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Abstract: Density functional theory calculations were performed to investigate the reaction mech-
anism of the aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by Au and Au–Pd
clusters. Two consecutive reaction mechanisms were examined with Au8 and Au6Pd2 clusters: (1) the
oxidation of benzyl alcohol with dissociated O atoms on metal clusters generating benzaldehyde
and H2O; and (2) oxidation with adsorbed oxygen molecules generating benzaldehyde and H2O2.
The calculations show that the aerobic oxidation of benzyl alcohol energetically prefers to proceed
in the former mechanism, which agrees with the experimental observation. We demonstrate that
the role of Au centers around the activation of molecular oxygen to peroxide-like species, which are
capable of the H–abstraction of benzyl alcohol. The roles of Pd in the Au6Pd2 cluster are: (1) increas-
ing the electron distribution to neighboring Au atoms, which facilitates the activation of O2; and
(2) stabilizing the adsorption complex and transition states by the interaction between positively
charged Pd atoms and the π-bond of benzyl alcohol, both of which are the origin of the lower energy
barriers than those of Au8.

Keywords: aerobic oxidation; benzyl alcohol; gold cluster; gold–palladium cluster; DFT

1. Introduction

Bimetallic systems have gained much attention in both academic and industrial
research fields because they often exhibit advantageous properties such as catalytic, elec-
tronic, and optical properties, compared with those of their pure constituent metals [1–4].
Among the numerous metals that have been investigated in combination, Au–Pd bimetallic
nanoclusters were found to be efficient catalysts for a wide variety of chemical reactions
because they enable one to perform reactions under mild conditions, providing high se-
lectivity for the desired products [1–7]. For instance, their excellent catalytic performance
was shown for the direct synthesis of H2O2 [7–11], the synthesis of vinyl acetate [12,13],
the epoxidation of alkenes [14,15], the hydrogenation of unsaturated hydrocarbons [16,17],
the oxidation of greenhouse gases [18,19], coupling reactions [20–22], and the oxidation of
alcohols to carbonylic compounds [23–39].

The oxidation of alcohols, in particular the selective oxidation of primary alcohols to
aldehydes, is an important process for the synthesis of fine chemicals and highly valuable
intermediates. The oxidation of alcohols is commercially conducted by stoichiometric
oxygen donors, such as chromate or permanganate producing aldehydes. However, this
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produces a large amount of toxic waste, which is environmentally unacceptable [40,41].
In this respect, a series of experimental studies have been devoted to developing catalysts
to eliminate this drawback over the past two decades. Gold nanoclusters were reported
to be effective catalysts for the selective oxidation of alcohols when used alone; however,
significant stability and selectivity improvements were observed with the incorporation
of a second metal promoter, such as Pd [5]. It was demonstrated that Au–Pd bimetallic
clusters have remarkable catalytic activity for the selective oxidation of benzyl alcohol,
which is one of the most frequently employed alcohols for the catalytic activity of a Au–Pd
bimetallic catalyst under solvent-free conditions, and is comparable to, or even better than,
Au catalysts [23–29]. Regarding mechanistic studies on AuPd bimetallic-catalyzed selective
oxidation of benzyl alcohol, two different mechanisms of monometallic Au- and Pd-
supported nanoparticles for alcohol oxidation have been proposed experimentally [42–44]:
in the case of Au, the rate-determining step involves H-atom abstraction by a superoxo-like
oxygen species adsorbed on Au, whereas, for Au–Pd, the rate-determining step is the Hβ

elimination of the adsorbed alkoxide forming the aldehyde [23]. Nevertheless, the precise
reaction mechanisms of the Au–Pd bimetallic catalyst, in particular the mechanistic role of
Au and Pd atoms in accelerating such reaction, remain the subject of considerable debate
and are yet to be fully understood.

