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Abstract: Depleting petroleum resources coupled with the environmental consequences of fossil
fuel combustion have led to the search for renewable alternatives, such as biodiesel. In this study,
sunflower (Helianthus annus), mustard (Brassica compestres) and pearl millet (Pennisetum americanum)
seed oils were converted into biodiesel (fatty acid methyl esters) by acid-, base- and lipase-catalyzed
transesterification, and the resultant fuel properties were determined. The methyl esters displayed
superior iodine values (102–139), low densities, and a high cetane number (CN). The highest yield of
biodiesel was obtained from mustard seed oil, which provided cloud (CP) and pour (PP) points of
−3.5 and 5 ◦C, respectively, and a CN of 53. The sunflower seed oil methyl esters had a density of
0.81–0.86 kg/L at 16 ◦C, CP of 2 ◦C, PP of −8 ◦C, and a CN of 47. The pearl millet seed oil methyl
esters yielded a density 0.87–0.89 kg/L, CP and PP of 4 ◦C and −5 ◦C, respectively, and a CN of 46.
The major fatty acids identified in the sunflower, mustard, and pearl millet seed oils were linolenic
(49.2%), oleic acid (82.2%), and linoleic acid (73.9%), respectively. The present study reports biodiesel
with ideal values of CP and PP, to extend the use of biodiesel at the commercial level.

Keywords: immobilized lipase; transesterification; catalysis; fatty acid methyl esters; sunflower;
mustard; pearl millet; biodiesel

1. Introduction

Fossil fuels are a major source of environmental pollution and anthropogenic emis-
sions. Huge quantities of carbon dioxide, sulfur dioxide, nitrogen oxides, polyaromatic
hydrocarbons, and particulate matter are released into the atmosphere due to the combus-
tion of fossil fuels. Promising replacements for fossil fuels are biofuels, such as biodiesel.
Biodiesel is a renewable alternative to petroleum diesel, and comes with a number of
ecological and practical advantages. Many sources, including sunflower, rapeseed, soy-
abean, jatropha, pongamia, waste cooking oil, grease, and algal oils, can be converted into
biodiesel (fatty acid methyl esters) by transesterification, which is normally conducted in
the presence of methanol and a catalyst [1,2]. Transesterification consists of several consec-
utive, reversible reactions. In these reactions, the triglycerides are converted stepwise to
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diglycerides and monoglycerides, with the release of fatty acid methyl esters (three per
triglyceride) and glycerol.

Biodiesel is gaining more attention worldwide as an alternative clean fuel, due to
the development of new methodologies and non-food feedstocks for low-cost produc-
tion, and its renewable nature and lower emission relative to petroleum diesel [3,4]. The
environmental benefits of biodiesel come from its chemical structure and sources of pro-
duction. Biodiesel is mostly produced from plants that contain low quantities of sulfur,
which results in negligible SOx emission. Biodiesel also produces 50% less NOx emissions
than petroleum diesel. Another difference between fossil fuels and biofuels is the oxygen
contents. Biodiesel has a much higher oxygen content (10–45%) than petroleum diesel, due
to the presence of ester groups within the fuel [5]. Most importantly, fossil fuels such as
coal, petroleum and natural gas are limited and non-renewable, and will get exhausted or
phased out through policy changes. Thus, there is a dire need to develop new production
processes and sources for renewable and sustainable biofuels [6–14].

Mustard (Brassica compestres) is an inexpensive feedstock for biodiesel production, as
its seeds contain a high oil content (58–70%). The production costs associated with growing
mustard are much lower than other crops such as soyabean, due to lower inputs such as
less pesticides, fertilizes and irrigation, etc. [15,16]. Sunflower (Helianthus annus) seeds
contain 22–36% oil and are a good source of monosaturated and polyunsaturated fatty
acids, including oleic (omega-9) and linoleic (omega-6) acids [17]. Sunflower seed oil also
contains appreciable quantities of sterols, vitamin E, squalene, aliphatic hydrocarbons,
and terpenes [17]. Currently, sunflower is one of the leading oil seed crops cultivated
for the production of biodiesel [18]. Pearl millet (Pennisetum americanum) is an important
crop for developing countries in Asia and Africa, which collectively produces about 93%
of the total world production [19]. The above-referred potential seed oil crops are not
only important for developed countries, but these can also be explored to support the
economies of developing countries. Commercially, biodiesel is produced by catalyzed
chemical reactions and space still exists for improved production methodologies [7]. The
objectives of the present study were to produce biodiesel from sunflower, mustard and
pearl millet seed oils using acid-, base-, and lipase-catalyzed transesterification, and to
measure the resultant fuel properties. A further objective was to compare the fuel properties
against major international biodiesel fuel standards, such as ASTM D6751 and EN 14214.

