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Abstract: Over the last few decades, bio-based polymers have attracted considerable attention from
both academic and industrial fields regarding the minimization of the environmental impact arising
from the excessive use of petrochemically-based polymeric materials. In this context, poly(ethylene
vanillate) (PEV), an alipharomatic polyester prepared from 4-(2-hydroxyethoxy)-3-methoxybenzoic
acid, a monomer originating from lignin-derived vanillic acid, has shown promising thermal and
mechanical properties. Herein, the effects of three different catalysts, namely titanium butoxide (TBT),
titanium isopropoxide (TIS), and antimony trioxide (Sb2O3), on the synthesis of PEV via a two-stage
melt polycondensation method are investigated. The progress of the reaction is assessed using
various complementary techniques, such as intrinsic viscosity measurement (IV), end group analysis
(AV), nuclear magnetic resonance spectroscopy (NMR), Fourier-transformed infrared spectroscopy
(FTIR), and differential scanning calorimetry (DSC). The thermal stability of the produced polyesters
is studied by evolved gas analysis mass spectrometry (EGA-MS). Moreover, as the discoloration in
polymers affects their applications, color measurement is performed here. Finally, theoretical kinetic
studies are carried out to rationalize the experimental observations.

Keywords: poly(ethylene vanillate); synthesis; bio-based polyesters; vanillic acid; catalysts; ther-
mal properties

1. Introduction

Contemporary industrial polymerization technologies make the production of ver-
satile polymeric materials with highly tunable properties possible and subsequently a
plethora of applications in areas including the packaging, automotive, and engineering
sectors. In Europe, more than 61 million tons of polymers are produced annually [1,2],
with the great majority of them being petrochemically-sourced; however, the interest in
bio-based materials has flourished over the last few decades, both in academic and in-
dustrial fields due to increasing concerns about the depletion of fossil resources and the
footprint of synthetic polymers on the environment, as it is estimated that roughly 80%
of synthetic polymers are discarded in landfills or natural recipients [3–5]. In fact, the
European Commission supports the synthesis of high added value products based on
renewable sources by offering financial support for research, innovation, and industrial
upscaling in this field [6].

The conversion of biomass to bio-based monomers, and subsequently polymers
by means of biochemical and/or chemical transformations, constitutes the most impor-
tant route toward the preparation of bio-based plastics like poly(lactic acid) (which, at
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the moment, is the most important bio-based polymer with many applications [7]) and
other polymers, owing to the abundance and relatively low cost [8]. Through this path,
bio-based forms of conventional plastics such as bio-poly(ethylene terephthalate) and
bio-poly(ethylene) [9] may be produced, as well as novel building blocks based on new
aromatic precursors, thus reinforcing the transition from a linear to a circular economy [10].
One of the most promising monomers derived from lignin biomass is vanillic acid (VA),
which constitutes an oxidation product of vanillin, which is the most commonly produced
aroma chemical substance [11,12]. Owing to its structural similarity with terephthalic acid
(TPA), VA-based materials are expected to demonstrate comparable thermal and mechan-
ical properties to poly(alkylene terephthalates), which are a series of high performance
petrochemically-based thermoplastic polyesters. Furthermore, the continuous progress
concerning lignin depolymerization and purification [13–15], combined with the biotech-
nological production of vanillin [16–19], is defining more sustainable routes towards the
preparation of vanillin, thus promoting vanillic acid as an excellent building block for the
preparation of fully bio-based polymers.

Poly(ethylene vanillate) (PEV) is a new bio-based alipharomatic polyester produced
from vanillic acid that is gaining attention as a potential substitute of the popular
poly(ethylene terephthalate) (PET), which is the most common polymeric material in pack-
aging industry. The aforementioned polyesters possess similar alipharomatic structures
and subsequently exhibit comparable thermal transitions and nanomechanical properties.
Despite its great potential as a packaging material, the synthesis of high molecular weight
PEV with high purity and an absence of coloration is still requires investigation.

Catalysts play a key role in the synthesis of polyesters as they affect the reaction and
color of the resulting materials [20–23]. More specifically, organometallic compounds of
tin, lead, and titanium, such as titanium butoxide (TBT), titanium isopropoxide (TIS), and
dibutyltin oxide (DBTO), are known to catalyze the esterification and polycondensation
steps. Metal-oxide catalysts (e.g., TiO2 and GeO2) are generally preferred for the esterifi-
cation step, while metal acetates or carbonates (e.g., Zn(CH3COO)3 and Sb(CH3COO)3)
have been extensively used during polycondensation processes [24–26]. Moreover, it has
been proved that the valence of the metal atom and the concentration of the used catalyst
alters its activity during the reaction [27]. Finally, toxicity constitutes a crucial parameter
upon the selection of the proper polymerization catalyst, especially for the preparation of
materials used in the food packaging industry [28–31].