In the past decade, quantum chemical calculations have been widely applied to under-
stand the structure and catalytic activity of various nanocluster catalysts, including gold
and gold-based bimetallic systems [45–55]. Density functional theory (DFT) calculations
with the generalized gradient approximation (GGA) functional have been frequently used
because of their low computational cost, but some issues still remain with respect to their
validity [54,55]. For example, GGA tends to overestimate the binding energy of O2 on
gold clusters compared with that calculated by CCSD(T) [54] and the reaction energies
of the oxidation of methanol by CR-CC(2,3) [56]. However, it was demonstrated that the
DFT calculations with M06-L [57] and M06 [58] functionals are practical choices for the
theoretical study of nanoscale gold and gold-palladium catalysis [59–64]. Unlike with GGA
approximations, the use of these functionals shows how to avoid overestimating the bond
energies, leading to an accurate description of the 2D-to-3D structural transition of gold
clusters. Karanjit et al. demonstrated that the use of M06 functionals and anionic Au8
clusters is a suitable model for simulating the aerobic oxidation (oxidation with molecular
oxygen) of methanol on PVP (N-vinyl-2-pyrrolidone) supported gold clusters [64]. How-
ever, the catalytic activity of Au–Pd clusters for the oxidation of benzyl alcohol has yet to
be investigated using suitable modeling.

In this work, we performed a theoretical study to better understand how gold and
palladium affect the energetics and the reaction mechanism of the aerobic oxidation of
benzyl alcohol over Au8 and Au6Pd2 using DFT calculations with the M06 functional.
We examined the low-energy structures of Au8 isomers and then constructed the low-
energy structures of Au6Pd2 isomers as a simple model for Au–Pd bimetallic clusters
enriched in gold atoms. Next, we investigated the possible reaction pathways as well as
the role of Au and Pd in the oxidation reaction of benzyl alcohol to benzaldehyde on both
Au8 and Au6Pd2 clusters.

2. Results and Discussion
2.1. Structures of Au8 and Au6Pd2

The Au8 cluster was chosen as a model catalyst because, firstly, Au8 is a stable gold
cluster that can be detected in low-temperature experiments [65–69], and, secondly, it is
one of the most commonly employed Au nanocatalysts in theoretical studies [69,70]. Subse-
quently, we performed a systematic search for the energetically minimum structures of Au8
and Au6Pd2. AuPd is gold-rich and shows the optimum catalytic activity for the aerobic
oxidation of alcohol, such as benzyl alcohol and cinnamyl alcohol without the formation of
acid derivatives [27,71]. The lowest-energy structures of Au8 and Au6Pd2 are shown in
Figure 1 while other structures and the relative energies are provided in the Supplementary
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Material (Figures S1 and S2 and Tables S1 and S2). The most stable of the Au8 and Au6Pd2
structures have D4h and nonplanar Cs symmetry, respectively, in which two Pd atoms of
Au6Pd2 are located in the adjacent positions. It was found that the introduction of two Pd
atoms in the Au8 cluster slightly increases the partial charge at the neighboring Au atoms
due to the lower electron affinity of the Pd atoms. This characteristic of Au6Pd2 clusters
facilitates orbital interaction between O2 and apex gold atoms, which induces the binding
of O2 to the Au6Pd2 cluster, which is described in the next section.
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Figure 1. The lowest-energy structure of Au8 and Au6Pd2 with Mulliken atomic charges, and
NBO analysis.

The Mulliken charges presented in Figure 1 indicate that the charge distribution is not
uniform over all the Au8 atoms. High electron densities appear at the apex sites where the
gold atoms are less coordinated; the highly coordinated gold atoms have a lower electron
density. In the present case, the Mulliken charges provided a more reasonable picture
than those obtained by natural bond orbital analysis (NBO). For instance, NBO charges
at the apex sites of the metal nanoclusters appear to be positive, which is not reasonable
considering the charge distribution and reactivity. The highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) of the Au8 cluster, which
are depicted in Figure 2a, reveal that HOMO is localized at low-coordinated gold atoms.
This agrees well with the report of Metiu et al. [72], which demonstrates that the valence
electrons of the gold cluster are not delocalized over the entire cluster, but localized at the
apex, corner, and step. Localization of the HOMO on the apex sites of metal nanoclusters
is correlated with the activation of a small molecule, i.e., O2, because it facilitates this
molecule adsorbing effectively on apex sites. Although it was reported that the complete
basis set limit (CBS) beyond the MP2 and CCSD(T) level of theory is required for predicting
the dimensionality of the Au8 cluster [73], the practical choice of DFT calculations with
moderate basis sets which reproduce the results of wavefunction theories is useful for
simulating the catalytic reactions of gold clusters. Accordingly, the hybrid meta-GGA
functional and M06 functional employed in this study provide a similar trend in energetics
and electronic properties when compared with previous theoretical studies. Based on
the present results together with those of previous studies [59–64], it was reasonable to
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adopt the present computational method for further calculations of the aerobic oxidation
of benzyl alcohol.
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2.2. Pathways and Energetics: The Formation of Benzaldehyde and H2O