2. Results and Discussion

This research was conducted to evaluate the possibility of using sunflower, mustard,
and pearl millet seed oils as potential sources for biodiesel production, through the trans-
esterification process. Three catalysts, including lipase, base and acid, were used for the
transesterification of the oils. The fuel properties of the resultant fatty acid methyl esters,
such as density, saponification value (SV), iodine value (IV), cloud point (CP), pour point
(PP), and cetane number (CN), were then measured and compared against the international
biodiesel standards ASTM D6751 and EN 14214.

2.1. Effect of Catalyst on Yield of Biodiesel

The effect of different catalysts on the yield of biodiesel are presented in Figures 1–4.
Alkali-catalyzed transesterification was performed using three different concentrations of
NaOH and KOH (0.5, 1.0 and 2.0 wt.% relative to oil). The maximum yield of biodiesel
was attained from mustard seed oil using 0.5% KOH alkali-catalyzed transesterification.
A further increase in KOH quantity resulted in the decreased biodiesel yield, due to the
formation of soaps at higher alkali concentrations (Figure 1). A similar trend was noted
for base-catalyzed transesterification using NaOH (Figure 2). However, the yields were
higher using KOH because of less soap formation. Three concentrations of HCl (25%, 50%
and 100% w/w of oil) were used for the acid transesterification of sunflower, mustard,
and pearl millet seed oils (Figure 3). The maximum yield of biodiesel was obtained at the
highest concentration of HCl. Immobilized enzyme transesterification was conducted at



Catalysts 2021, 11, 811 3 of 11

three concentrations (3%, 4% and 5% w/w of oil) of immobilized lipase. The highest yield
of biodiesel was obtained at a lipase concentration of 4% (Figure 4). The direct link that
exists between the number of active sites and the amount of the substrate was noted [20].
Of all the catalysts (HCl, KOH, NaOH and lipase) and oil samples (sunflower, mustard,
and pearl millet seed oils), a maximum yield of the biodiesel of 98% was achieved from
mustard seed oil, using 100% HCl.

Figure 1. Percentage yield of biodiesel using KOH (wt.%) as a base catalyst.

Figure 2. Percentage yield of biodiesel using NaOH (wt.%) as a base catalyst.
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Figure 3. Percentage yield of biodiesel using HCl (wt.%) as acid catalyst.

Figure 4. Percentage yield of biodiesel using lipase (%) as enzymatic catalysis.

2.2. Physiochemical Properties of Biodiesel

The density of the biodiesel samples was determined following standard methods (EN
ISO 3675/12185 and ASTM standard D1298), as described previously [20]. In the present
study, the densities of all the samples were in the range of 0.80 to 0.89 kg/L (Table 1). Pearl
millet biodiesel, prepared from 2 wt.% KOH, provided the lowest density (0.80 g/mL).
The maximum value (0.89 kg/L) was obtained from pearl millet seed oil methyl esters,
using HCl (100% w/w oil-to-HCl) and a 6:1 methanol-to-oil molar ratio. The density of
biodiesel plays an important role in the flow proprieties during different seasons. Higher
fuel densities lead to lower flow rates of fuel injected into the combustion cylinder. If the
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density is too low, then the power is reduced, because higher density fuels have more
energy content. However, the weather conditions of a particular country play an important
role in deciding which biodiesel to choose, due to the differences in low-temperature
performance. In a previous study, biodiesel produced from beef tallow and chicken fat had
densities of 0.856–0.867 kg/L [21]. The European biodiesel standard (EN 14214) requires
density to be in the optimal range of 0.86–0.90 kg/L [1]. In another previous study, the
biodiesel made from date seed oil had a density of 0.887 kg/L.

Table 1. Density (kg/L) of biodiesel from sunflower, mustard, and pearl millet seed oils.

