions can reduce 
photocatalytic degradation rate by covering photoactive sites on the surface of the TiO2, 
deactivating the photocatalyst for degradation of organic molecules. Sulfate ions can be 
produced as a result of oxidation of sulfolane by hydroxyl radicals [13,14]. As a result, 
deactivation of photoactive sites by oxidation by-products is a probable cause for the in-
crease in residual sulfolane concentration observed after each consecutive photocatalytic 
cycle. 

Figure 4. Photocatalytic degradation of sulfolane by TiO2 (2 g/L) in the presence of varying concentrations of DIPA.

2.4. Recyclability of TiO2-P25

P25 photocatalyst was used for three consecutive photocatalytic cycles to study the
performance and reusability of P25. As shown in Figure 5, degradation of sulfolane was
achieved in all three photocatalytic cycles, indicating that the TiO2 was still active during
the final cycle. However, a slight drop in degradation rate suggests that the activity of the
photocatalyst decreased in each consecutive cycle. The photocatalyst loading, degradation
rate, and removal of sulfolane are shown in Table 2. About 10% and 18% of photocatalyst
was lost during the filtering and cleaning process used to recover the P25 after cycles 1 and
2, respectively. Loss of photocatalyst surface may contribute to the decrease in degradation
rate. Another factor may be the deactivation of photocatalyst surface by the products of sul-
folane mineralization. Abdullah et al. [57] found that sulfate ions can reduce photocatalytic
degradation rate by covering photoactive sites on the surface of the TiO2, deactivating
the photocatalyst for degradation of organic molecules. Sulfate ions can be produced as a
result of oxidation of sulfolane by hydroxyl radicals [13,14]. As a result, deactivation of
photoactive sites by oxidation by-products is a probable cause for the increase in residual
sulfolane concentration observed after each consecutive photocatalytic cycle.
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Table 2. Sulfolane degradation rate in three photocatalytic cycles.

Cycle P25 (mg) Degradation Rate (min−1) P25 Loading (g/L) Removal after 3 h

Cycle 1 160.4 5.2 × 10−3 2.005 98%
Cycle 2 143.3 5.0 × 10−3 1.791 89%
Cycle 3 117.5 4.6 × 10−3 1.469 85%

3. Materials and Methods
3.1. Chemicals

Sulfolane with 99% purity, ACS grade dichloromethane (DCM), and DIPA with 99%
purity were obtained from Sigma Aldrich, Canada (Oakville, ON, Canada). Powdered
TiO2-P25 was procured from Evonik Canada Inc. (Burlington ON, Canada). Graphene
oxide suspension was obtained from ACS Chemical Inc. (Point Pleasant, NJ, USA). RGO-
P25 composites were synthesized in the lab using the hydrothermal method described by
Li et al. [34] and Zhang et al. [58]. Milli-Q water was used in most experiments, except
where groundwater and tap water were used. Properties for the tap water and groundwater
used in this study are listed in Table 3.

3.2. Photoreactor

An LED photoreactor, originally fabricated by Yu et al. [30], was used for most of
the photocatalytic experiments. This cylindrical photoreactor is lined on the inside with
90 UV LEDs (λmax = 365 nm, full-width half-maximum = 12 nm, NSHU551B), arranged in
6 rows of 15 LEDs, and fixed with a fan. Figure 6a shows a vertical cross-section of this LED
photoreactor. An LZC-ORG reactor (Luzchem Research Inc., Ottawa, ON, Canada), with
the capacity to hold 10 fluorescent lamps, was obtained from Luzchem Research Inc. for the
experiments using mercury lamps (Figure 6b). Ten black lamps (LZC-UVA16) centered at
350 nm, and germicidal lamps (LZC-UVC16), at 254 nm, were installed in this reactor for the
UVA and UVC mercury lamp experiments, respectively. The number of photons entering
the reaction beaker per unit time in both reactors were determined using ferrioxalate
actinometry [59]. They were 9.06 × 1016, 1.74 × 1017, and 1.85 × 1017 photon/s for the LED
photoreactor, the Luzchem reactor equipped with UVA lamps, and the Luzchem reactor
equipped with UVC lamps, respectively.
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Table 3. Characteristics of groundwater and tap water.

Parameters Unit Groundwater Tap Water

Total Anion meq/L 10.6 -
Total Cation meq/L 11.2 -

Hardness (CaCO3) mg/L 538 214
Ion Balance N/A 1.06 -

Dissolved Nitrate (NO3) mg/L 0.989 0.08
Nitrate plus Nitrite (N) mg/L 0.224 -
Dissolved Nitrite (NO2) mg/L <0.033 <0.003
Total Dissolved Solids mg/L 544 265

Conductivity uS/cm 975 448
pH pH 7.67 7.6

Alkalinity (PP as CaCO3) mg/L <0.50 -
Alkalinity (Total as CaCO3) mg/L 445 144

Bicarbonate (HCO3) mg/L 542 144
Carbonate (CO3) mg/L <0.50 <20
Hydroxide (OH) mg/L <0.50 -

Dissolved Sulphate (SO4) mg/L 60.6 74
Dissolved Chloride (Cl) mg/L 13.6 11

Dissolved Nitrite (N) mg/L <0.010 <0.003
Dissolved Nitrate (N) mg/L 0.224 0.08

Dissolved Calcium (Ca) mg/L 152 54
Dissolved Iron (Fe) mg/L <0.060 <0.010

Dissolved Magnesium (Mg) mg/L 38.3 17
Dissolved Manganese (Mn) mg/L 0.0796 <0.0005

