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Abstract: Biodiesel is a promising alternative to fossil fuels and mainly produced from oils/fat
through the (trans)esterification process. To enhance the reaction efficiency and simplify the pro-
duction process, various catalysts have been introduced for biodiesel synthesis. Recently, the use of
bio-derived catalysts has attracted more interest due to their high catalytic activity and ecofriendly
properties. These catalysts include alkali catalysts, acid catalysts, and enzymes (biocatalysts), which
are (bio)synthesized from various natural sources. This review summarizes the latest findings on
these bio-derived catalysts, as well as their source and catalytic activity. The advantages and disad-
vantages of these catalysts are also discussed. These bio-based catalysts show a promising future and
can be further used as a renewable catalyst for sustainable biodiesel production.

Keywords: alternative fuel; bio-derived catalyst; biodiesel; ecofriendly benefit; (trans)esterification

1. Introduction

Global industrialization leads to the extensive use of fuel-based energy for transporta-
tion, which consequently causes the depletion of fossil fuels and global warming. Therefore,
renewable fuels are considered an alternative energy to solve the problem of fuel depletion
and environmental pollution. Biodiesel, a biomass-derived fuel, is a promising bioenergy,
which is increasingly produced worldwide to replace fossil fuels because of its combustion
efficiency, compatibility with diesel engines, and low carbon dioxide emissions [1,2]. As
a result, studies have been focusing on developing an efficient approach for biodiesel
production.

Biodiesel is mainly synthesized from oils/fat (derived from plants, animals, and mi-
croorganisms) through the (trans)esterification process [3,4]. The efficiency of this process
is mainly affected by several factors including the quality of feedstock (level of free fatty
acids), the type of acyl acceptor (e.g., alcohols or methyl acetate), and the type of reactions
(e.g., noncatalytic reaction, chemical-catalyzed reaction, and enzymatic reaction) [5,6]. To
enhance the reaction efficiency, most studies focused on developing efficient catalysts
for the (trans)esterification reaction. Consequently, different types of catalysts, such as
alkali catalysts, acid catalysts, and enzymes have been studied [7,8]. Commonly, chemical
catalysts (such as KOH, NaOH, H2SO4, and HCl) are used for biodiesel production pro-
cesses [9]. Although these chemical catalysts efficiently catalyze the reaction, they retain
several limitations regarding their reusability, negative effect on the environment, and
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complicated purification steps in the downstream process [2]. Therefore, studies have
shifted to using bio-derived catalysts for biodiesel production.

Bio-based catalysts have increasingly attracted attention for biodiesel production
due to their availability and environmentally friendly nature [8]. Those catalysts are
derived from natural sources and divided into 3 types: alkali catalysts, acid catalysts,
and biocatalysts (enzymes). Each type of catalyst has its advantages and disadvantages
for biodiesel production. To synthesize these catalysts, various biomass materials and
synthesis methods have been reported [8]. Catalysts derived from different sources possess
different catalytic activity. This review aims to summarize the bio-derived catalysts for
biodiesel production. The natural sources used for catalyst synthesis are reported. The
advantages and disadvantages of each type of catalyst are also discussed in this review.

2. Bio-Derived Alkali Catalysts for Biodiesel Production

Biodiesel is commonly produced through transesterification of vegetable oil or an-
imal fat with short-chain alcohols (e.g., methanol and ethanol) in the presence of liq-
uid/homogenous alkali catalysts (e.g., NaOH, KOH). The homogenous alkali catalyst-
catalyzed transesterifications achieve high biodiesel yield within a short reaction time
(30–45 min) and proceed at atmospheric pressure [10]. However, emulsification, difficulty
in separation of the catalyst after reaction, and generation of excess wastewater are major
problems associated with those catalysts [11]. To address these issues, heterogeneous
alkali catalysts have been increasingly developed as alternative catalysts for biodiesel
production. The use of heterogeneous alkali catalysts for biodiesel production simplifies
the operation, easily removes and recovers catalysts from the reaction mixture, results in
better biodiesel refining, and lowers environmental problems as compared to homogenous
catalysts [10]. Furthermore, heterogeneous alkali catalysts can be synthesized from various
cheap materials, thus reducing the production cost [12]. However, heterogeneous catalytic
reactions are typically time-consuming and require a higher reaction temperature than the
homogenous alkali catalyst-catalyzed transesterification due to diffusion problems owing
to the formation of three phases of the reactants (methanol–oil–solid catalyst) [8]. Therefore,
studies have focused on developing solid catalysts with high catalytic activity to produce
biodiesel under mild reaction conditions and short reaction time [13].

Alkali catalysts derived from biomass have attracted considerable interest in biodiesel
production due to their ecofriendly nature, low cost, and the availability of biomass as a
material for the synthesis of catalysts. Moreover, the use of biomass for catalyst synthesis
can solve the environmental problems caused by surplus biomass waste. Therefore, various
types of bio-derived alkali catalysts have been studied for transesterification reactions.
Biomass-derived calcium oxide (CaO) is one of the most promising solid alkali catalysts
used for biodiesel production [14]. The availability of CaO has been recorded in differ-
ent types of waste/low-cost materials, mainly from animal-derived biomass, including
eggshell [15], Turbo jourdani shell [16], oyster shell [17], Pomacea canaliculata shell [18],
Turbonilla striatula shell [19], crap shell [20], mussel (Perna varidis) shell [21], Grooved razor
shell [22], conch shell [23], Malleus malleus shells [24], and animal bone [25]. The catalytic
activities of the synthesized CaO catalysts vary, depending on the materials used and
the synthesis method. Among the materials used, eggshell seems to be one of the most
suitable materials and attracted extensive investigations for the synthesis of CaO catalyst
since it contains a high level of CaCO3 and is easy to obtain [26]. Yaşar [26] reported the
synthesis of a CaO catalyst from waste eggshell. The transesterification reaction catalyzed
by eggshell-derived CaO resulted in 96.81% biodiesel yield, compared to 95.12% biodiesel
produced by commercial CaO, under the reaction conditions of 4% catalysts, 1 h reaction
time, and 60 ◦C reaction temperature [26]. The synthesis method also seems to affect the
catalytic activity of the catalyst; therefore, catalysts are derived from the same materials,
but they exhibit various catalytic activities (yielding 90–97% biodiesel) [26,27]. For example,
Gollakota et al. [28] used eggshell-supported pyrolysis residue as a solid alkali catalyst
for transesterification of waste cooking oil (WCO). This study also compared the catalytic
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activity of unsupported eggshell catalysts and the supported catalyst. Results revealed that
the biodiesel yield reached over 95% at 65 ◦C using 10% supported catalyst with a methanol
to oil molar ratio of 12:1 in 3 h. In comparison with unsupported eggshell catalysts, the
synthesized catalyst shows improved surface area and catalytic activity [28]. Goli et al. [29]
reported biodiesel production from soybean oil using a CaO catalyst that was derived from
chicken eggshell waste, yielding 93% biodiesel, whereas Kirubakaran et al. [27] also used a
waste chicken eggshell-derived CaO catalyst for biodiesel production and reported 90.41%
biodiesel yield under optimal reaction conditions.

