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Abstract: The development of highly efficient photocatalysis has been prepared by two different
methods for the photodegradation of Cr(VI) from an aqueous solution under visible light. The
electrospun polyethersulfone (PES)/iron oxide (Fe3O4) and multi-wall carbon nanotubes (MWCNTs)
composite nanofibers have been prepared using the electrospinning technique. The prepared materi-
als were characterized by SEM and XRD analysis. The result reveals the successful fabrication of the
composite nanofiber with uniformly and smooth nanofibers. The effect of numerous parameters were
explored to investigate the effects of pH value, contact time, concentration of Cr(VI), and reusability.
The MWCNTs-Fe3O4@PES composite nanofibers exhibited excellent photodegradation of Cr(VI) at
pH 2 in 80 min. The photocatalysis materials are highly stable without significant reduction of the
photocatalytic efficiency of Cr(VI) after five cycles. Therefore, due to its easy separation and reuse
without loss of photocatalytic efficiency, the photocatalysis membrane has tremendous potential for
the removal of heavy metals from aqueous solutions.

Keywords: iron oxide; MWCNTs; photocatalysis; Cr(VI); visible light

1. Introduction

Heavy metal pollution is one of the most serious environmental and public health
issues. Chromium is one of the most dangerous heavy metals, and it has been used in a va-
riety of industries, such as dyes, textiles, leather tanning, electroplating, and alloying [1,2].
Cr(VI) and Cr(III) are the two oxidation states of chromium, where Cr(VI) is more toxic to
humans than Cr(III) with high stability, toxicity, and carcinogenic properties [3,4]. There-
fore, a lot of methods have been used to remove Cr(VI) from wastewater such as ion
exchange [5,6], adsorption [7,8], photocatalyst [9,10], membrane separation [11,12], coagu-
lation and precipitation [13,14], and solvent extraction [15]. Photocatalysts are commonly
considered as the most promising and frequently used feasible strategy, owing to its easy
operation, eco-friendly, low cost, regeneration, and high performance when compared
to other approaches [16,17]. Various photocatalyst for the removal of Cr (VI) have been
investigated, including active carbon [18], metal oxide nanoparticles [19,20], synthesized
polymer beads [21] and agriculture waste [22]. Among these, iron oxide (Fe3O4) is one of
the most widely studied due to its high efficiency, chemical stability, low cost, and avail-
ability [23,24]. However, after photodegradation, it is extremely difficult to separate the
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catalyst from the solution, which would raise the operational costs [25,26]. In order to avoid
this problem, some researchers used nanofibers to remove a variety of pollutants [27,28].

Electrospinning is a simple and efficient technique for fabricating polymer–inorganic
nanocomposite fibers due to the higher mesoporosity and specific surface area [29,30].
Various nanomaterials can be introduced into the polymer matrix through the electrospin-
ning process to improve the physical, chemical, and catalytic properties of the polymer
fibers [31]. Due to its excellent characteristics, such as industrial availability, favorable
chemical resistance, thermal resilience, strong mechanical properties, vast possibilities for
surface functionalization, biocompatible and non-toxic composition, polyethersulfone (PES)
has been used to manufacture nanofibers [32]. It has recently shown that incorporating two
different types of nanomaterials into a polymer matrix has significant possible benefits in
terms of improving property enhancement [33]. CNTs have excellent mechanical, thermal,
electrical, and optical properties, as well as high aspect ratios [29,34]. Therefore, mixing
iron oxide NPs with electrospun polymeric nanofibers can overcome the agglomeration
and recycling problem of the nanoparticles. In addition, the mixture can be used as an
efficient photocatalyst for the removal of heavy metal ions and development the magnetic
nanofibers [35,36]. Recently, Hota et al. have reported the electrospinning fabrication of
PAN/iron oxide for the removal performance of CR dye from aqueous solution [32]. In
addition, Li et al. announced the electrospinning fabrication of a nylon 6/iron oxide com-
posite nanofibers membrane for the removal of Cr(VI) ions from the aqueous solution [37].
Moreover, Mallon et al. fabricated the electrospun composite nanofibers containing carbon
nanotubes and iron oxide (MWCNT-Fe3O4) [38].