Several attempts to produce PEV using different catalysts have been reported. Mialon
et al. polymerized 4-(2-hydroxyethoxy)-3-methoxybenzoic acid using an antimony trioxide
(Sb2O3) catalyst, yielding a polyester with an average molecular weight of 5390 g mol−1

and a melting temperature of 239 ◦C [32]. Furthermore, Gioia et al. reported the preparation
of PEV from vanillic acid with ethylene carbonate catalyzed by DBTO (Mn = 4700 g mol−1,
Tm = 264 ◦C) [33]. More recently, our research group has investigated the thermal tran-
sitions and degradation mechanisms of the abovementioned polyester in the presence
of two different catalysts, namely TBT and Sb2O3, indicating that PEV is a promising
alternative to its terephthalate homologues [34]; however, there is no comparative analysis
concerning the effect of the catalyst on the molecular weight and the thermal properties of
the final polyester.

Herein, a kinetic study of PEV synthesis using three different catalysts is reported
for the first time. Titanate catalysts (TBT and TIS) have been selected due to their high
efficiency in polyesterification reactions [35], while Sb2O3 is the most common catalyst
for PET production in an industrial context (Figure 1). The evaluation of the reaction
progress is monitored using various techniques, including intrinsic viscosity measurement
(IV), end group analysis (AV), nuclear magnetic resonance spectroscopy (NMR), Fourier-
transformed infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC).
The thermal stability of the produced polyesters is investigated with the implementation of
evolved gas analysis mass spectrometry (EGA-MS). As coloration in polymeric materials
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affects their field of application, crucial color parameters are defined. Finally, theoretical
kinetic studies have been performed to support the experimental observations.
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Figure 1. Chemical structures of the used catalysts: (a) titanium butoxide (TBT), (b) titanium
isopropoxide (TIS), and (c) antimony trioxide (Sb2O3).

2. Results and Discussion
2.1. Effect of Catalysts on the Progress of the Esterification Reaction

Poly(ethylene vanillate) was produced using a two-step polycondensation method using
three different metal-based catalysts, starting from 4-(2-hydroxyethoxy)-3-methoxybenzoic
acid, which is a VA-based monomer (Scheme 1). The esterification step was performed
for 3 h at 200 ◦C, while the polycondensation stage took place at gradually increasing
temperatures up to 265 ◦C in a vacuum for the preparation of the final polymeric materials.
The studied catalysts, i.e., TBT, TIS, and Sb2O3, were introduced/added in the beginning of
the polymerization. Samples were taken from the reaction mixture every 30 min to observe
the progress of the polymerization.
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Scheme 1. Synthesis of poly(ethylene vanillate) polyester with three different catalysts.

The conversion of the carboxylic group (-COOH) of the monomer into the ester
group (COOR) of PEV was evaluated using titration and nuclear magnetic resonance
spectroscopy (NMR). NMR spectra were recorded in deuterated chloroform/trifluoroacetic
acid (CDCl3)/(TFA-d1) (4/1 v/v). Indicative examples of 1H NMR and 13C NMR spectra
of the crude reaction mixture are illustrated in Figure S1 and Figure 2, respectively. In
1H NMR spectra, the methylene protons of the O-CH2b-CH2a-OH part were selected to
monitor the reaction progress. In detail, as a result of the esterification of the hydroxyl
group, a shift of the aforementioned protons from 4.42 (CH2a) and 3.91 ppm (CH2b) in
the monomer to 4.48 and 3.99 ppm in PEV, respectively, is visible. As the reaction time
increased, the monomer peaks gradually diminished, and the corresponding polymer
peaks dominated the spectrum. Regarding the 13C NMR spectra, a single peak, attributed
to the carboxylic acid carbon of the monomer, appeared at 172.0 ppm (carbon a), while
the corresponding peak of the ester carbon in PEV appeared at 168.4 ppm (carbon a’). As
the reaction proceeded, the intensity of the peak at 172.0 ppm reduced, along with the
increase of the peak a’. The conversion after every 30 min interval was calculated from the
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13C NMR spectra by integrating the peaks corresponding to the acid and the ester carbon
following Equation (1):

Conversion (%) =
a′

a + a′ (1)

where a is the integral of the ester carbon and a′ is the integral of the acid carbon.