In addition to CaO, other calcium (Ca)-based catalysts synthesized from biomass have
been reported as potential alkali catalysts for biodiesel production [15,30]. Gupta et al. [15]
synthesized eggshell-CaDG catalyst for biodiesel production. The transesterification of
WCO was conducted to compare the catalytic activity of eggshell-CaOC-H-D and eggshell-
CaDG. Under optimized reaction conditions (catalyst loading of 1.5%, reaction time of
50 min, methanol:oil molar ratio of 10:1, temperature of 60 ◦C, and agitation speed of
300 rpm), the eggshell-CaDG catalyzed reaction provided 96.07% biodiesel. The eggshell-
CaDG demonstrated higher catalytic activity than eggshell-CaOC-H-D (93.10% biodiesel
yield under the optimal reaction conditions of temperature of 65 ◦C, catalyst loading of
3%, methanol:oil molar ratio of 12:1, 400 rpm, and reaction time of 90 min) [15]. Both
catalysts (eggshell-CaOC-H-D and eggshell-CaDG) could be reused for up to five cycles
for biodiesel production [15]. In addition, alkali catalyst obtained from the plant materials
through calcination method such as calcined Musa acuminata peduncle [30], calcined waste
cupuaçu (Theobroma grandiflorum) seeds [31], calcined banana peel [32], calcined elephant-
ear tree pod husk [33], calcined kola nut husk pod [34], calcined Brassica nigra plant [35],
ZrO2-supported bamboo leaf ash [36], calcined Sesamum indicum ash [37], calcined Tectona
grandis leaves [38], calcined fig (Ficus carica) leaves [39], calcined ginger (Zingiber officinale)
leaves [40], calcinated Carica Papaya stem [41], and calcined Musa balbisiana Colla peel [42],
also efficiently converted oil into biodiesel with conversion rates of higher than 95.1%
(Table 1).

Activated carbon-based and biochar catalysts derived from biomass are another type
of alkali catalyst, which shows promise for biodiesel production. These catalysts are
mainly synthesized from plant materials through the carbonization process. Recently,
Naeem et al. [43] reported the use of KOH/corn cob activated carbon catalyst for biodiesel
production with a biodiesel yield of 97.8%, whereas the nano-bifunctional catalyst from
rice husk resulted in 98.6% biodiesel yield [44]. Due to their high catalytic activity, the
synthesis of these bio-based activated carbon catalysts and other bio-based alkali catalysts
is still an objective of investigation for biodiesel production.

Table 1. Several bio-derived alkali catalysts for biodiesel production.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

Eggshell-derived
CaO Rapeseed oil 4 9:1 60 60 95.12 3/93.24 [12]

Chicken
eggshell-derived

CaO
WCO 1.5 10:1 50 60 96.07 5/81.15 [15]

Chicken
eggshell-derived

CaO
Chicken fat 8.5 13:1 300 57.5 90.41 5/85 [27]

Chicken
eggshell-derived

CaO
WCO 10 12:1 180 65 95 - [28]
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Table 1. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

Chicken
eggshell-derived

CaO
Soybean oil 7 10:1 180 57.5 93 4/75 [29]

Eggshell-derived
CaO

Phoenix dactylifera
L. seed oil 5 12:1 90 65 93.5 6/>80 [45]

Eggshell-derived
CaO/SiO2

WCO 8 14:1 60 60 91 10/>85 [46]

Chicken
eggshell-derived

CaO
Jatropha curcas oil 2 6:1 120 90 98 - [47]

Chicken
eggshell-derived

CaO

Chlorella vulgaris
biomass 1.39 10:1 180 70 92.03 3/>85.2 [48]

Fe3O4
nanoparticles
impregnated

eggshell

Pongamia pinnata
oil 2 12:1 120 65 98 7/98 [49]

Chicken
eggshell-derived

CaO

Terminalia belleric
seed oil 2.25 9:1 90 62.5 97.98 - [50]

Chicken
eggshell-derived

CaO
Palm kernel oil 4 10:1 60 50 97.1 5/>90 [51]

Al2O3 impregnated
on calcined
eggshells

Rubber seed oil 3 12:1 240 65 98.9 - [52]

Chicken
eggshell-derived

CaO
Rubber seed oil 5 9:1 240 65 97.84 - [53]

Eggshell-derived
CaO supported on

a fly ash-based
zeolitic material

Sunflower oil 6 6:1 30 60 99.2 5/97.9 [54]

Chicken
eggshell-derived

CaO
WCO 5 9:1 165 65 87.8 - [55]

Palm mill fly
ash-supported CaO

derived from
eggshells

(CaO/PMFA)

Palm oil 6 10:1 180 70 86.2 5/70 [56]

KOH impregnated
eggshell

Reutealis
trisperma oil 5 12:1 60 60 94 - [57]

Eggshell-derived
CaO supported

W-Mo mixed oxide
WCO 2 15:1 120 70 96.2 5/90 [58]

KF/eggshell-
Fe3O4

Neem oil 6 15:1 120 65 97 5/>75 [59]

Chicken
eggshell-derived

CaO
Sunflower oil 5 11:1 180 60 83.2 4/>80 [60]
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Table 1. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

La2O3/CaO
derived from

eggshell
Palm oil 10 12:1 250 60 92.3 - [61]

Ostrich
eggshell-derived

CaO
WCO 1.57 11:1 114 65 97.54 - [62]

Chicken
eggshell-derived

CaO
WCO 1.61 11.4:1 114 65 94.7 - [62]

Fe3O4/CaO
derived from

eggshell
Palm oil 6 10:1 120 70 90 - [63]

Chicken
eggshell-derived

CaO
WCO 1.47 7.85:1 144 43 90.13 3/73.3 [64]

Eggshells-derived
CaO Rubber seed oil 4 12:1 180 65 99.6 7/86.4 [65]

Chicken
eggshell-derived

CaO
Soybean oil 3 9:1 240 65 94.2 - [66]

Quail
eggshell-derived

CaO
Soybean oil 3 9:1 240 65 94.8 - [66]