Catalyst Catalyst Conc.
(%) Sunflower Mustard Pearl Millet American

Standard ASTM
European

Standards EN

KOH
0.5 0.85 ± 0.003 0.87 ± 0.005 0.82 ± 0.004

Not specified

1 0.83 ± 0.004 0.85 ± 0.006 0.81 ± 0.003 0.86–0.90
2 0.81 ± 0.005 0.84 ± 0.004 0.80 ± 0.005

NaOH
0.5 0.85 ± 0.003 0.85 ± 0.005 0.83 ± 0.005
0.1 0.83 ± 0.004 0.83 ± 0.003 0.81 ± 0.003
2 0.82 ± 0.006 0.83 ± 0.004 0.81 ± 0.006

HCl
25 0.81 ± 0.002 0.85 ± 0.005 0.86 ± 0.004
50 0.81 ± 0.007 0.86 ± 0.002 0.87 ± 0.003
100 0.83 ± 0.006 0.88 ± 0.006 0.89 ± 0.004

Immobilized
lipase

3 0.81 ± 0.004 0.84 ± 0.007 0.85 ± 0.007
4 0.82 ± 0.003 0.85 ± 0.003 0.86 ± 0.003
5 0.81 ± 0.004 0.82 ± 0.004 0.84 ± 0.004

An approximate estimate of the MW of the methyl ester components of biodiesel can
be obtained from the SV, as SV is an indicator of the extent of short-chain alkyl groups
attached to the fatty acid methyl esters [22]. A higher SV indicates the presence of more
carboxylic groups per unit mass [1]. The SV of the biodiesel produced in the present
study ranged from 174 to 193 mgKOH/g (Table 2). Thus, the SV indicated that pearl
millet seed oil had more short alkyl chains as compared to other oil sources, as it yielded a
maximum saponification value of 193 at 2% NaOH. Sunflower oil had higher quantities
of long-chain alkyl groups. Previous studies determined SVs for biodiesel produced from
various sources, such as 187.02 for castor oil [23], 259 for coconut oil [24], 201 for palm
oil [25], and 323 for date seed oil [20]. The greater the value of saponification, the higher
the density and the lower the volatility. Highly volatile biodiesel avoids misfire and burns
smoothly in the engine. The lowest SV was observed in the current study for biodiesel
prepared from pearl millet seed oil.

Table 2. Saponification value (mg KOH/1 g) of biodiesel from sunflower, mustard and pearl millet seed oils.

Catalyst Catalyst Conc.
(%) Sunflower Mustard Pearl Millet American

Standard ASTM
European

Standards EN

KOH
0.5 175 ± 0.5 187 ± 0.4 190 ± 0.6

Not specified Not specified

1 177 ± 0.5 189 ± 0.5 192 ± 0.6
2 179 ± 0.6 191 ± 0.4 193 ± 0.6

NaOH
0.5 174 ± 0.6 186 ± 0.4 190 ± 0.6
0.1 176 ± 0.5 189 ± 0.4 192 ± 0.6
2 177 ± 0.6 190 ± 0.5 193 ± 0.6

HCl
25 177 ± 0.5 182 ± 0.4 188 ± 0.6
50 175 ± 0.5 178 ± 0.4 187 ± 0.6
100 174 ± 0.5 177 ± 0.4 186 ± 0.6