Catalysts 2021, 11, x FOR PEER REVIEW 4 of 17 
 

 

the intensity of the peak at 172.0 ppm reduced, along with the increase of the peak a’. The 
conversion after every 30 min interval was calculated from the 13C NMR spectra by inte-
grating the peaks corresponding to the acid and the ester carbon following Equation (1): Conversion (%) =  𝑎′𝑎 + 𝑎′ (1)

where 𝑎 is the integral of the ester carbon and 𝑎′ is the integral of the acid carbon. 

180 170 160 150 140 130 120 110 100 90 80 70 60 50

a'

3 h

2.5 h

2 h

1.5 h

1 h

δ (ppm)

0.5 h

a

 
Figure 2. 13C NMR spectra of the crude reaction mixture of the esterification performed at 200 °C 
in the presence of TIS. 

The assessment of the reaction progress during the esterification step, in the presence 
of each catalyst, is presented in Figure 3 and Table S1. As shown, the calculated conversion 
of -COOH groups using titanium-based catalysts ranged from 80% to 85%, while the use 
of Sb2O3 resulted in a 73% conversion. These results indicate that TBT and TIS demonstrate 
greater catalytic activity during the esterification stage of PEV, in accordance with its ter-
ephthalate and furan-2,5-dicarboxylate homologues [22,23,27,35]. 

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

100

C
on

ve
rs

io
n 

(%
)

Time (min)

 PEV/TBT, titration
 PEV/TBT, NMR
 PEV/TIS, titration
 PEV/TIS, NMR
 PEV/Sb2O3, titration

 PEV/Sb2O3, NMR

 

Figure 2. 13C NMR spectra of the crude reaction mixture of the esterification performed at 200 ◦C in the presence of TIS.

The assessment of the reaction progress during the esterification step, in the presence
of each catalyst, is presented in Figure 3 and Table S1. As shown, the calculated conversion
of -COOH groups using titanium-based catalysts ranged from 80% to 85%, while the use of
Sb2O3 resulted in a 73% conversion. These results indicate that TBT and TIS demonstrate
greater catalytic activity during the esterification stage of PEV, in accordance with its
terephthalate and furan-2,5-dicarboxylate homologues [22,23,27,35].
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The FTIR spectrum of the monomer is displayed in Figure 4, as well as the spectra of
the crude reacting mixture at different time intervals during the first stage of the reaction.
Briefly, the monomer exhibited a broad absorption band at 3350–3500 cm−1, which can
be attributed to the stretching vibrations of the hydroxyl group of the O-CH2-CH2-OH
segment, two separate bands at 2600–3000 cm−1, linked to the stretching vibrations of
the bound, through hydrogen bonds, carboxylic O-H groups, and a sharp, characteristic
band at 1677 cm−1, owing to the C=O stretching vibration of the carboxylic acid [36].
Concerning the first 2 h of the esterification step, two absorption peaks were apparent in
the carbonyl area of the spectrum, representing the acid and the ester bond (at 1684 and
1708 cm−1) stretching vibrations, respectively. As the reaction proceeded, the first peak
diminished, and the formation of a unique peak at 1720 cm−1 was visible. Furthermore,
the decrease of the absorption bands at 3350–3500 cm−1 and 2600–3000 cm−1 proved the
successful esterification of the hydroxyl group and carboxylic acid. These observations are
in agreement with the reaction progress determined by NMR and titrimetry.
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2.2. Catalyst Effect on PEV Molecular Weight Increase

Except for the effect of the catalyst type on the esterification step, emphasis was
also given to the evaluation of their activity on the polycondensation stage. The IV of
the samples was measured in a phenol/1,1,2,2-tetrachloroethane mixture at 25 ◦C. As
shown in Figure 5 and Figure S2, the samples exhibited different intrinsic viscosity values
and subsequently various number average molecular weights, owing to the different
reactivity of each catalyst. More specifically, PEV/TBT with [η] = 0.27 dL/g, PEV/TIS
with [η] = 0.29 dL/g, and PEV/Sb2O3 with [η] = 0.25 dL/g were prepared. Similarly, the
presence of a TIS catalyst resulted in a final polymer where Mn = 5014 g/mol, while TBT
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and Sb2O3 led to polyesters where Mn = 4375 g/mol and Mn = 3886 g/mol, respectively.
It is evident that the use of titanium-based based catalysts provided higher IV values,
and consequently final products with a higher molecular weight. Furthermore, as the
reaction progressed, regardless of the catalyst type used, there was an obvious increase
of both the IV and Mn values. Overall, the two-step melt polycondensation reaction was
interrupted at preselected times to retrieve samples from the reacting mixture. Despite the
brevity of each sampling, the interruptions may affect the final IV and Mn values of the
produced polyesters.
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Figure 5. Intrinsic viscosity values at different time intervals during the polycondensation step. 