The catalytic cycle of the oxidation of benzyl alcohol examined in this work is schemat-
ically displayed in Figure 3. The adsorption of O2 on the cluster is considered a first step for
the aerobic oxidation of alcohols. First, we studied the adsorption behavior of O2 on Au8
and Au6Pd2 clusters. The optimized adsorption complexes are shown in Figure 4, and the
structural parameters are provided in Table S3 of the Supplementary Material. In the case
of Au8, the O2 molecule is most preferably adsorbed at the apex Au atom, which possesses
the highest negative charge, followed by coadsorption with a benzyl alcohol molecule. The
adsorption of O2 has been reported as the initial step in the oxidation of methanol on gold
clusters [59,60], because it results in a pronounced cooperative effect in the activation of
molecular oxygen and catalytic activity for the oxidation of methanol. The O2 molecule
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acts as the charge acceptor from Au8 and Au6Pd2. The partial charges at apex Au atoms
attached to O2 decrease from δq = −0.094 to −0.081 and δq = −0.145 to −0.068 for Au8
and Au6Pd2 clusters, respectively (Table S3). The partial charge on the O2 molecule is δq
= −0.181 and δq = −0.213 for Au8 and Au6Pd2 clusters, respectively; the negative charge
is enhanced in the Au6Pd2 cluster. Considering isolated species, O2 and metal clusters
(Figure 2a) illustrate the adsorption complexes, whereas the adsorbed O2 illustrates the
bent-triatomic bonding with the apex gold atom (Figure 2b). If the adsorption occurred by
charge transfer from the Au cluster into a π*-type orbital (LUMO) of O2, we would expect
that electrons would be gained in a spatial region resembling this orbital. This turned out
to occur in the presented adsorption complexes we examined. The example is depicted in
Figure 2b. The frontier orbitals of the adsorption complexes suggest that the overlapping
of LUMOs between O2 and apex gold atom readily induce the adsorption process. As a
result, the O–O bond of the adsorbed O2 molecules is increased to 1.29 and 1.30 Å for Au8
and Au6Pd2 clusters, respectively. These O–O bonds are elongated in between the reported
experimental values of O2 (1.207 Å) [74] and O2

– (1.347 Å) [75]. These results suggest
that charge transfer occurs from the cluster to the adsorbed molecular oxygen, leading to
the formation of a superoxo-like species, which was experimentally observed as an active
species in the selective oxidation of alcohol [76].
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For the next step, various orientations between and benzyl alcohol on the Au8 and
Au6Pd2 clusters were taken into account for initially designed geometries. The most
stable geometries optimized at the chosen level of theory are shown in Figures 4–7 and
employed for the further step of the transition state search; meanwhile, other adsorption
sites and configurations considered in this work are depicted in Figures S3 and S4 of
the Supplementary Material. The energy profile from the adsorption of substrates to the
generation of benzaldehyde and superoxo species is depicted in Figure 5. The calculated
adsorption energy of O2 and benzyl alcohol on the Au6Pd2 cluster is −26.8 kcal/mol, which
is much larger than that on the Au8 cluster of 11.4 kcal/mol. This result can be understood
by analyzing the frontier molecular orbitals and the charges on the atoms of the adsorption
complexes. The HOMO of the adsorption complexes is delocalized over Pd atoms and the
benzene moiety of benzyl alcohol, whereas this characteristic is not observed over Au8
(Figure 4). Moreover, the Mulliken charge analysis confirms a charge transfer from the
benzene unit of benzyl alcohol to Pd atoms, whereby the charges on the Pd atoms decrease
from δq = 0.147 to 0.101. These results suggest that, once the adsorption complex between
benzyl alcohol and O2 on Au–Pd bimetallic surface is formed, the interaction between
positively charged Pd atoms and benzyl alcohol via π-bond interaction and the charge
transfer from catalyst cluster to O2 is significant for stabilizing this adsorption complex.