CaO@MgO
nanocatalyst
derived from

chicken eggshell

Waste edible oil 4.571 16.7:1 424.8 69.37 98.37 - [67]

SrO/CaO derived
from eggshell Jatropha oil 4.77 27.6:1 89.8 65 99.71 5/>60% [68]

Na-K doped CaO
derived from

calcined eggshell
(Na1K1/CaO)

Canola oil 3 9:1 180 50 97.6 4/66.0 [69]

Egg shell-derived
nano-CaO

Chlorella
pyrenoidosa oil 2.06 30:1 180 60 93.44 6/85.2 [70]

Duck
eggshell-derived

CaO

Momordica
charantia oil 10 80 65 96.8 - [71]

Na impregnated
calcined eggshell

Madhuca indica
oil 5 9:1 60 60 81.56 5/>70 [72]

Zn doped
eggshell-derived

CaO
WCO 5 20:1 240 65 96.74 5/64.5 [73]

Zn doped
eggshell-derived

CaO
Eucalyptus oil 5 6:1 150 65 93.8 5/>88 [74]

Chicken
eggshell-derived

CaO
WCO 1.5 10:1 210 50 91.42 5/48 [75]

Chicken
bone-derived CaO Algal oil 5 9:1 180 65 95 4/>80 [75]
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Table 1. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

Chicken
eggshell-derived

CaO
Algal oil 5 9:1 180 65 94 4/70 [76]

Chicken
manure-derived

catalyst
Algal oil 5 9:1 180 65 85 4/>60 [76]

Chicken
eggshell-derived

Ca-based catalysts

Waste cooking
palm oil 3 15:1 180 80 90.1 3/>70 [77]

Turbo jourdani
shell-derived CaO Palm oil 10 3:1 420 80 99.33 8/>75 [16]

Oyster
shell-derived CaO WCO 6 9:1 180 65 87.3 - [17]

Pomacea canaliculata
shell-derived CaO Palm oil 0.8 12:1 360 65 95.2 4/90.7 [18]

Activated carbon
supported CaO
from Turbonilla
striatula shell

WCO 11 40:1 420 120 96 5/96 [19]

Crap shell-derived
CaO Waste fish oil 2.5 12:1 90 65 96.6 5/80 [20]

NaOH
impregnated

activated
carbon/CaO
derived Perna
varidis shell

Palm oil 7.5 0.5:1 180 65 95.12 - [21]

Grooved razor
shell-derived CaO WCO 5 15:1 180 65 94 5/87 [22]

Conch
shell-derived CaO

Moringa oleifera
oil 8.022 8.662:1 130 65 97.06 - [23]

Malleus malleus
shells derived CaO WCO 7.5 11.85:1 86.25 65 93.81 - [24]

Calcined sheep
bone impregnated

fly ash catalyst
Mustard oil 10 5.5:1 360 65 90.4 7/80.3 [25]

Snail shell-derived
CaO nanocatalyst

Scum oil 0.89 12.4:1 145.15 61.6 98.93 5/>90 [78]Hydnocarpus
wightiana oil 0.87 12.7:1 119.68 58.6 96.93 -

Snail shell-derived
CaO Soybean oil 6 9:1 210 65 90 5/80 [79]

KOH impregnated
snail shell Soybean oil 6 9:1 210 65 96 5/90 [79]

Snail shell-derived
CaO Soybean oil 3 6:1 420 28 98 8/90 [80]

Quail
eggshell-derived

CaO
Sunflower oil 2 10.5:1 120 60 99 3/78.26 [81]
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Table 1. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

CaO-based catalyst
derived from
eggshell-snail

shell-wood ash
mixed

Mixture of
Irvingia

gabonensis,
Pentaclethra

macrophylla, and
Elais

guineensis oil

4.5 8:1 64.71 61.61 98 5/79 [82]

Ram bone
supported Cr

catalyst

Used frying
mustard oil 4 8:1 30 60 96.85 5/95.56 [83]

Lithium based
chicken bone

composite
Canola oil 4 18:1 180 60 96.6 5/82 [84]

Lithium/zinc
supported on
chicken bone

catalyst

Waste canola oil 4 18:1 210 60 98 7/>96 [85]

Goat bone-derived
nano-CaO

Scenedesmus algal
oil 2 11:1 180 60 92 - [86]

KOH impregnated
CaO derived from

goat bone
WCO 6 9:1 300 65 84 - [87]

Chicken and fish
bone-derived CaO WCO 1.98 10:1 92 65 89.5 5/<50 [88]

Struthio camelus
bone-derived CaO WCO 5 15:1 240 60 90.56 5/>80 [89]

Poly- glycidyl-
methacrylate

grafted flax fibers
Cottonseed oil 2.5 33:1 120 60 88.6 3/72.5 [90]

Calcined cupuaçu
(Theobroma

grandiflorum) seeds
Soybean oil 10% 10:1 480 80 98.36 3/>20 [31]

K2O-KCl derived
from calcined
banana peel

Soybean oil 1.5 15:1 60 65 95.1 4/75.5 [32]

Calcined husk of
Enterolobium

cyclocarpum pods
Oil blend 2.96 11.44:1 5.88 65 98.77 4/74.68 [33]

Calcined kola nut
husk pod

Hevea brasiliensis
seed oil 3.5 6:1 75 65 96.97 - [34]

Calcined Brassica
nigra plant Soybean oil 7 12:1 25 65 98.79 3/>96 [35]

ZrO2 supported on
bamboo leaf ash Soybean oil 12 15:1 30 50 92.75 - [36]

Calcined Sesamum
indicum ash Sunflower oil 7 12:1 40 65 98.9 3/94.2 [37]

Calcined Tectona
grandis leaves WCO 2.5 6:1 180 RT 100 4/>80 [38]

Calcined Ficus
carica leaves WCO 1 6:1 120 60 90.75 - [39]

Calcined ginger
(Zingiber officinale)
leaves activated by

KOH

Sunflower oil 1.6 6:1 90 60 93.83 - [40]
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Table 1. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

Calcined Carica
papaya stem WCO 2 9:1 180 60 95.23 6/85.4 [41]

Calcined banana
peel WCO 2 6:1 180 60 100 3/66.66 [42]

KOH/corncob-
derived activated

carbon
WCO 1 18:1 60 45 97.8 2/35 [43]

Supermagnetic
catalyst derived
from rice husk

doped with K2O
and Fe

WCO 4 12:1 240 75 98.6 5/>80 [44]

CaO/zeolite-based
catalyst derived

from chicken
eggshell and coal

fly ash

Sunflower oil 6 6:1 30 60 97.8 - [54]