IV measurements were further supported by FTIR analysis. As depicted in Figure S3, 
in all samples, as the polycondensation proceeded, the band at 3500–3600 cm−1 gradually 
decreased. This phenomenon can be linked to the reaction between the hydroxyl and car-
boxyl end groups of i-mers (i = 2,3,4,…,n) towards the formation of polymers; however, 
the C=O stretching band at 1720 cm−1 appeared to not be strongly influenced during the 
4-h duration of this step, supporting that the conversion of the -COOH groups was com-
pleted at a high degree during the esterification step. 

As thermal transitions and phase changes dominate the processing of polymeric ma-
terials and determine the temperature window of this procedure, melting (Tm), cold crys-
tallization (Tcc), and glass transition (Tg) temperatures of the synthesized polyesters dur-
ing the polycondensation step were measured by DSC. The curves, shown in Figure 6, 
clearly depict that Tg, Tcc, and Tm gradually shift to higher values, following the increase 
of the molecular weight with increasing polycondensation time and temperature, as ana-
lyzed above. In detail, the sample that was prepared in the presence of TIS catalyst after 
the esterification step exhibits a Tg value of 73.2 °C, and due to its highly amorphous na-
ture, it exhibits cold crystallization (Tcc) at 106.7 °C, while the formed crystals melt at 253.1 
°C. Not surprisingly, by increasing the reaction time and temperature (4 h, 265 °C), Tg, Tcc, 
and Tm values were observed at higher temperatures. A similar pattern was noticed when 
the reaction was catalyzed by the other two catalysts (TBT and Sb2O3). Thermal transitions 
occur at higher temperatures for the polymer prepared in the presence of TIS, where it 
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IV measurements were further supported by FTIR analysis. As depicted in Figure S3,
in all samples, as the polycondensation proceeded, the band at 3500–3600 cm−1 gradually
decreased. This phenomenon can be linked to the reaction between the hydroxyl and
carboxyl end groups of i-mers (i = 2,3,4, . . . ,n) towards the formation of polymers; however,
the C=O stretching band at 1720 cm−1 appeared to not be strongly influenced during the 4-h
duration of this step, supporting that the conversion of the -COOH groups was completed
at a high degree during the esterification step.

As thermal transitions and phase changes dominate the processing of polymeric
materials and determine the temperature window of this procedure, melting (Tm), cold
crystallization (Tcc), and glass transition (Tg) temperatures of the synthesized polyesters
during the polycondensation step were measured by DSC. The curves, shown in Figure 6,
clearly depict that Tg, Tcc, and Tm gradually shift to higher values, following the increase of
the molecular weight with increasing polycondensation time and temperature, as analyzed
above. In detail, the sample that was prepared in the presence of TIS catalyst after the
esterification step exhibits a Tg value of 73.2 ◦C, and due to its highly amorphous nature, it
exhibits cold crystallization (Tcc) at 106.7 ◦C, while the formed crystals melt at 253.1 ◦C.
Not surprisingly, by increasing the reaction time and temperature (4 h, 265 ◦C), Tg, Tcc, and
Tm values were observed at higher temperatures. A similar pattern was noticed when the
reaction was catalyzed by the other two catalysts (TBT and Sb2O3). Thermal transitions
occur at higher temperatures for the polymer prepared in the presence of TIS, where it
can thus be concluded that TIS exhibited a higher catalytic activity. The characteristic
temperatures of each polymer and at each time interval during the second heating scan are
presented in detail in Table 1.
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2.3. Effect of Catalysts on the Thermal Stability of PEV

The thermal stability of the produced polyesters was evaluated using EGA/MS. As
can be observed in Figure 7, the catalyst used appeared to have a small impact on the
decomposition temperature peak of the final sample; however, not surprisingly, PEV
synthesized with a titanium-based catalyst showed higher thermal stability [29], with a
peak (corresponding to the temperature where the largest quantity of degradation products
are produced) at 407 ◦C and 412 ◦C in the presence of TBT and TIS, respectively, while the
Sb2O3-catalyzed material degraded at 405 ◦C. These observations support the hypothesis
of the superior performance of these catalysts in the synthesis of PEV polyesters.