In the present work, novel composite nanofibers were fabricated for the photodegra-
dation of Cr(VI) from aqueous solutions, which can be easily separated from the aqueous
solution. Photodegradation experiments were used to investigate the effects of pH, contact
time, and initial concentration on Cr(VI). The electrospinning technique was also used to
examine the incorporation of the respective MWCNT-Fe3O4 as filler nanomaterials into
PES nanofibers. Furthermore, the preparation process and the photocatalytic mechanism
of composite nanofibers for Cr(VI) were investigated. The morphology and structure of
the composite nanofibers were characterized by scanning electronic microscope (SEM)
and X-ray diffraction (XRD). The composite nanofiber showed promising potential for
wastewater treatment.

2. Results and Discussion

Figure 1 shows the SEM images of PES, PES/MWCNTs-Fe3O4, MWCNTs-Fe3O4@PES
composite nanofiber before and after photodegradation. The surface morphology of the
PES nanofiber is uniform without beads with an average size of 105 ± 15 nm. The in-
corporation of MWCNTs and Fe3O4 NPs in the PES nanofiber can be seen in Figure 1b.
The NPs can be seen inside the nanofiber with an average size of 95 ± 10 nm, due to the
electrically conductive nature of MWCNT, which enhances solution conductivity, result-
ing in smaller nanofiber diameters. The successful fabrication of MWCNTs-Fe3O4@PES
nanofibers before and after photodegradation is depicted in Figure 1c,d. It was observed
that the NPs are agglomerated to each other and crosslinked well to the nanofiber even
after photodegradation of Cr(VI).

In order to confirm the presence of NPs in the synthesized composite nanofiber, XRD
analysis has been done as shown in Figure 2. The peaks at 30◦, 35◦, 44◦, 57◦, and 63◦

correspond to the presence of Fe3O4. The broad peaks of PES nanofiber at 2θ of 13.5◦, 30◦

and 42.3◦, indicating the amorphous nature of PES [39]. For the MWCNTs-Fe3O4@PES
composite nanofiber, peaks at 2θ = 25.5◦ correlate to the presence of MWCNTs, whereas
the peak at 13.5◦ related to the PES nanofiber and the peaks at 30◦, 35◦, 44◦, 57◦, and 63◦

associated to the Fe3O4 NPs. In addition, after photodegradation the same diffraction
peaks are observed indicated the stability of the composite nanofiber.
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Figure 2. XRD patterns of Fe3O4, PES nanofiber, and MWCNTs-Fe3O4@PES composite nanofiber
before and after photodegradation.
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2.1. Photocatalytic Performance

Catalysts dose plays a crucial role in the photocatalysis process. The results depicted in
Figure 3 exhibited that as the amount of MWCNTs increased, the photocatalytic efficiency
of Cr(VI) increased with a fixed amount of Fe3O4 (1 wt.%) at pH 2, 80 min and 20 mgL−1 of
Cr(VI). It is clear that the 3 and 5 wt.% of MWCNTs have the same photocatalytic efficiency,
as the increase in the catalyst dose offers more binding sites, resulting in improving
the photodegradation.
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Figure 3. Effect of catalyst dose on the photocatalytic efficiency of Cr(VI) using the MWCNTs-
Fe3O4@PES CNM.

During photocatalysis experiments, the contact time between photocatalysis and con-
taminants is critical for determining photocatalytic efficiency. The photocatalytic efficiency
of Cr(VI) as a function of time using the PES nanofiber, PES/MWCNTs-Fe3O4 CNM, and
MWCNTs-Fe3O4@PES CNM were determined as shown in Figure 4. All the experiments
were conducted at 20 mgL−1 of Cr(VI) and pH 2. The results reveal that the maximum
photocatalytic efficiency of Cr(VI) occurs at 80 min using the MWCNTs-Fe3O4@PES CNM
under visible light, whereas for PES/MWCNTs-Fe3O4 CNM only 75% photocatalytic ef-
ficiency of Cr(VI) was achieved at the same condition. These results attributed to the
large surface area and the large number of active sites in the case of MWCNTs-Fe3O4@PES
CNM. In addition, both the composite nanofiber had higher photocatalytic efficiency than
PES nanofiber.