Orange peel ash Soybean oil 7 6:1 420 RT 98 5/85 [91]

Rice husk biochar
supported CaO Palm oil 8 9:1 180 65 93.4 10/85 [92]

Silica impregnated
CaO derived from

eggshell

Virgin cooking
palm oil 3 20:1 120 60 87.5 6/>80 [93]

Sugarcane leaf ash Calophyllum
inophyllum oil 5 19:1 180 64 97 10/74 [94]

SiO2-rich
sugarcane bagasse

ash
Palm oil 6 20:1 180 65 93.8 5/70.3 [95]

Calcined barnacles
shell

Aglaia korthalsii
seed oil 4.7 12.2:1 180 65 97.12 4/95.83 [96]

Calcined banana
peduncle

Ceiba pentandra
oil 1.978 9.2:1 60 65 98.69 - [97]

Silica-supported
CaO derived from

goat bone
WCO 6 15:1 120 60 94 7/40 [98]

Calcined quail
beaks Rapeseed oil 7 12:1 240 65 96.7 6/>90 [99]

Calcined walnut
shell Sunflower oil 5 12:1 10 60 98 4/>95 [100]

RT: room temperature.

3. Bio-Derived Acid Catalysts for Biodiesel Production

Alkali-catalyzed transesterification is efficient for producing biodiesel from refined oils
(containing a low level of free fatty acids (FFA)). However, the biodiesel yield is significantly
reduced when the oil contains a high level of FFA (>1%, w/w) because alkali catalysts
cannot convert FFA into biodiesel and the liquid alkali catalysts can react with FFA to form
soap [2]. Therefore, acid-catalyzed esterification/transesterification is commonly proposed
to produce biodiesel from high FFA-containing oils. Acid catalysts simultaneously catalyze
the esterification of FAA and transesterification of oil (triglyceride) into biodiesel; therefore,
they are insensitive to the quality of the raw material. In addition, the use of the acid
catalysts for biodiesel production prevents the saponification reaction, which is commonly
found in the homogenous alkali-catalyzed transesterification reaction. Homogenous acid
catalysts (such as HCl, H2SO4, H3PO4) are widespread in biodiesel production because
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they efficiently convert FFA and triglyceride into biodiesel [9,10]. However, there are
lots of associated problems in the downstream process, which is costly and requires
complicated steps for product purification and separation of the catalyst. In addition, the
use of these homogenous acid catalysts causes corrosive damage to the equipment and
negatively affects the environment. These liquid catalysts are also difficult recover and
reuse. To address these obstacles, heterogenous/solid acid catalysts have been increasingly
considered as promising alternative catalysts to facilitate a cleaner, safer, simpler, and
cheaper process for biodiesel production [101,102].

In recent years, biomass-derived acid catalysts have gained much interest in biodiesel
production due to their ecofriendly properties, potential reusability, and the availability and
low cost of materials used for catalyst synthesis. Recently, several forms of heterogeneous
acid carbon-based catalysts have been developed for biodiesel production from high-FFA
oils. The carbonization followed by sulfonation method is commonly used to synthesize
various solid acid catalysts such as sulfonated carbon from corn cobs [103], sulfonated
starch [104], sulfonated carbon from vegetable oil asphalt [105], sulfonated carbon from
cacao shell [106], sulfonated rice husk [107], sulfonated bamboo [108], sulfonated sugar-
cane bagasse [109], sulfonated biochar derived from cassava peel [110], and sulfonated
biochar derived from sugarcane bagasse, corncob, coconut shell, and peanut shell [111].
Different materials result in different catalytic activities of the synthesized catalysts. The
catalysts prepared from these materials demonstrated good catalytic efficiency towards
esterification of high-FFA oils, with FFA conversions ranging from 71% to 98% [109,110].
Among the materials used, waste shells, such as cacao shell [106], wing shell [112], and
coconut shell [113], show promise for the synthesis of solid acid catalysts. More acid
catalysts used for biodiesel production are shown in Table 2. In comparison with alkali
catalysts, the bio-based acid-catalyzed reaction commonly requires a longer reaction time
and higher temperature for biodiesel production. Therefore, the acid-catalyzed reaction is
only suggested for producing biodiesel from feedstock containing a high level of FFA.

Table 2. Several bio-derived acid catalysts for biodiesel production.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

Sulfonated-
carbonized

bamboo
Oleic acid 5 8:1 60 65 97.31 5/<40 [108]

Sulfated angel
wing shells

Palm fatty acid
distillate 2 6:1 15 290 98 7/>80 [112]

Sulfonated-
carbonized coconut

shell
Palm oil 6 30:1 360 60 88.15 - [113]

Sulfated-
carbonized Jatropha

curcas seed
Jaropha curcas oil 7.5 12:1 60 60 99.13 4/81.03 [114]

Carbonaceous
solid acid magnetic

catalyst from
empty fruit bunch

Palm fatty acid
distillate 4 16:1 180 100 98.6 6/79 [115]

Sulfonated cow
dung-derived
carbon-based

catalyst

Palm fatty acid
distillate 4 18:1 60 90 96.5 7/75 [116]

CaO-based
calcined angel

wing shell sulfated
catalyst

Palm fatty acid
distillate 5 15:1 180 80 98 4/>40 [117]
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Table 2. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

Sulfonated-
carbonated coconut

meal residue

Waste palm
cooking oil 5 12:1 180 150 95.5 4/82 [118]

Sulfonated carbon
derived from
coconut meal

residue

Waste cooking oil 6 9:1 300 65 96 - [119]

Sulfated Ce
supported

activated carbon
derived from
coconut shell

Chicken fat oil 3 12:1 60 90 93 5/90 [120]

Sulfonated and
magnetic catalyst

derived from palm
kernel shell

Waste cooking oil 3.66 13:1 102 65 90.2 4/73.63 [121]

Sulfonated
carbon-based
catalysts from

murumuru kernel
shell

Oleic acid 5 10:1 90 90 97.2 4/66.3 [122]

Sulfonated
carbon-based
catalyst from

Murumuru kernel
shell

Jupati oil 6 30:1 240 135 91.8 4/>80 [123]

Sulfonated biochar
derived from

sawdust

Pongamia pinnatta
oil 2 9:1 120 85 95.6 4/85.7 [124]

Sulfonated-
carbonized

Zanthoxylum
bungeanum seed

Zanthoxylum
bungeanum seed

oil
8 30:1 240 140 95.6 5/57/9 [125]

Sulfonated-
calcined kenaf seed

cake

Palm fatty acid
distillate 2 10:1 90 65 97.9 5/>90 [126]