2.4. Effect of Used Catalysts on PEV Coloration

Besides their effect on the molecular weight of the final polyesters, the three catalysts
also resulted in differences in the coloration of the materials. As shown in Figure 8, the
titanium-based catalysts led to reddish-yellowish products, while the use of Sb2O3 gave a
greyish color to the synthesized polymer.

Concerning CIEL*a*b* color system values, in all three polymers, there was a relatively
large decrease in lightness (∆L* = 10) after the first hour of the polycondensation reaction,
followed by a gradual one as time increased. Furthermore, the a* and b* values (linked
to the green–red and blue–yellow axes, respectively) of each sample were also calculated
(Figure 9b,c), demonstrating that TBT and TIS offered stronger red–yellow hues to the
corresponding materials in comparison with Sb2O3. Finally, the K/S fraction, which is
connected to the concentration of the color on the polyester, was determined (Figure 9d). As
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can be seen, samples that were synthesized with the presence of Sb2O3 catalyst possessed
higher concentrations of color on their surface.

Table 1. Thermal characteristics, including the glass transition (Tg), cold crystallization (Tcc), melt-
ing point (Tm), and crystallization temperature (Tc) of melt-quenched PEV samples when using
different catalysts.

PEV/TBT

Time (min)
Melt-Quenched

Tg (◦C) Tcc (◦C) Tm (◦C)

0 66.7 101.9 248.9
60 72.4 105.9 258

120 72.6 106.1 259.7
180 73 106.6 260.2
240 73.5 107.7 260.9

PEV/TIS

Time (min) Tg (◦C) Tcc (◦C) Tm (◦C)

0 73.2 106.7 253.1
60 75.2 106.7 264.6

120 75.9 106.8 264.8
180 76.7 108.8 266.5
240 77.3 109.1 267.5

PEV/Sb2O3

Time (min) Tg (◦C) Tcc (◦C) Tm (◦C)

0 61.1 98.7 238.6
60 69.1 104.4 253

120 70.2 104.5 256.4
180 72.3 106 257.8
240 72.4 106.2 258.9
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polycondensation times.

Overall, the formation of the colored polycondensation products can be attributed
to prolonged heating at a temperature above 240 ◦C. At these temperatures, a high de-
gree of yellowing can be caused either due to the possible decarboxylation of the starting
monomer [34] or due to the potential formation of organic contaminants during the poly-
merization. Moreover, the grey discoloration of PEV in the case of Sb2O3 catalysts may
be attributed to the reduction of Sb+3 to elementary Sb0 in the presence of carbon oxides.
These observations are in agreement with the effect of the aforementioned catalysts on the
discoloration of PET and poly(ethylene furan-2,5-dicarboxylate) (PEF). [37–39].
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2.5. Reaction Kinetic Analysis

In general, there are three approaches to model the kinetics of esterification/polycondensation
reactions. In order of increasing complexity, they are (i) the simple empirical laws for the
rate of decrease of reactant concentration (e.g., in [40]); (ii) the functional group models
(e.g., in [41]) which are restricted to the description of the evolution of the active molecular
groups (e.g., hydroxyl and carboxyl in the present case); and (iii) detailed molecular species
models, which describe in detail all the reaction occurring in the process. The number of
unknown kinetic parameters increases from (i) to (iii). The physical meanings of parameters
also increase as we move from empirical (i.e., in (i)) to detailed (i.e., in (iii)) models. Here, a
combination of approaches (ii) and (iii) will be followed.

The particular problem at hand is linear chain polymerization with a single monomer.
Actually, the same reaction occurs in both esterification and transesterification steps. The
detailed kinetic model for the evolution of the concentration of the i-mers (molecules
consisted of i-primary units) is (i = 1, 2, . . . , Nmax)

dCi
dt

=
1
2

i

∑
j=1

Ki−j,jCi−jCj − Ci

Nmax

∑
j=1

Ki,jCj (2)

where Nmax corresponds to the larger i-mer in the system and Ki,j is the reaction constant for
the reaction between an i-mer and a j-mer. The above equation is used in an approximate
way to model the esterification step. The conversion of a functional group is experimentally
measured in this step. This conversion corresponds to the loss of monomers from the
system (i.e., evolution of variable C1). It can be assumed that during esterification the
main mechanism for monomer loss is the reaction between monomers. In reality, some
larger molecules are formed, but the concentrations are too low and the reaction rates of
monomers with them are negligible. In such a situation, Equation (2) is transformed to the
following form:

dC1

dt
= −kC2

1 (3)