The pH of a solution has a significant impact on the behaviour of photocatalyst against
pollutants due to the surface charge of the photocatalyst, as well as the speciation of the
metal ions in the solution [40]. The influence of pH on the photocatalytic efficiency of
Cr(VI) using the MWCNTs-Fe3O4@PES CNM was established at various pH solutions in
the range of 2–10 at 20 mgL−1 and 80 min as shown in Figure 5a. The results demonstrated
that the highest photocatalytic efficiency of Cr(VI) occurs at a lower pH and decreased until
83% at pH 10. This result attributed to the electrostatic interactions between the positively
charged iron oxide and the negatively charged of Cr(VI) that exists as an oxyanion (CrO4

−2,
Cr2O7

−2, or HCrO4
−) in acidic media [40,41]. In addition, the electrostatic repulsions

between the photocatalyst and the dichromate ions, resulting in a decline in photocatalytic
efficiency of Cr(VI) in the basic medium. Furthermore, various concentrations (20, 40,
60, 80, and 100 mgL−1) of Cr(VI) at pH 2 using the MWCNTs-Fe3O4@PES CNM were
used at a contact time of 80 min, to determine the initial concentration effect, as shown
in Figure 5b. The photocatalytic efficiency of Cr(VI) decreased from 99 to 66 % when the
concentration increased from 20–100 mgL−1, due to the binding sites being occupied by



Catalysts 2021, 11, 868 5 of 10

Cr(VI), leaving little available binding sites for the photocatalyst process, resulting in a
decrease in photocatalytic efficiency [42–44].
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Figure 4. Photocatalytic efficiency of Cr(VI) using PES nanofiber, PES/MWCNTs-Fe3O4 CNM, and
MWCNTs-Fe3O4@PES CNM.
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Figure 5. The effect of (a) pH and (b) concentration on the photocatalytic efficiency of Cr(VI) using the
MWCNTs-Fe3O4@PES CNM.

2.2. Reusability of the Photocatalysis

For cost-effectiveness, the reusability and stability of catalyst materials is a critical
factor. The regeneration of CNM was performed at pH 2, 20 mg L−1 and 80 min, as shown
in Figure 6. After each cycle, the composite nanofiber treated with HCl solution and
then washed with purified water. The results show that the composite nanofibers were
effectively reused without significant reduction in the photocatalytic efficiency of Cr(VI)
after 5 cycles, reaching 99%. In addition, Table 1 shows the photodegradation of Cr(VI)
using different photocatalysis composite nanofiber, to compare the catalytic activity of
different photocatalysis for Cr(VI) photodegradation under visible light irradiation.
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Table 1. Comparison of visible light photodegradation of Cr(VI) using different composite nanofiber photocatalysis.

Catalyst Concentration (mg L−1) Photodegradation
Efficiency (%) Lamp Power (W) Time (min) Reference

CNF@SnS2 50 100 300 90 [45]

PANI-CdS QDs 10 97 300 480 [46]

TiO2/Ag 10 100 500 180 [47]

TiO2@PAN 5 99 300 30 [48]

PDPB-ZnO 10 99 - 90 [49]

PES/MWCNTs-Fe3O4 20 75 125 80 This work

MWCNTs-Fe3O4@PES 20 100 125 80 This work

3. Experimental
3.1. Materials

Polyethersulfone (PES) was purchased from BASF, Germany. Glutaraldehyde (GA)
50%, potassium dichromate (K2Cr2O7), iron(II) chloride, iron(III) acetylacetonate, ethylene-
diamine, dimethylformamide (DMF), acetylacetone, sodium acetate, ethanol, sodium
hydroxide, hydrochloric acid, iron oxide magnetic, and ferric chloride was purchased
from Sigma Aldrich. MWCNTs (average length of 0.5–2µm, and diameter ranges from
30 to 50 nm), were synthesized and the procedure is described elsewhere [50,51]. All the
chemicals were used without further purifications.

3.2. Preparation of Iron Oxide Nanoparticles by Hydrothermal Process

First, 1.7 g of iron chloride was dissolved in 10 mL distilled water, and then 1.9 mL of
Acetylacetone was added to the solution after 15 min. After that, 6.25 g of sodium acetate
was added to the solution with slow stirring. The solution was cooled to a temperature
rang about 0–5 ◦C, which tends to result red crystalline. After that, iron (III) acetylacetonate
was recrystallized from absolute ethanol. The prepared material was dissolved in 70 mL
deionized water, and ethylene diamine was added into the solution under stirring condition
to keep the pH between 10 and 11. After that, the resulting suspension transferred into a
Teflon lined autoclave, where the hydrothermal reaction was carried out for 12 h at 150 ◦C.
After the completion of the reaction, the mixture was washed several times with distilled
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water and finally with alcohol and then isolated by centrifugation. The precipitate was
then dried in an electric oven at 60 ◦C for further use.