Dissolved Potassium (K) mg/L 2.35 1.1
Dissolved Sodium (Na) mg/L 9 9

3.3. Experimental Procedure

All experiments were conducted in batch mode in either the LED or Luzchem pho-
toreactors, as shown in Figure 6. Reactions were carried out with 80 mL of solution in
either a 100 mL glass beaker (for reactions in UVA-LED) or 150 mL quartz beaker (for UVA
and UVC fluorescent mercury lamps). The 50 mg/L solution of sulfolane was prepared
using pure sulfolane and the water of interest along with 2 g/L of powdered photocatalyst
(either P25 or RGO-P25). A 30 min dark experiment was conducted at the beginning
of every experiment to observe the amount of sulfolane adsorbed to the photocatalyst
in the absence of light. The solution was continuously stirred throughout the dark and
irradiated experiments to homogenize the solution and to ensure adequate distribution of
sulfolane and photocatalyst throughout the field of irradiation. Samples were collected at
predetermined time intervals, immediately filtered using 0.2 µm polytetrafluoroethylene
(PTFE) filters and stored in the dark before extraction and analysis. Additional parameters
for each set of experiments can be found in Table 4. It is noted that all experiments were
conducted in duplicate, and the average concentration with the error bar indicating the
variation between the duplicates were reported in all figures.

3.4. Analytical Methods

Extraction of sulfolane was carried out using 1.5 mL of the water sample and 1.5 mL
of DCM in a liquid–liquid extraction. The samples were shaken in a mechanical shaker
for 30 min. The DCM phase was then extracted and analyzed. An Agilent 6890 gas
chromatograph (GC) (Agilent, Santa Clara, CA, USA), equipped with a flame ionization
detector (FID) and an auto sampler, was used to analyze the extracted sulfolane samples in
DCM. The Agilent ChemStation software, (Agilent, Santa Clara, CA, USA) was used to
carry out data acquisition and calibration. Chromatographic separation was achieved on a
fused silica capillary column (ZB 5MSI, Phenomenex, Torrance, CA, USA) upon injection
of the DCM samples into the GC. High-purity helium, with a head pressure of 250 kPa,
was used as the carrier gas. Sample injection was adjusted to splitless mode with a 1.00 mL



Catalysts 2021, 11, 624 10 of 14

injection volume and the injection port temperature was 165 ◦C. The initial temperature
was set to 90 ◦C, held constant for 2 min, then ramped up to 175 ◦C at a rate of 10 ◦C/min,
where it was held constant for 3 min. The FID detector temperature was set to 330 ◦C.
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Table 4. Details of photocatalytic degradation experiments.

No. Light Source Photocatalyst Photocatalyst
Loading (g/L) Water Matrix Sulfolane

(mg/L) DIPA (mg/L) Run

1 UVA-LED P25 2 Milli-Q 50 0 1
2 UVA-LED RGO-P25 2 Milli-Q 50 0 1
3 UVA-LED P25 2 Milli-Q 50 0 1
4 UVA Mercury P25 2 Milli-Q 50 0 1
5 UVC Mercury P25 2 Milli-Q 50 0 1
6 UVA-LED P25 2 Milli-Q 50 0 1
7 UVA-LED P25 2 Groundwater 50 0 1
8 UVA-LED P25 2 Tap Water 50 0 1
9 UVA-LED P25 2 Milli-Q 50 0 1
10 UVA-LED P25 2 Milli-Q 50 1 1
11 UVA-LED P25 2 Milli-Q 50 20 1
12 UVA-LED P25 2 Milli-Q 50 50 1
13 UVA-LED P25 2 Milli-Q 50 0 1
14 UVA-LED P25 2 Milli-Q 50 0 2
15 UVA-LED P25 2 Milli-Q 50 0 3

4. Conclusions

In this paper, a comprehensive study on the photocatalytic degradation of sulfolane
in water using UVA-LED was conducted. The results showed that UVA-LED-based pho-
tocatalysis is a promising technology to treat sulfolane in aqueous media as it does not
require large amounts of chemicals and utilizes less photon energy than mercury lamps.
TiO2 integrated with UVA-LED can degrade more than 99% of sulfolane from water over
three hours of irradiation. Extended irradiation can lead to complete mineralization of
sulfolane. A recyclability study on TiO2 showed that it can be used for multiple cycles
without significantly losing its photocatalytic activity. Compared to UVA mercury lamps,
UVA-LEDs saved 23% of photon energy consumption in achieving one log reduction of
sulfolane. TiO2-RGO composite synthesized through the hydrothermal method did not
display enhanced photocatalytic performance for the degradation of sulfolane due to its
weak adsorption on TiO2-RGO composite.

Photocatalytic degradation of sulfolane in groundwater and tap water were observed
to be slower than that in ultrapure water due to the high sulfate, chloride, and bicarbonate
content in the tap water and groundwater. The sulfolane degradation rate decreased by
43% and 74% in tap water and groundwater respectively, when compared with milli-Q
water. The presence of DIPA (>25 mg/L), a co-contaminant frequently detected in the
sulfolane-contaminated water, also inhibited photocatalytic degradation of sulfolane.
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