This is a simple second-order reaction (with k = K1,1). This equation is integrated and
transformed to give the percentage conversion R as R = 100(1− 1

1+kCot ), where Co is the
initial concentration of the reactant. To exploit the experimental conversions measured
by both techniques employed in the present work their average values are considered.
Then, the above expression for R is fitted to the average conversion data. The results of the
fittings are presented in Figure 10.
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The values found for the single fitting parameter kCo are 0.018, 0.02, 0.0137 min−1

for the catalysts TBT, TIS, and Sb2O3, respectively. Considering that Co is the same for
all catalysts, the esterification reaction constant appears to be largest for TIS, followed by
TBT, leaving Sb2O3 as the least effective catalyst. The validity of the approximation of the
system by Equation (3) is confirmed by assuming the reaction order exponent as a second
fitting parameter. The fitting with two parameters led to values of the exponent very close
to two.

The next step was the examination of the polycondensation reaction. The reactions
in the presence of the three catalysts started from different initial conditions (i.e., average
molecular weight) as a consequence of the different extents of preceding esterification
reactions. To eliminate the effect of initial conditions, the normalized molecular weight
M/Mo evolution is presented in Figure 11, where M is the average molecular weight in the
reaction mixture and Mo denotes its value at the beginning of polycondensation step.
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Figure 11. Experimental normalized average molecular weight (symbols) and the corresponding
model (continuous line).

It is very interesting that the evolution curves of M/Mo practically coincided for the
three catalysts, implying that the performances of the three catalysts for polycondensation
were similar to each other. To model the (unique for all catalysts) polycondensation kinetics,
the system (2) of Nmax ordinary differential equations must be numerically integrated. A
choice of the kinetic function Ki,j is needed. It is expected that the motion of the polymer
chains is inhibited as their molecular weight increases so the choice Ki,j ∝ (i−λ + j−λ)
(where λ is a positive parameter) is a reasonable one. There are no experimental data
for the complete molecular weight distribution, but only for its average value so the
system is solved approximately using the monodisperse method of moments to give the
following simple equation for the evolution of the ratio M/Mo (details of the derivation can
be found in [22]):

M
Mo

= (1 + (1 + λ)Kot)1/(1+λ) (4)

Data fitting (shown in Figure 11) was achieved using the values λ = 2.5 and
Ko = 0.037 min−1 (for all the catalysts). The value λ = 2.5 implies a large reduction of
reaction rate as the chain length of the reactant increases. This is due to a combination of
reduced molecule mobility (i.e., diffusivity) and increased mixture viscosity, as the size of
the molecules increases.
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3. Materials and Methods
3.1. Materials

Vanillic acid (VA, purum 99%) was supplied by J & K Scientific (GmbH, Pforzheim,
Germany). Sodium iodide (>99%), used in the synthesis of the monomer, was purchased by
Acros Organics N.V. (Geel, Belgium). Furthermore, the 2-chloroethanol (>99%), titanium
butoxide (Ti(OBu)4), titanium isopropoxide (Ti(iOPr)4), and antimony trioxide (Sb2O3)
(analytic grade) catalysts were provided by Sigma-Aldrich Co (Chemie GmbH, Steinheim,
Germany). Phenol (99+%), and 1,1,2,2-tetrachloroethane (98+%), utilized as a mixture for
intrinsic viscosity measurements, were purchased from Alfa Aesar (Kandel, Germany). All
other solvents and materials used were of an analytical grade.

3.2. Synthesis of 4(2-Hydroxyethoxy)-3-Methoxybenzoic Acid

In short, 33.6 g of vanillic acid (0.20 mol) and 12 g of sodium iodide (0.08 mol) were
dissolved in an aqueous potassium hydroxide solution (33.75 g (0.6 mol) in 260 mL of
water). Then, 17.7 g (0.22 mol) of 2-chloroethanol, dissolved in 520 mL of ethanol, was
added dropwise over 4 h at 100 ◦C, after having been degassed by N2 bubbling. The
reacting mixture was refluxed and 6.0 g of 2-chloroethanol was added approximately
every 12 h. After 4 days, the obtained mixture was concentrated using a rotary evaporator,
and the residue was diluted in water. The aqueous solution was washed with ether and
acidified with aqueous hydrochloric acid solution. The precipitated solid was separated by
filtration and purified by two subsequent recrystallizations in ethanol to obtain the product
in 64% yield [34].