3.3. Synthesis of Electrospun Composite Nanofiber

The PES nanofibers were fabricated via the electrospinning technique. Briefly, 1 g
of PES was added into 4 mL of DMF and mixed by magnetic stirrer until the solution
was homogeneous. The prepared PES solution was poured into a 6 mL plastic syringe.
The electrospinning was performed at 15 kV, 1 mL·h−1 of solution flow rate and 20 cm
distance from needle to the collector. The obtained nanofibers were taken off from the
aluminium foil for further use. For the composite nanofiber (PES/MWCNTs-Fe3O4), 1 wt.%
of MWCNTs and Fe3O4 w.r.t. the polymer weight were prepared by blending with PES
and electrospun as the PES nanofibers. For the preparation of the MWCNTs-Fe3O4 on
the surface of PES nanofibers, different amounts of MWCNTs (0.5, 1, 3 and 5 wt.%) and
1 wt.% of Fe3O4 have been prepared as follow. The PES nanofibers were immersed in a
crosslinking medium containing 100 mL purified water with 2.5 wt% GA for 24 h [52].
Then, the GA was separated, and the composite nanofiber washed and dried. After that,
2 mL of the prepared suspension mixture of MWCNTs and Fe3O4 was applied to the
nanofibers for 24 h. Finally, the CNM was washed out with deionized water and ethanol,
and then dried for further use.

3.4. Characterization

The morphology of the synthesized composite nanofibers membrane (CNM) was
examined using a scanning electron microscope (SEM, Gemini Zeiss-Ultra 55, ZEISS, Jena,
Germany). The average diameter of the CNMs were calculated using Image J software
and calculated by selecting the fiber diameter observed on the SEM image. The X-ray
diffraction (XRD) patterns were conducted using (D8-Advance, Bruker, Billerica, MA, USA)
varying from 3◦ to 30◦ with Cu-Kα radiation to establish the composition and crystallinity
of Fe3O4 and the composite nanofiber membrane. UV–Vis Absorbance (LAMBDA 750,
Perkin Elmer, Solingen, Germany) was used to determine the concentration of Cr(VI) in
aqueous solutions.

3.5. Photocatalysis Experiments

The photocatalysis experiments were carried out to investigate the effect of contact
time, initial Cr(VI) concentrations and pH values (2–10) under visible light (125 W xenon
lamp) using the composite nanofiber membrane for the photodegradation of Cr(VI). Pho-
tocatalysis experiments were conducted in petri dish, with50 mL of Cr(VI) concentration
(20–100 mgL−1) and 20 mg of composite nanofiber. The fabricated nanofibers was placed
into the petri dish and mixed with Cr(VI) solution at room temperature in the dark for
30 min to assure that the adsorption equilibrium of Cr(VI) was reached. After equilibration,
the solution was irradiated with visible light, where the distance between the light source
and the CNM is 20 cm. After that, 3 mL of the suspension was taken at scheduled intervals
for the analysis. Potassium dichromate (K2Cr2O7) was used to prepare different concen-
tration of Cr (VI). The Cr(VI) concentration in the solution was determined by recording
the absorbance at 350 nm on a UV–Vis Absorbance (LAMBDA 750, Perkin Elmer).The
photocatalytic performance of Cr(VI) is given as follows:

Photocatalytic efficiency (%) = (
C0 − Ct

C0
) × 100 (1)

where C0 and Ct is the initial and final Cr(VI) concentration (mg/L).

4. Conclusions

The PES/MWCNTs-Fe3O4 and MWCNTs-Fe3O4@PES composite nanofibers were
successfully prepared by the electrospinning technique. The NPs were blending to the
PES solution and/or loaded to the surface of the nanofiber to prepare the composite
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nanofibers. The prepared MWCNTs-Fe3O4@PES composite nanofibers have a higher
photodegradation efficiency of Cr(VI) than the PES/MWCNTs-Fe3O4 and PES alone. The
maximum photodegradation of Cr(VI) was 99% after 80 min. The photodegradation
efficiency was highest at acidic pH 2 (99%) whereas 83% was achieved at pH 10 due to the
electrostatic interactions between active sites on the surface of the catalyst with positive
charges of HCrO4

−. In addition, the photocatalytic efficiency of Cr(VI) decreased from
99 to 66% when the concentration increased from 20–100 mgL−1. Moreover, after 5 cycles
of photodegradation of Cr(VI), the composite nanofibers demonstrated high performance,
stability, and reusability. The results demonstrated that the catalysts materials have a
potential photodegradation of Cr(VI) from industrial wastewater.
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