The Pd atoms not only enhance the electron density on the neighboring Au atoms and
are responsible for the stability of the adsorption complex, but also significantly stabilize the
transition state structures in the oxidation reaction. As shown in Figure 5, in the presence
of two Pd atoms of Au6Pd2, the transition state of H–abstraction by a superoxo-like species
(TS_1B) is much more stable than that of Au8 (TS_1A); the energy barrier of Au6Pd2 is lower
by 2.4 times than Au8 (5.5 vs. 13.4 kcal/mol). The 2D to 3D evolution of the Au cluster at
TS_1A and thereafter is expected, since the fully relaxed geometry optimization can change
the cluster geometry considerably and/or its charge distribution [58] Consequently, the
transition state structure reorients to form the interaction between the benzene fragment of
benzyl alcohol and Au cluster. The transition state leads to the formation of a hydroperoxyl-
like species, AuOOH (Int_1A and Int_1B), which is considered the key intermediate in
the oxidation of alcohols [76] The relative energies of these intermediates were estimated
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to be −8.1 and −22.6 kcal/mol for Au8 and Au6Pd2, respectively. The difference in the
stability of the intermediates is due to the benzylic alkoxide in the latter case occupying
a bridge position between two positively charged Pd atoms, resulting in the stronger
interaction, which is also indicated by the shorter bond distance of O–Pd compared with
O–Au (2.17 vs. 2.25 Å). Subsequently, these key intermediates are transformed to either
benzaldehyde and H2O via Hβ–abstraction (Figures 5 and 6) or benzaldehyde and H2O2
(Figure 7).
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For the next step, the benzaldehyde formation via Hβ–abstraction (TS_2A and TS_2B)
readily occurs on the metal clusters and passes the Hβ to the neighboring hydroperoxyl-
like species. Figure 5 shows that this step can be achieved with the energy barriers of 17.9
and 7.2 kcal/mol for Au8 and Au6Pd2, respectively. The calculated activation energies
are lower than those obtained from the competitive pathway (21.8 and 12.4 kcal/mol,
respectively), which are discussed in the next section. The present result agrees well
with the experimental observation in which the use of molecular oxygen as an oxidant in
the oxidation of alcohols generates water as a byproduct [43,76]. After overcoming the
low-energy barriers, TS_2A and TS_2B, benzaldehyde, and H2O can be desorbed, leaving
chemisorbed atomic oxygen in the bridge positions on Au8 and Au6Pd2.
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The resultant chemisorbed atomic oxygen on the cluster (Au8-O and Au6Pd2-O
species) can be removed by the reaction with another benzyl alcohol. The energy profile
of this route with the intermediate and transition-state structures is shown in Figure 5.
This reaction pathway is initiated by the adsorption of benzyl alcohol on the cluster, form-
ing a hydrogen bond between the hydroxyl group and the atomic oxygen with calculated
energies of −26.3 and −36.2 kcal/mol for Au8 and Au6Pd2, respectively. The adsorption
energies are substantially affected by the charge distribution and the relaxation near the
bridge positions of the atomic oxygen. Table S5 in the Supplementary Material shows that
the charge distribution of chemisorbed atomic oxygen on Au6Pd2 is more pronounced than
on Au8 (δq = −0.663 vs. −0.612), leading to strong hydrogen bonding and yielding a more
stable adsorption complex. In the transition state, the O–H bond of benzyl alcohol is acti-
vated by chemisorbed atomic oxygen. In this case, an explanation for the high adsorption
energies of this elementary step is the difference in the charge distribution for the atomic
oxygen on catalyst clusters. For example, the negative charge on the chemisorbed atomic
oxygen of the Int_4A and Int_4B is larger than that on the O1 atom of superoxo-like species
in the Ads_A and Ads_B (−0.612 vs. −0.578, and −0.663 vs. −0.580, respectively). In other
words, the atomic oxygen on Au6Pd2 possesses more basicity than on Au8. This results in
strong hydrogen bonding between the adsorbed atomic oxygen (proton acceptor) and the
hydroxyl group of benzyl alcohol (proton donor) in Int_4. Subsequently, the dissociation
of the O1–H1 bond and the formation of the O3–H1 bond occur. In this step, the atomic
oxygen moves closer to the apex gold atom; meanwhile, the phenyl group of benzyl alcohol
is only slightly affected in the course of the reaction. The calculated energy barriers relative
to the adsorption complex were 9.5 and 3.4 kcal/mol for Au8 and Au6Pd2, respectively.
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The resulting benzylic alkoxide occupies a bridge position on Au8 and Au6Pd2, as was
found in Int_1A and Int_1B. Subsequently, the Hβ atom is transferred to a surface hy-
droxyl group with the optimized C–Hβ distances of 1.28 and 1.19 Å for Au8 and Au6Pd2,
respectively; meanwhile, the C–O bond length shortens to 1.34 Å, indicating the character-
istic of the carbonyl group produces benzaldehyde and H2O. Consequently, the products,
i.e., benzaldehyde and H2O, are adsorbed at catalyst clusters with the calculated relative
energies of −35.1 and −52.7 kcal/mol for Au8 and Au6Pd2, respectively. These predicted
reactions are exothermic; benzaldehyde and H2O require desorption energies of 20.3 and
22.8 kcal/mol for Au8 and Au6Pd2, respectively.
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2.3. The Formation of Benzaldehyde and H2O2