3.3. Synthesis of Poly(Ethylene Vanillate) Polyesters

The synthesis of PEV polyesters was carried out via a two-stage melt polycondensation
procedure in a glass batch reactor according to previous studies by our research group [42].
First, 8 g of 4-(2-hydroxyethoxy)-3-methoxybenzoic acid was charged into the reaction tube
of the polycondensation apparatus. Then, 500 ppm (0.5 mL) of TBT, TIS, or Sb2O3 was
subsequently added in the polycondensation reactor and the apparatus was subsequently
evacuated and filled with N2 three times to remove oxygen. The reacting mixture was
heated at 200 ◦C under N2 flow (50 mL/min) for 3 h. At 30 min time periods, samples were
collected from the reaction mixture for analysis. During the second stage, a vacuum (5.0 Pa)
was progressively applied over 20 min and the temperature was gradually increased to
240 ◦C while the stirring speed was increased from 360 to 750 rpm over an hour. The
reacting mixture was heated for 2 h at 240 ◦C and the temperature was further increased
to 255 ◦C and 265 ◦C for 1 h each time. Finally, the resulting materials were milled and
washed with methanol. Samples after 1, 2, 3, and 4 h of the second step were gathered and
characterized using various techniques.

3.4. Polyesters’ Characterization
3.4.1. Acid Value Measurements

The carboxyl end group content was defined by titration with a potassium hydroxide
methanolic solution (0.1 M) and phenol red as an indicator. For each sample, the titration
was repeated in triplicate and the mean value was estimated. The acid value (AV) represents
the unreacted acid groups, and it is defined as the milliliters of potassium hydroxide
solution required to neutralize one gram of sample. The AV of the resulted polyesters was
determined based on Equation (5):

AV =
C×V × 56.11

m
(5)

where V is the volume of KOH solution consumed (in mL); C is the concentration of the
KOH solution (in M); m stands for the mass of the sample (in grams); and 56.11 is potassium
hydroxide molar mass (in g/mol).
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Furthermore, the conversion of the monomer to polyester was subsequently calculated
with the implementation of Equation (6):

Conversion (%) =
AV0 − AVt

AV0
(6)

where AV0 is the initial AV and AVt is the AV value at each sampling interval.

3.4.2. Nuclear Magnetic Resonance (NMR)

NMR spectra were recorded in deuterated chloroform/trifluoroacetic acid (CDCl3)/(TFA-
d1) (4/1 v/v), using an Agilent 500 spectrometer (Agilent Technologies, Santa Clara,
CA, USA) at room temperature. Spectra were calibrated utilizing the residual solvent peaks.

3.4.3. Intrinsic Viscosity Measurements (IV)

The intrinsic viscosity was measured with an Ubbelohde viscometer (Schott Gerate
GMBH, Hofheim, Germany) at 25 ◦C in a phenol and 1,1,2,2-tetrachloroethane (60/40,
w/w) solution. To reach complete dissolution, the sample was heated in the solvent mixture
at 70 ◦C for 20 min. After cooling, the solution was filtered through a disposable Teflon
filter, to eliminate possible solid residues. The calculation of the intrinsic viscosity values
of the produced polyesters performed applying the Solomon–Cuita equation (Equation (7))
for a single point measurement:

[η] =
[2{ t

t0
− ln

(
t
t0

)
− 1}]

1
2

c
(7)

where c is the solution concentration, t is the flow time of the solution and t0 is the flow
time of the solvent. The experiment was performed three times and the average value
was estimated.

3.4.4. Molecular Weight

Intrinsic viscosity values [η] were used to calculate the number average molecular
weight (Mn) of the PEV samples, using the Berkowitz equation (Equation (8)), as it was
modified in our previous work [43]:

Mn = 3.29 × 104 [η]1.54 (8)

3.4.5. Fourier-Transformed Infrared Spectroscopy (FTIR)

FTIR spectra of the produced polyesters were obtained by FTIR-2000 (Perkin Elmer,
Waltham, MA, USA). A small amount of each sample was triturated with a proper amount
of potassium bromide (KBr) and the disks were formed under pressure. All spectra were
collected in the range from 4000 to 500 cm−1 using a resolution of 4 cm−1 and 32 co-added
scans. The presented spectra were further baseline corrected, normalized, and converted
into an absorbance mode.