Palm
biochar-based

sulfated zirconium

Palm fatty acid
distillate 3 15:1 180 75 94.3 5/80.2 [127]

Sulfonated
activated carbon

derived from Monk
fruit seed (Siraitia

grosvenorii)

4 360 120 98.5 4/84.4 [128]

Sulfonated-
derived tea

waste

Palm fatty acid
distillate 4 9:1 90 65 97 5> 80 [129]

Sulfonated-
carbonized Hura

crepitans seed pod

High-FFA
vegetable oil 10 9:1 60 90 94.81 4/93.37 [130]

Sulfonated-
carbonized cotton

stalk

Madhuca indica
oil 5 18:1 300 60 89.2 7/83.4 [131]
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Table 2. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield (%)
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(min)

Temp.
(◦C)

Sulfonated
activated carbon

derived from
Mesua ferrea shell

Mesua ferrea oil 10 6:1 120 55 95.57 - [132]

Sulfonated biochar
derived from palm
empty fruit bunch

Palm fatty acid
distillate 20 30:1 420 110 98.1 - [133]

Sulfonated carbon
derived from

corncob residue

Palm fatty acid
distillate 3 15:1 120 70 85 5/60 [134]

Sulfonated carbon
derived from
coconut meal

residue

Waste palm oil 5 12:1 720 65–70 92.7 4/>80 [135]

Sulfonated-
carbonized spent

coffee grounds
Oleic acid 10 10:1 420 80 91.2 4/26.41 [136]

Sulfonated pine
needle-derived

carbon
Levulinic acid 5 5:1 480 80 96.1 4/>60 [137]

Sulfonated rice
husk Oleic acid 5 5:1 20 28 99.8 3/70 [138]

Sulfonated rubber
de-oiled cake Waste cooking oil 8.18 12.8:1 60 63 91.2 3/80 [139]

Magnetic
carbonaceous acid

derived from
Jatropha hulls

Jatropha crude oil 7.5 18:1 450 180 95.9 5/94.3 [140]

Sulfonated carbon
derived from
potato peel

Oleic acid 5 12:1 150 80 97.2 5/68 [141]

Sulfonated waste
yeast residue Waste cooking oil 1 10:1 360 60 96.2 6/<80 [142]

Sulfonated-
carbonized cacao

shell
Oleic acid 5 7:1 1440 45 94 4/<50 [143]

Sulfonated coconut
coir husk Waste palm oil 10 12:1 180 130 89.8 4/<80 [144]

Sulfonated
lignin-derived
from olive cake

Waste vegetable
oil 10 35:1 360 65 57 10/75 [145]

Sulfonated soaked
palm seed cake
derived catalyst

Palm fatty acid
distillate (PFAD) 2.5 9:1 120 60 97.8 - [146]

Sulfonated-
calcined corncobs

and calcined
poultry

Neem seed oil 2.58 14.76:1 72.65 61.90 92.89 4/76 [147]

Sulfonated
brewer’s spent

yeast

Palm fatty acid
distillate 8 21:1 180 65 87.8 - [148]

4. Enzyme

With an increasing demand for environmental protection, green processes have been
rapidly developed for chemical production. Consequently, various ecofriendly processes
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have been proposed for producing biodiesel to reduce the adverse environmental ef-
fects [5,149]. Particularly, the enzyme-catalyzed reaction is one of the most promising
processes for biodiesel production due to the ecofriendly and reusable nature of the en-
zyme. Notably, the enzymatic process proceeds at mild reaction temperature and pressure,
thus lowering the energy consumption [150]. For this approach, biodiesel can be produced
via lipase-catalyzed transesterification or lipase-catalyzed hydroesterification processes
(hydrolysis of oils into FFA followed by esterification of the produced FFA with short-chain
alcohols). The lipase catalyzes the esterification and transesterification simultaneously;
therefore, the enzymatic process is insensitive to high-FFA oil [150]. Because of such
benefits, enzymatic processes have been widely developed for biodiesel production from
various feedstocks [150].

The efficiency of the enzymatic process mainly depends on the activity of lipases.
Therefore, a great effort has been made to use lipase from different sources (microorgan-
isms, plants, animals) for biodiesel production [151,152] (Table 3). The most common
source of the lipase is microorganisms such as Candida antarctica [153,154], Thermomyces
lanuginosu [155,156], Rhizomucor miehei [157,158], Pseudomonas cepacia [159,160], Candida
rugosa [161,162], Aspergillus oryzae [163], Burkholderia cepacia [164,165], Adansonia grandi-
dieri [166], Rhizopus oryzae [167], Pseudomonas fluorescens [168], Lactobacillus plantarum [169],
and Aspergillus terreus [170]. Lipases from microorganisms are mainly used for biodiesel
production due to the availability of sources and rapid growth rate of microorganisms for
enzyme production [171]. Lipase activity depends not only on the source of the enzyme,
but also the type of enzyme used (immobilized form or liquid form) [171]. Immobilizing
lipase on the support material can enhance the stability of the enzyme, making the enzyme
less susceptible to the pH, temperature, and impurities of reactants [171]. Notably, the
supports and/or immobilization protocols can greatly modulate the specific activity of
lipase, affecting biodiesel yield. Tacias-Pascacio et al. [172] immobilized different lipases
on different supports and used them for biodiesel production. They found that the specific
activity of lipases and biodiesel yield greatly depended on the support, solvent used, and
media [172]. In addition, the immobilized enzyme is easy to reuse. Consequently, lipase
immobilized on various supporting materials has been studied for biodiesel production.
Recently, Iuliano et al. [173] reported that lipase from C. rugosa was physically attached to
Mg modified Fe2O4 nanoparticles and used to turn brewers’ spent grains into biodiesel.
After 48 h at 45 ◦C, a remarkable yield of 98% was achieved using a 1:4 oil/methanol
molar ratio. In addition, lipases were immobilized on other materials such as graphene
oxide [174], polyhydroxyalkanoate [175], alginate-polyvinyl alcohol (PVA) [167], poly-
dopamine coated iron oxide (Fe3O4_PDA_lipase) [170], modified polyporous magnetic
cellulose support [153], Co2+-chelated magnetic nanoparticles [168], core-shell structured
Fe3O4@MIL-100(Fe) composites [162], Fe3O4/Au nanoparticles [176], waste-derived acti-
vated carbon support [177], genipin cross-linked chitosan [178], and other materials [160].
Several immobilized lipases have been commercialized and used for biodiesel production
such as Novozym® 435 (lipase B from C. antarctica) [179–181] and Lipozyme TL IM (lipase
from T. lanuginosus) [182]. Nevertheless, the immobilized lipase-catalyzed reaction rate is
relatively low due to the mass transfer limitation between the substrate and enzyme [183].
Notably, the immobilized lipases are expensive, thus limiting their industrial applications.
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Table 3. Several lipases used for biodiesel production.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(h)