Immobilized
lipase

3 176 ± 0.6 181 ± 0.4 186 ± 0.6
4 174 ± 0.5 178 ± 0.5 184 ± 0.6
5 175 ± 0.5 180 ± 0.4 185 ± 0.6
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The degree of unsaturation is determined by the IV. It is defined as “the number
of grams of iodine added to 100 g of oil or fat”. Thus, biodiesel with no double bonds
has as an IV of zero. This parameter greatly affects the oxidative stability of biodiesel, as
oxidation is initiated at sites allylic to unsaturation. The IVs recorded during the present
study ranged from 102 to 139 (Table 3). The minimum IV (102) was obtained from mustard
seed oil methyl esters at 2% NaOH, by using a 10:3 methanol-to-oil molar ratio for 90 min
at 60 ◦C. The maximum IV (139) was observed for sunflower oil methyl esters, which
was because they contained the highest percentage of polyunsaturated fatty acids such as
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-linolenic acid. The upper limit for IV in the European biodiesel standard (EN 14214) is
120, but the American standards (ASTM D6751) do not specify a limit for the IV. Because
oxidative stability and melt temperature are related to the degree of unsaturation, the IV
gives an estimation of these parameters. The greater the IV, the higher the susceptibility
to oxidation, due to the presence of more unsaturation. Peanut oil (IV 82–107) is more
saturated than corn (IV 103–128), cottonseed (IV 99–113), or linseed (IV 155–205) oils;
however, it is considerably less saturated than coconut (IV 7.7–10.5), palm (IV 44–54), or
butter (IV 25–42) oils [26]. The CP and freezing points of biodiesel are dependent on the IV.
The higher the degree of unsaturation, the greater the IVs and the lower CPs. However,
greater unsaturation may cause the formation of engine deposits, due to polymerization at
high engine temperatures. To avoid solidification of the fuel, at low storage temperatures,
unsaturation is necessary, to a degree [1]. Thus, a balance must be maintained between
the oxidative stability and low-temperature performance. However, the lower CP and PP
values observed for biodiesel from mustard seed oil were due to the presence of short-chain
fatty acids containing less van der Waals forces [20]. Overall, the IV was minimally affected
by the production method, as acid-, base- and lipase-catalyzed transesterifications generally
yielded similar results within a given biodiesel.

Table 3. Iodine value (g I2/100 g) of biodiesel from sunflower, mustard, and pearl millet seed oils.

Catalyst Catalyst Conc.
(%) Sunflower Mustard Pearl Millet American

Standard ASTM
European

Standards EN

KOH
0.5 134 ± 0.2 106 ± 0.2 129 ± 0.3

Not specified

1 132 ± 0.2 105 ± 0.2 127 ± 0.3 ≤120
2 131 ± 0.2 103 ± 0.2 126 ± 0.3

NaOH
0.5 133 ± 0.3 107 ± 0.2 128 ± 0.3
0.1 132 ± 0.2 105 ± 0.2 126 ± 0.3
2 130 ± 0.3 102 ± 0.3 124 ± 0.3

HCl
25 134 ± 0.2 105 ± 0.2 127 ± 0.3
50 135 ± 0.2 107 ± 0.2 128 ± 0.3
100 139 ± 0.2 108 ± 0.2 129 ± 0.3

Immobilized
lipase

3 134 ± 0.2 106 ± 0.3 126 ± 0.3
4 136 ± 0.2 108 ± 0.2 128 ± 0.2
5 132 ± 0.2 105 ± 0.2 125 ± 0.5

To test the low-temperature performance of biodiesel, CP and PP are important
parameters. Fuel solidification in engines filters and pipelines may cause many problems,
such as damage to the engine and delayed ignition due to crystal formation. The CP is
measured as the temperature at which the growing crystal within the biodiesel becomes
visible and causes the fuel to turn cloudy. The temperature at which the fuel turns into a
gel and no longer pours, due to continued crystal growth and agglomeration, is referred
to as the PP [27]. Usually, vegetable oils have a higher CP and PP than the corresponding
biodiesel fuels [5]. The delayed startup, misfire, and poor flow rates to the combustion
chamber, and engine failure, are the main drawbacks of a high CP and PP. The CP decreases
with unsaturation and increases with fatty acid chain length. The CP range of the biodiesel
produced in this study was between 2.2 and 5.1 ◦C (Table 4) for sunflower, while the
PP ranged from −7.5 ◦C to −8.1 ◦C. The significantly lower CP and PP relative to the
other methyl esters indicated that sunflower biodiesel could also be used in cold weather
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climates. Biodiesel from sunflower oil also exhibited a lower PP value when produced
in the following reaction conditions: 0.5% NaOH, a 10:3 methanol-to-oil molar ratio, for
90 min at 60 ◦C. On the other hand, the maximum CP was exhibited by mustard biodiesel
produced by using 2% NaOH, a 10:3 methanol-to-oil molar ratio, for 90 min at 60 ◦C.
The European and American biodiesel standards report no specific CP limit. The climatic
conditions usually define the CP limit. The values obtained for PP were between −3.7 ◦C
and −8.1 ◦C. The minimum value was observed for biodiesel from sunflower seed oil, by
using 100% HCl at a 6:1 methanol-to-oil molar ratio and 90 min of reaction at 65 ◦C. For
comparison, the CP and PP reported previously were 4 ◦C and −1 ◦C for date seeds oil
methyl esters, respectively [1].