As noted above, another possibility exists for the formation of benzaldehyde and H2O2.
The Hβ–abstractions by oxygen atoms attached to the apex gold atoms occur while the
interaction between the benzyl fragment of benzyl alcohol and the metal clusters is formed.
Figure 7 shows that the activation energy of this step is 21.8 and 12.4 kcal/mol for Au8
and Au6Pd2, respectively. These values are slightly higher than those obtained from the
benzaldehyde formation with H2O in the previous section. Thus, we finally conclude that
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the O–H bond cleavage activated by chemisorbed atomic oxygen is kinetically preferable
to the superoxo-like species.

Comparing the energy barriers between the proposed reaction pathways, we found
that the mechanism of Hβ–abstraction requires higher activation energies than that of
the O–H bond dissociation for both catalysts. Similar trends have also been reported in
experimental [43,77–79] and theoretical [80] studies; the presence of a chemisorbed oxygen
atom on the gold nanoparticle has a strong influence on the first step of the reaction,
decreasing the barrier energy for the deprotonation of the alcohol hydroxyl group, but
failing to enhance the dissociation of the C–Hβ bond. Therefore, the latter step can be
considered as the rate-determining step for alcohol oxidation on gold nanoclusters.

Overall, the energy profiles of reactions presented in this study show that the presence
of Pd in the Au6Pd2 bimetallic cluster can significantly enhance the catalytic activity
compared with the Au8 monometallic cluster. This result agrees well with the reported
experimental study whereby enhancements in the selectivity and conversion towards
benzaldehyde were observed for gold-rich Au–Pd catalysts, which were maximized for
Au80–Pd20 compared with palladium-rich ones [71]. Finally, we believe that the present
insights into the reaction mechanism and energetics for the aerobic oxidation of benzyl
alcohol to benzaldehyde might be useful for developing bimetallic catalysts for the aerobic
oxidation of alcohols.