Temp.
(◦C)

C. antarctica lipase
B (CALB)

immobilized on
modified

polyporous
magnetic cellulose

beads

Yellow horn seed
oil 15 1.6:1 2 60 92.3 5/85 [153]

C. antarctica lipase
A (CALA) Palm oil 5.5 7:1 22 30 94.6 - [154]

Novozym® 435
(CALB

immobilized on
macroporous
acrylic resin)

Residual babassu
oil 0.14 g 18:1 4 48 96.8 10/90.96 [179]

Novozyme® 435
Castor oil fatty

acid 10 3:1 5 60 88.64 - [180]

Novozyme® 435 Spirogyra oil 1 4.5:1 42.5 35 93.2 - [184]

Novozym® 435
Black soldier fly

larvae oil 17.58 14.64:1 12 39.5 96.97 20/>95 [185]

CALA Soybean oil 5 7:1 26 38 92.4 - [186]

CALB immobilized
on methacrylic

resin
Waste animal fat 14 10:1 6 40 87 - [187]

CALB immobilized
on magnetic

nanoparticles

Palm fatty acid
distillate 8 1.6:1 10 50 82.74 5/80.19 [188]

CALB immobilized
magnetic

nanoparticles
Microalgal oil 1 10:1 3 30 91.4 4/90 [189]

67% CALB + 33%
lipase from R.

miehei

Residual chicken
oil 15 5:1 3 30 89.95 - [190]

CALB Soybean oil 3 3:1 15 40 64.7 - [191]

CALB immobilized
on silica

nanoflowers
Waste oil 33.24 mg 2.63:1 8.11 45.97 98.5 15/76.68 [192]

CALB and
Rhizomucor miehei

lipase
co-immobilized on

epoxy
functionalized

silica gel

Palm oil 4.9 U/mg 5.9:1 33.5 35.6 78.3 - [193]

Lipozyme TL100L
(T. lanuginosu

lipase)

Waste phoenix
seed 9.7 4.3:1 6.9 31 93.8 - [155]

Lipozyme TL IM
(immobilized T.

lanuginosus lipase)
Rapeseed oil 5 5:1 5 25 98.76 - [156]

Lipozyme TL IM Ankistrodesmus
sp. oil 9.6 8:1 12 42 97.69 [194]
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Table 3. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(h)

Temp.
(◦C)

T. lanugionous
immobilized on

Fe3O4
nanoparticles

Soybean oil 9 4:1 28 41 82.2 10/71.23 [182]

Lipase NS 40116
(liquid lipase
formulation

derived from T.
lanuginosus)

Residual chicken
oil 0.3 4:1 36 35 93.16 - [195]

Lipozyme TL IM Rapeseed oil 5 9:1 7 30 99.89 - [196]

Lipozyme TL100L Phoenix tree seed
oil 10 5:1 6.98 30 98.8 - [197]

Lipase NS 40116 Soybean oil 0.7 6.3:1 8 35 97.1 - [198]

Lipase NS 40116 Soybean oil 0.5 4.5:1 12 35 94.3 5/90 [199]

T. lanuginosus
lipase immobilized
on Immobead 150

None-edible oils 3.55 7.64:1 2 36 90 - [200]

T. lanuginosus
lipase immobilized

on Fe3O4/Au
nanoparticles

Tomato seeds oil 20 6:1 24 45 98.5 5/68.95 [176]

Liquid formulation
of T. lanuginosus

lipase

Palm oil mill
effluent 2100 U 4:1 24 40 97.43 - [201]

Eversa Transform
lipase (liquid lipase
from T. lanuginosus)

Oleic acid 11.98 3.44:1 2.5 35.25 96.73 5/<30 [183]

R. miehei lipases Oleic acid 20 2:1 4 40 85 4/74 [157]

R. miehei lipase
immobilized on

magnetic
nanoparticles

Babassu oil 5 1:1 6 40 81.7 - [158]

C. rugosa
immobilized on
polyhydroxybu-
tyrate + R. miehei
immobilized on
polyhydroxybu-

tyrate

WCO 1 6:1 24 45 96.5 10/28.95 [175]

Mixture of
polyhydroxybutyrate-

immobilized C.
rugosa and R. miehei

lipases

Mixed chicken
waste oil 2.5 6:1 12 40 97.1 15/10 [202]

P. cepacia lipase
immobilized on

bio-support beads.

Hybrid
non-edible oil 10 6:1 24 50 78 12/19.5 [159]

P. cepacia lipase
immobilized on

bio-support beads

Non-edible
hybrid oil 9.46 5.93:1 24.32 49.7 84.58 10/>70 [160]

P. cepacia lipase
immobilized on

hybrid
PVA/AlgNa

Crude castor oil 10 6:1 24 50 78 6/70 [203]
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Table 3. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(h)

Temp.
(◦C)

C. rugosa lipases
immobilized on
immobead 150

Acutodesmus
obliquus oil 15 3:1 8 50 95.36 5/90.07 [161]

C. rugosa lipase
immobilized lipase

on core-shell
structured

Fe3O4@MIL-
100(Fe)

composites

Soybean oil 25 4:1 60 40 92.3 5/83.6 [162]

C. rugosa lipase
immobilized on

magnetic
Fe3O4-poly

(glycidyl
methacrylate-co-
methacrylic acid)

composite

Soybean oil 25 4:1 54 40 92.8 5/79.4 [204]

C. rugosa
immobilized on

Mg modified
Fe2O4

nanoparticles

Brewers’ spent
grains oil 30 4:1 48 45 98 4/87 [173]

Eversa® Transform
2.0 (liquid lipase

from T. lanuginosus)
Palm oil 0.2 4:1 24 40 97 - [205]

A. oryzae ST11
lipase immobilized

on
polyacrylonitrile
coated magnetic

nanoparticles

Palm oil 30 3:1 24 37 94.7 5/65 [163]

B. cepacia lipase
immobilized on
hydroxyapatite
coated magnetic

nanoparticle

WCO 7:1 48 40 98 4/82 [164]

B. cepacia lipase
immobilized on

mesoporous
silica/iron oxide

magnetic core-shell
nanoparticle

WCO 36 6.2:1 25 34 92 3/81 [165]

B. cepacia lipase Sunflower oil 10 3.4:1 1 50 >99 - [206]

A. grandidieri lipase Sunflower oil 25 2:1 96 40 95 - [166]

R. oryzae lipase
immobilized on

alginate-polyvinyl
alcohol

Sludge palm oil 2 3:1 40 91.3 15/>91 [167]

P. fluorescens lipase
immobilized onto

Co2+-chelated
magnetic

nanoparticles

WCO 7.5 4:1 12 50 95 10/83 [168]

Immobilized L.
plantarum lipase Olive oil 5 6:1 2 37 81 4/>65% [169]
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Table 3. Cont.