Table 4. Pour point (◦C) and cloud point (◦C) of biodiesel from sunflower, mustard and pearl millet seed oils.

Catalyst Catalyst
Conc. %

Sunflower Mustard Pearl Millet Biodiesel Standards

Cloud Point
(◦C)

Pour Point
(◦C)

Cloud Point
(◦C)

Pour Point
(◦C)

Cloud Point
(◦C)

Pour Point
(◦C) Cloud Point Pour Point

KOH
0.5 2.4 ± 0.093 −7.8 ± 0.086 4.7 ± 0.084 −4.3 ± 0.090 3.9 ± 0.084 −4.8 ± 0.088

Not specific
depends on

climatic
condition

Not specific
depends on

climatic
condition

1 2.5 ± 0.089 −7.7 ± 0.082 4.8 ± 0.082 −4.1 ± 0.082 4.4 ± 0.079 −5.1 ± 0.082
2 2.7 ± 0.080 −7.5 ± 0.090 5.0 ± 0.093 −3.8 ± 0.093 4.2 ± 0.076 −5.0 ± 0.093

NaOH
0.5 2.2 ± 0.080 −8.0 ± 0.090 4.8 ± 0.089 −4.3 ± 0.090 4.0 ± 0.069 −4.7 ± 0.090
1 2.4 ± 0.079 −7.9 ± 0.086 4.9 ± 0.060 −4.2 ± 0.060 4.3 ± 0.066 −4.6 ± 0.060
2 2.6 ± 0.083 −7.6 ± 0.087 5.1 ± 0.080 −3.9 ± 0.089 4.3 ± 0.082 −4.9 ± 0.089

HCl
25 2.4 ± 0.093 −7.7 ± 0.071 5.0 ± 0.079 −4.3 ± 0.087 4.4 ± 0.087 −4.8 ± 0.077
50 2.5 ± 0.079 −7.9 ± 0.83 5.0 ± 0.83 −4.2 ± 0.83 4.4 ± 0.076 −5.2 ± 0.83

100 2.4 ± 0.082 −8.1 ± 0.093 4.8 ± 0.093 −4.1 ± 0.093 4.3 ± 0.085 −5.1 ± 0.093

Immobilized
Lipase

3 2.5 ± 0.081 −7.8 ± 0.079 5.0 ± 0.079 −4.0 ± 0.079 4.5 ± 0.070 −5.6 ± 0.079
4 2.3 ± 0.085 −8.0 ± 0.082 4.8 ± 0.084 −4.1 ± 0.087 4.3 ± 0.082 −6.1 ± 0.074
5 2.3 ± 0.082 −7.9 ± 0.085 4.9 ± 0.088 −3.7 ± 0.087 4.4 ± 0.079 −6.0 ± 0.085

The measure of ignition delay between fuel injection and injection in the combustion
chamber is referred to as CN. Fuels with a higher CN have shorter ignition delays, run
more smoothly, and produce less engine knocking. CN is thus helpful in deciding what
feedstock should be selected for biodiesel production [28]. As the chain length and degree
of saturation increases, the CN also increases. Petroleum diesel has a lower CN than
biodiesel, due to the presence of branching and aromaticity, both of which also lower
the CN. The American and European biodiesel standards contain lower limits for CN,
which are 47 and 51, respectively [20]. In the present study, the CN of the three samples
ranged from 47 to 53 (Table 5). The maximum CN of 53 was observed for mustard seed
oil methyl esters. Overall, CN was minimally affected by the production method, as acid-,
base- and lipase-catalyzed transesterifications generally yielded similar results within a
given biodiesel.

Table 5. Cetane number (CN) of biodiesel from sunflower, mustard, and pearl millet seed oils.