3. Computational Details and Models

All DFT calculations were carried out with the Gaussian09 suit of program [81].
We used hybrid meta-exchange-correlation functionals, the M06 functional, which has
been shown to be a reasonably useful functional for studying the structures and catalytic
activities of gold clusters, such as the dimensionality of gold clusters and various reac-
tions [61–64]. All-electron calculations for the noble metals in the lower half of the periodic
table are difficult; therefore, the scalar relativistic effective core potentials (RECP) for the Au
(Xe core) and Pd (Kr core) atoms were applied to describe the core electrons. The LanL2DZ
basis sets [82–84] were introduced to describe the outer shell (5s5p5d6s) of the Au atoms
and the outer shell (4s4p4d) of the Pd atoms, where pure d and pure f functions were
employed for all calculations. The 6-31G(d,p) basis sets were applied for H, C, and O atoms.
Since it was reported that the Minnesota functionals are sensitive to the choice of the grid
for numerical integrations, the ultrafine integration grid of Gaussian09 was used. In the
optimization process, all metal clusters and substrates were allowed to fully relax without
any symmetry constraints. The convergence thresholds of the optimization were set to the
default values. All the optimized ground state structures were confirmed as local minima,
vibrational analysis was performed on the optimized structures, and none of the imaginary
frequencies were found. The transition state search was achieved using the QST3 version
of the transit-guided quasi-Newton (STQN) method, with 30 images for both the forward
and backward direction corresponding to the direction of the transition vector from the TS.
All the optimized activated complexes and transition states consisted of only one imaginary
frequency. The Mulliken and NBO charge analysis for the most stable structure of Au8 and
Au6Pd2 was evaluated using LANL2TZ. The final energy profiles were presented with the
Gibbs energy change (∆G◦

298.15) obtained by frequency calculations with triple-zeta-quality
basis sets; the 6-311++G(d,p) basis sets were employed for C, H and O atoms, whereas the
LanL2TZ basis set was used for Au and Pd.

4. Conclusions

In this work, we showed how the presence of Pd in Au–Pd clusters can significantly
affect the reaction energetics of the aerobic oxidation of benzyl alcohol to benzaldehyde.
The results can be summarized as follows:

(1) The reaction is initiated by the activation of the O2 molecule on a low-coordinated
Au atom forming a peroxide-like species, followed by hydrogen abstraction from the
hydroxyl group of benzyl alcohol. Subsequently, C–Hβ bond dissociation occurs to
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produce either benzaldehyde and H2O2 or benzaldehyde and H2O. The Au cluster
is an effective catalyst, marking a significant improvement in the stability of the
adsorbed substrates, as observed in the Au–Pd cluster.

(2) The promotional roles of Pd in the Au-Pd cluster involve the enhancement in the
electron distribution to the next-nearest-neighbor Au atom, which facilitates the
activation of O2 and substantially affects the stability of the adsorption complex and
transition states, yielding low-energy barriers compared with the Au cluster.

(3) The reaction preferentially proceeds via deprotonation of the O–H bond of benzyl
alcohol followed by C–Hβ bond dissociation, producing benzaldehyde and H2O.
Another possible reaction pathway for H2O2 formation can also be responsible for
the reasonable catalytic activity of this reaction because of the low energy barrier.

(4) The calculated energy profiles show that the activation of the O–H bond of benzyl
alcohol is significantly facilitated by the presence of active oxygen species bound to the
catalyst clusters (superoxide-like and chemisorbed atomic oxygen species), whereas
the effect is reduced by the barrier for C–Hβ bond dissociation that occurs on both
Au and AuPd clusters. Thus, the latter step is considered to be the rate-determining
step, which is also in agreement with experimental observations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11060720/s1, Figure S1: Optimized structures of Au8, Figure S2: Optimized structures
of Au6Pd2, Figure S3: Initial positions of benzyl alcohol, intermediates and products on Au8 and
Au6Pd2, Figure S4–S7: Optimized structures for the complexes between benzyl alcohol and O2 on
Au8 and Au6Pd2 clusters, Table S1: The relative energy of the Au8 isomers, Table S2: The relative
energy of the Au6Pd2 isomers, Table S3–S7: Tables of structural parameters and Cartesian coordinates
of all the species in this work.
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