Catalyst Feedstock

Reaction Conditions
Conversion/

Biodiesel
Yield (%)

Time of
Reuse/Corresponding

Biodiesel Yield
Ref.Catalyst

Loading (%)

Alcohol:
Fatty Acid

Molar Ratio

Time
(h)

Temp.
(◦C)

Lipase
immobilized on
graphene oxide

Karanja oil 3 8:1 24 25 88 - [174]

Oreochromis
niloticus lipase WCO 30 kUnit 4:1 28 45 96.5 [151]

A. terreus AH-F2
lipase immobilized
on polydopamine
coated iron oxide

WCO 10 6:1 30 37 92 5/>80 [170]

Steapsin lipase
immobilized on
waste-derived

activated carbon
support

Rubber seed oil 3 6:1 5 20 83.9 7/>77 [177]

Steapsin lipase
immobilized on
Immobead-350

WCO 14 4:28 14 40 88.33 [207]

Proteus sp. NH 2-2
lipase soybean oil 0.5 4:1 36 40 91.5 [208]

Garbage lipase
Naganishia
liquefaciens
NITTS2 oil

20 6.4:1 16 35 97.13 [209]

Lipase (from
porcine pancreas)
immobilized on

genipin
cross-linked

chitosan beads

WCO 7.5 9:1 10 40 92.33 4/>80 [178]

Liquid lipase formulations or free lipases have been considered as a substitute for
immobilized lipase for biodiesel production due to their high catalytic activity and sig-
nificantly low cost (30 to 50 times lower) as compared to immobilized lipase [183,210].
Recent studies have demonstrated a promising use of several liquid lipases for biodiesel
production such as C. antarctica lipase A [154] and liquid lipase formulations from T. lanugi-
nosus (Eversa® Transform, Eversa® Transform 2.0, and NS-40116) [195,205,211]. The use
of liquid lipase facilitates the homogenous reaction, thus overcoming the mass transfer
limitation presented in the immobilized lipase-catalyzed reaction. However, liquid lipase
is sensitive to the reaction environment. Studies have reported that high water content
(from the feedstock and/or generated from the esterification of alcohol and fatty acid) not
only promotes the reverse reaction but also negatively affects the lipase activity (including
the formation of lipase-lipase aggregates in aqueous media), thus reducing the biodiesel
production efficiency [183]. To address this obstacle, several adsorbents such as superab-
sorbent polymer, silica gel, alumina, and molecular sieve have been used to remove the
water from the reaction mixture, enhancing the reaction efficiency [183,212,213].

Similarly, the type of acyl acceptor used also affects the lipase-catalyzed reaction.
Studies have reported that lipase is deactivated using a high amount of methanol or ethanol,
lowering the biodiesel yield [181,185]. In addition, the use of methanol or ethanol as an acyl
acceptor for biodiesel production resulted in the formation of by-product glycerol [181].
This by-product also inhibits the activity of lipases, especially immobilized lipases because
it can easily accumulate on the surface of immobilized lipases [181]. To address this
obstacle, methyl acetate is proposed as another alternative acyl acceptor for biodiesel
production [185]. The use of methyl acetate prevents the inhibition of lipase caused by
methanol/ethanol and by-product glycerol (no glycerol produced in the reaction), thus
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enhancing the reaction rate [185]. Besides this method, ultrasounds [214,215] or very
hydrophobic supports [216,217] can be used as another approach to lower the negative
effect of glycerol on the enzyme. Studies have reported that ultrasounds can stir the enzyme
particles from the inside and avoid the formation of the glycerin/water phase [215,218].

Another concern for each specific lipase in biodiesel production is associated with the
oil source [218]. Fats/oils are a very heterogenous substrate, which are mainly comprised of
triglycerides, low levels of mono and diglycerides, and some FFA [218]. Therefore, enzyme
specificity affects the enzyme activity over each substrate [218]. To address this issue, the
combination of different lipases (combi-lipase) has been proposed for biodiesel produc-
tion [190,219]. There are several types of combi-lipase, which include co-immobilized
lipases (different lipases immobilized on the same support), a mixture of individually
immobilized lipases, and a mixture of free lipases [218]. Guan et al. [219] firstly reported
the use of R. miehei lipase and P. cyclopium lipase mixture (in a liquid form) for biodiesel pro-
duction from soybean oil. The result showed that the R. miehei lipase (individual enzyme)
resulted in 68.5% biodiesel yield, but the yield increased to 95% when using the mixture of
R. miehei and P. cyclopium lipases [219]. This was due to the use of lipases with different
specificities [218,219]. In another study, the individual use of R. oryzae lipase and C. rugosa
lipase resulted in 94.36% biodiesel yield at a reaction time of 9 h and 92.63% biodiesel yield
at a reaction time of 30 h, respectively [220]. However, the biodiesel yield reached 98.16% (at
a reaction time of 6 h) by using the mixture of both enzymes [220]. Similarly, various combi-
lipases such as lipase cocktail (67% C. antarctica lipase B and 33% R. miehei lipase) [190];
immobilized C. rugosa and R. miehei lipases [175,202], co-immobilized R. miehei lipase and
C. antarctica lipase B [193]; a mixture of 10% T. lanuginosus lipase, 75% C. antarctica lipase
B, and 15% R. miehei lipase [221]; a mixture of lipases from porcine and T. lanuginosus
(in both liquid and immobilized forms) [222]; a mixture of immobilized C. rugosa and R.
oryzae lipases [223], and co-immobilized C. rugosa and R. oryzae lipases [224,225] were also
tested for biodiesel production. These combi-lipases showed a higher biodiesel yield than
the individual enzymes [175,190,193]. Mixtures of the same enzyme immobilized using
different protocols/support materials also affect the biodiesel yield. Toro et al. [226] immo-
bilized the same lipase (T. lanuginosus lipase) on two different supports (Purolite®ECR1604
and Lewatit®VPOC1600) and used them for biodiesel production from palm olein. The
biodiesel yield reached 70.3% (for lipase immobilized on Purolite®ECR1604) and 78.2%
(for lipase immobilized on Lewatit®VPOC1600). Notably, the biodiesel yielded increased
to 86.1% when the mixture of the two individually immobilized lipases was used [226].
This could be explained by the fact that the enzyme features (flexibility of their active
site and their mechanism of action) can be modulated by changes in the immobilization
protocol [172]. Consequently, the changes in the support feature influence the stability,
activity, and specificity of the lipase [172,218].