Catalyst Catalyst Conc.
(%) Sunflower Mustard Pearl Millet American

Standard ASTM
European

Standards EN

KOH
0.5 47.4 51.6 46.0

47

51
1 47.4 51.5 46.2
2 47.3 52.5 46.2

NaOH
0.5 47.7 51.6 46.2
0.1 47.6 51.5 46.4
2 47.9 52.1 46.7

HCl
25 47.0 52.7 46.8
50 47.1 52.9 46.7
100 46.8 52.8 46.6

Immobilized
lipase

3 47.2 52.6 47.3
4 47.1 52.7 47.2
5 47.8 53.0 47.7
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2.3. Fatty Acid Profile of Biodiesel

Gas chromatography mass spectrometric analysis (GC-MS) determined the fatty acid
profiles of the biodiesel samples produced from mustard, sunflower and pearl millet seed
oils. The most abundant fatty acid in mustard seed oil was oleic acid (82.2%), followed
by palmitic acid (7.9%). The major fatty acids identified in sunflower oil were
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-linolenic
(49.9%), erucic (27.7%) and gondoic (15.3%) acids. The dominant fatty acid in pearl millet
seeds oil was linolenic acid (73.9%), followed by palmitic acid (21.9%). The total fatty
acids identified by GC-MS of the three oils was 99.99–100% (Table 6). A careful review of
the literature revealed that superior-quality biodiesel is produced from feedstocks having
a major amount of fifteen carbon atoms fatty acids [29]. The biodiesel produced from
sunflower, mustard and pearl millet seed oils was of good quality, as it did not have any
major fatty acids with less than fifteen carbon atoms [30,31].

Table 6. Fatty acid profile of biodiesel from sunflower, mustard, and pearl millet seed oils.

Peak No. Fatty Acid
Relative Contents %

Sunflower Mustard Pearl Millet

2 Palmitoleic acid (C16:1) - 0.2 0.1
1 Palmitic acid (C16:0) 3.5 7.9 21.9
6 Linolenic acid (C18:3) 49.2 - -
5 Linoleic acid (C18:2) - - 73.9
4 Oleic acid (C18:1) - 82.2 -
3 Stearic acid (C18:0) 1.6 3.6 3.4
8 Gondoic acid (C20:1) 15.3 1.5 0.3
7 Arachidic acid (C20:0) 0.6 0.4 0.3
9 Erucic acid (C22:1) 27.7 4.1 -
11 Nervonic acid (C24:1) 1.8 - -
10 Lignoceric acid (C24:0) 0.2 - 0.1

Total 99.99 99.99 100.0

3. Materials and Methods
3.1. Material

Sunflower, mustard, and pearl millet seeds were purchased from a market in Jhang,
Pakistan and were unfit for food use. Sodium hydroxide (NaOH), potassium hydroxide
(KOH), hydrochloric acid (HCl), lipase, and methanol were purchased from Merck, Pvt.
Ltd., Karachi, Pakistan (distributor). All chemicals and solvents were used as received and
were of analytical grade.

3.2. Transesterification

The extracted sunflower, mustard and pearl millet seed oils were converted into fatty
acid methyl esters by catalytic transesterification with methanol. Transesterification was
performed in a round-bottom flask fitted with a reflux condenser heated on a magnetic stir
plate. Three catalysts including lipase, base and acid were used for transesterification of
the oils. Acid-catalyzed transesterification was conducted with HCl at three levels (25, 50
and 100%) using a methanol-to-oil molar ratio of 6:1 for 90 min at 65 ◦C. Base-catalyzed
transesterification was performed using KOH or NaOH (0.5, 1 and 2 wt.%) with a 10:3 ratio
of methanol-to-oil at 60 ◦C for 90 min. Lipase-catalyzed transesterification was performed
at concentrations of 3, 4 and 5 wt.% at a methanol-to-oil molar ratio of 5:1 with a shaking
time of 12 h at 40 ◦C. The lipase used in this study was obtained from microbes. Biodiesel
and glycerol were separated using a separatory funnel after the two layers were allowed to
settle. Soap was removed by washing biodiesel with hot (80 ◦C) distilled water.

3.3. Immobilization of Lipase

The lipase enzyme was immobilized in the form of beads by sodium alginate. Exactly
3 g of sodium alginate was dissolved in 100 mL of distilled water to produce a 3% solution.
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Then, 0.25 g of lipase was mixed with 45 mL of the sodium alginate solution. This procedure
was executed in sterilized surroundings. The beads were made by dropping the biopolymer
solution through a syringe and needling it into an excess of 0.2 M CaCl2 (100 mL) solution
with continuous stirring at room temperature. A potassium phosphate buffer (3 mL) of pH
7.4 was added to the solution to maintain the pH of the lipase [32].