3.4.6. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry measurements were performed using a PerkinElmer
Pyris Diamond DSC (PerkinElmer Corporation, Waltham MA, USA), updated to the DSC
8500 level, combined with an Intracooler 2P cooling accessory, calibrated with pure indium
and zinc standards. Samples of 5 ± 0.1 mg sealed in aluminum pans were applied for
assessing the thermal behavior of the produced polymers. All samples were initially
heated at 20 ◦C/min up to 300 ◦C and held at this temperature for three minutes to
erase any previous thermal history. The glass transition (Tg) and cold crystallization (Tcc)
temperatures were measured by performing a heating scan of the melt-quenched samples
at 20 ◦C/min.
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3.4.7. Color Measurements

Color measurements were performed using a Datacolor Spectraflash SF600 plus CT
UV reflectance colorimeter (Datacolor, Marl, Germany) with the implementation of the D65
illuminant, a 10◦ standard observer with the UV component excluded and the specular
component included. In each case, five measurements were performed using a special
holder (Datacolor) and the mean values were calculated. The color values were calculated
via the CIE L*a*b* color space system and the modified CIELCH system [44]. In this system,
L* represents the lightness (L* = 0, black, L* = 100, white). As depicted in Figure 12, the
a* value corresponds to the green–red axis, where negative a* values indicate green and
positive a*values indicate red hues. The b* value represents the blue–yellow axis, where
negative b* values indicate blue and positive b* values indicate yellow hues.
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Furthermore, the fraction R/S, linked to the concentration of the color on the polyester,
was determined following Equation (5):

K
S

=
(1 − R)2

2R
(9)

where K is the absorbance coefficient, S stands for the scattering coefficient, and R is the
percent reflectance of each sample.

3.4.8. Evolved Gas Analysis Mass Spectroscopy (EGA/MS)

For the performance of the Py-GC/MS analysis of the resulting polyesters, a very
small quantity of the material has been set primarily into the “Double-Shot” EGA/PY-
3030D Pyrolyzer (Frontier Laboratories Ltd., Fukushima Japan) with a CGS-1050Ex (Kyoto,
Japan) carrier gas selector. For evolved gas analysis (EGA), the furnace temperature was
programmed from 100 ◦C to 600 ◦C with a heating rate of 20 ◦C/min, using He as the
purge gas and air as the cooling gas. The GC oven temperature was set at 300 ◦C for 25 min.
The pyrolyzates were separated using the temperature programmed capillary column of
a Shimadzu QP-2010 Ultra Plus (Shimadzu, Kioto, Japan) gas chromatograph and were
analyzed by the mass spectrometer MS-QP2010SE of Shimadzu (Shimadzu, Kioto, Japan) at
70 eV. For the mass spectrometer, the following conditions were used: ion source heater at
200 ◦C, interface temperature at 320 ◦C, vacuum of 10−4–100 Pa, m/z range of 45–500 amu,
and scan speed of 10,000 u/s.

4. Conclusions

Within this study, the efficiency of three different metal-based catalysts (TBT, TIS, and
Sb2O3) during two-step melt polycondensation of PEV was examined for the first time. The
evolution of the esterification step was investigated using various techniques, such as NMR,
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end group analysis, and FTIR. Based on the acquired results, titanium-based catalysts seem
to exhibit higher catalytic activity. In the second stage of the reaction, the efficiency of the
used catalysts followed the same pattern, resulting in polyesters with higher molecular
weights and subsequently superior thermal transitions (higher Tg, Tcc, and Tm values), as
well as elevated thermal stability. Since coloration in materials plays an important role
toward their future applications, color measurements were also performed, proving that
the reaction time and temperature strongly affect the discoloration of the final materials,
resulting in reddish-yellowish products in the case of titanium-based catalysts and a greyish
polymer when in the presence of Sb2O3. Finally, theoretical kinetic studies were carried out
and rate constants for the reactions that took place in each step were calculated, indicating
that TIS possesses superior catalytic activity during the esterification stage, while all three
catalysts exhibited similar behavior during the polycondensation process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11070822/s1. Figure S1: 1H NMR spectra of the crude reaction mixture of the esterification
performed at 200 ◦C, in the presence of TIS. Table S1: Conversions obtained/observed in the presence
of TBT, TIS and Sb2O3 catalysts. Figure S2: Evaluation of number average molecular weight at
different time intervals during the polycondensation step. Figure S3: FTIR spectra of the crude
reaction mixture during the polycondensation step at different time intervals in the presence of
(a) TBT, (b) TIS and (c) Sb2O3 catalyst.
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