Generally, although both immobilized and liquid lipases (individual lipases or combi-
lipases) show effectiveness for converting oil into biodiesel, their industrial application is
still limited due to the high cost of the enzyme as compared to chemical catalyst [227,228].
Therefore, further studies on lipase-catalyzed biodiesel production are still required to
improve the efficiency and economic feasibility of the process.

5. Catalyst Reusability

For biodiesel conversion, the catalyst’s effectiveness is not only determined by its
catalytic activity but also its recoverability and reusability. Since homogenous catalysts can-
not be reused for the next batch of production, heterogeneous catalysts play an important
role in reducing production costs. Their recyclability not only lowers production costs but
also maximizes environmental protection [229]. As compared to homogenous catalysts,
one of the benefits of heterogeneous catalysts is that they can be reused several times.
Furthermore, these catalysts may be regenerated or used for other purposes after losing
their catalytic activity, such as construction materials, soil stabilizers, cement industries,
and phosphate adsorbents [230].
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Most of the bio-derived acid and alkali catalysts can be reused 4–7 times to yield
biodiesel of 65–85% (Tables 1 and 2). da Luz Corrêa et al. [122] prepared sulfonated carbon-
based catalysts from murumuru kernel shell and used them for FFA conversion. The
first use of the catalyst resulted in 95.1%, but the FFA conversion was reduced to 84.5%
and 66.3% after the second and third catalyst reuses, respectively. The reusability of a
solid base oxide catalyst derived from chicken eggshell was investigated by performing
transesterification using the same catalyst for 10 cycles, and the yield was found to be
marginally reduced after the seventh cycle, which may be due to catalyst pores being
blocked, reducing reactant adsorption and desorption [49]. Kirubakaran and Arul [27] also
investigated the reusability of a heterogeneous catalyst derived from eggshell. The catalyst
could be reused five times to yield 85% biodiesel. After that, the biodiesel yield reduced
significantly, suggesting that the catalyst’s stability had deteriorated. This is due to the
presence of active Ca(OH)2 phases which reacted partially with the homogenous mixture in
the transesterification reaction. In comparison with solid bio-based acid and alkali catalysts,
several immobilized lipases show better reusability. Several immobilized lipases can be
reused for up to 20 cycles without loss of enzyme activity [181,185]. However, the use of
immobilized lipase for biodiesel production is still under lab-scale investigation because
of the high cost of the enzyme. Therefore, to be used for industrial biodiesel production,
further studies are still required to improve the catalytic activity, stability, and reusability
of bio-based catalysts. In addition, a pilot-scale investigation is also needed to evaluate the
potential use of these catalysts for biodiesel production before being used for industrial
applications.

6. Environmental and Economic Evaluation

Catalyst selection is one of the crucial issues in biodiesel production with the aim to
minimize energy consumption, waste generation and treatment, and reduce production
costs [185]. The use of bio-based catalysts (alkali catalysts, acid catalysts, and enzymes)
lowers the environmental effect since these catalysts are derived from natural sources
(plants, animals, or microorganisms). These catalysts are also easy to separate from the
reaction mixture and reuse, reducing the generation of wastewater and chemical residues
in the downstream process, especially the purification step. Consequently, the fee for the
purification step and waste treatment can be reduced, lowering the production cost.

Several studies have also evaluated the economic feasibility of different biodiesel
production processes [231,232]. The bio-derived alkali- and bio-derived acid-catalyzed
processes are more economically feasible than the conventional process (H2SO4- or KOH-
catalyzed process) for biodiesel production since the cost of those catalysts (and total
biodiesel production cost) is considered lower than that of conventional chemical catalysts
(KOH or H2SO4) [232–234]. Among these two processes, the alkali-catalyzed transesteri-
fication seems to be superior to the acid-catalyzed process because the former proceeds
at a lower temperature, has a shorter reaction time, and requires a lower molar ratio of
alcohol to oil as compared to the latter, as shown in Tables 1 and 2 [232,235]. In addition,
the bio-based alkali and bio-based acid catalysts can be synthesized from the same natural
source, but the synthesis of bio-based acid catalyst commonly requires one more step (sul-
fonation) [232]. Consequently, in some cases, the cost of bio-derived acid catalysts can be
higher than that of bio-derived alkali catalysts. However, the cost of each specific catalyst
depends on various factors including the source, synthesis method, and its reusability [232].
Therefore, it is difficult to compare the cost of all different types of catalysts. Different
from bio-derived acid and alkali catalysts, the enzyme is expensive, especially the immobi-
lized enzyme, making the lipase-catalyzed biodiesel production less competitive [236,237].
To reduce the enzyme cost, free lipase (or liquid lipase formulation) has been proposed
for biodiesel production [183]. However, the reusability of liquid lipases is limited [183].
Therefore, the enzymatic process is still under investigation to improve its industrial ap-
plication. Generally, among the three processes, the bio-derived alkali- and bio-derived
acid-catalyzed processes are more economically feasible than the enzymatic process [236].
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However, no individual studies have been conducted to compare the economic feasibility
of the bio-derived acid-, bio-derived alkali-, and enzyme-catalyzed biodiesel production
processes. Therefore, more studies are still required to evaluate and compare the economic
feasibility of these processes.

7. Future Prospects and Conclusions

The use of biomass-derived catalysts has become a recent interest to make biodiesel
production more sustainable. In addition, the use of these catalysts is promising to reduce
the current high cost of biodiesel production, making biodiesel competitive with petro-
diesel fuels. Research is therefore aimed to develop environmentally friendly, cost-effective,
and efficient biomass-derived catalysts for biodiesel production. Consequently, different
natural sources (animals, plants, microorganisms) have been used for synthesizing bio-
based catalysts including acid catalysts, alkali catalysts, and enzymes. The catalytic activity
of these catalysts varies among them. The use of acid or alkali catalysts depends on
the quality of the feedstock. Besides, enzymes can be used as an alternative to both
acid and alkali catalysts for biodiesel production. These catalysts show their advantages
and disadvantages when they are used for biodiesel production. These catalysts show
promise for biodiesel production, but these investigations have been stopped at lab-scale
investigations. More investigations on these catalysts are therefore needed, especially large-
scale investigations to prove the potential use of these catalysts for industrial biodiesel
production.
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