3.4. Determination of Physiochemical Characteristics

Gas chromatography mass spectrometry (GC-MS) of the fatty acid methyl esters
(0.1 µL) was performed on an Agilent Technologies GC system 7890A that was fitted with
an HP-5MS capillary column (30 m × 250 µm i.d × 0.25 µm film thickness, maximum
temperature, 450 ◦C), coupled to a model 5975C MS with a split ratio of 50:1. Carrier gas
used in the column was helium (99.99%) at a constant flow of 0.8 mL/min. The ion source,
injection and line transfer temperatures were 250, 240 and 200 ◦C, respectively. The oven
temperature program was held at 60 ◦C for 10 min, ramped to 310 ◦C at 10 ◦C/min and
held at 310 ◦C for 5 min. The identification of peaks was done by comparing retention
times with reference standards as well as comparison of the spectra with the included
NIST05 library.

The pH of all of the biodiesel samples was determined by a model HI 8010 pH meter.
Density (kg/L) was determined by measuring the mass of 1.0 mL of each sample. Specific
gravity (SG) was measured by a specific gravity bottle. The following formula (Equation (1))
was used to calculate the SG by taking water as the standard:

SGtrue =
ρSample
ρH2O

(1)

where ρSample is the density of the biodiesel sample and ρH2O is the density of water.
For measurement of iodine value (IV), 0.1 g of biodiesel was added to a 250 mL iodine
flask, followed by the addition of 20 mL CCl4 and 25 mL Wijs solution. The mixture was
shaken vigorously and then left in the dark for 30 min. Then 20 mL of 15% KI solution
and 100 mL of distilled water were added and mixed. The solution was titrated with
0.1 N Na2S2O3·5H2O until the color disappeared using starch as an indicator. The same
procedure was followed for a blank solution. IV was calculated by using the following
formula (Equation (2)) [33]:

IV =
(B − S) × N × 12.6

Sample (gm)
(2)

where B = titration volume of titrant used for the blank, S = volume of titrant used for
sample and N = normality of Na2S2O3·5H2O. For determination of the saponification value
(SV), 0.5 g of biodiesel sample and 20 mL alcoholic KOH solution were added to a 250 mL
round-bottom flask. The flask was then attached to a condenser and heated moderately
until a clear solution was obtained (an indication of completion of saponification reaction).
After cooling the solution to room temperature, it was titrated with 0.5 N HCl using
phenolphthalein as an indicator until disappearance of the pink color. The same procedure
was followed for a blank sample. The SV of the samples was calculated by the following
formula (Equation (3)) [34]:

SV =
(B − S) × N × 56.1

W
(3)

where SV = g KOH per g of sample, B = volume of titrant (mL) for blank, S = volume of
titrant (mL) for sample, N = normality of HCl (mmol/mL), 56.1 = molecular weight (MW)
of KOH (mg/mmol) and W = sample mass (g). Cetane number (CN) was calculated by
using following formula (Equation (4)) [35]:

CN = 46.3 +
5458
SV

− 0.225 × IV (4)
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Pour point (PP) and cloud point (CP) were determined simultaneously by using
Tanaka mini pour/cloud point tester model MPC-101A. All measurements and calculations
were performed in triplicate and mean values reported.

4. Conclusions

In the present study, the densities of all the prepared biodiesel samples were in the
range of 0.80 to 0.89 kg/L, the CP ranged between 2.2 and 5.1 ◦C, and the CN was measured
from 47 to 53. These values were generally within the ranges specified in ASTM D6751 and
EN 14214, where appropriate. The biodiesel produced from sunflower, mustard and pearl
millet seed oils had low viscosity and a high CN. The present study reports biodiesel with
ideal values of CP and PP, to extend the use of biodiesel at the commercial level to low-
temperature climates. Gas chromatographic mass spectrometric (GC-MS) analysis showed
the most abundant fatty acids in mustard seed oil were oleic (82.2%) and palmitic (7.9%)
acids. The major fatty acids in sunflower seed oil were
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-linolenic (49.2%), erucic (27.7%),
and gondoic (15.3%) acids. The biodiesel from pearl millet seed oil was dominated by
linolenic acid (73.9%), followed by palmitic acid (21.9%). Overall, this study demonstrated
that fatty acid methyl esters, prepared by a variety of methods from a number of seed oils,
yields biodiesel with favorable fuel properties. The production method (acid-, base- and
lipase-catalyzed transesterification) had little effect on the resultant fuel properties.
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