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Abstract: Nowadays, most experiments to synthesize and test photocatalytic antimicrobial materials
are based on trial and error. More often than not, the mechanism of action of the antimicrobial
activity is unknown for a large spectrum of microorganisms. Here, we propose a scheme to speed
up the design and optimization of photocatalytic antimicrobial surfaces tailored to give a balanced
production of reactive oxygen species (ROS) upon illumination. Using an experiment-to-machine-
learning scheme applied to a limited experimental dataset, we built a model that can predict the
photocatalytic activity of materials for antimicrobial applications over a wide range of material
compositions. This machine-learning-assisted strategy offers the opportunity to reduce the cost,
labor, time, and precursors consumed during experiments that are based on trial and error. Our
strategy may significantly accelerate the large-scale deployment of photocatalysts as a promising
route to mitigate fomite transmission of pathogens (bacteria, viruses, fungi) in hospital settings and
public places.

Keywords: photocatalytic systems; reactive oxygen species; illumination; predictive activity; ma-
chine learning

1. Introduction

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection, is the most impactful global pandemic of the
21st century to date and continues to infect and kill many individuals worldwide. Since
its identification as a human pathogen in December 2019, SARS-CoV-2 has thus far
infected more than 50 million people and caused more than 1.2 million deaths (https:
//coronavirus.jhu.edu/map.html, accessed on 6 November 2020). Due to limited access to
COVID-19 testing, many countries screen only, if at all, symptomatic patients for COVID-
19. Subsequently, the reported deaths associated with COVID-19 may be underestimated
compared to the real numbers. The accurate scale of COVID-19 might be much higher
because of missed diagnoses, data tracking anomalies, and indirectly related deaths [1].
The knowledge about COVID-19 disease remains limited thus far, especially because sev-
eral virus mutants have emerged since the first diagnosed case, which has resulted in
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the subsequent waves of COVID-19 pandemic that are currently hitting several countries,
calling for urgent interventions to suppress the spread of pathogens.

Pathogens can spread through direct (human-to-human transmission) and indirect
contact via contaminated inanimate objects and airborne contagion. However, some
pathogens remain intact and contagious even in smaller droplets (<5 µm) and can be sus-
pended in the air for up to three hours. Therefore, airborne isolation, room ventilation, and
appropriate disinfectant application might restrict the aerosol spread of the pathogens [2].
However, the pathogens-laden droplets that are too heavy to remain in the air would fall
on nearby floors or surfaces, creating fomites (or contaminated surfaces) [3]. A susceptible
host touching these fomites could get infected [4]. It was found that the SARS-COV-2 virus,
for example, could survive from 24 h on cardboard to 2 days on stainless steel and wood to
even 7 days outside of surgical masks [5,6]. These findings indicate that the fomites can
represent a considerable transmission path, mainly in closed areas [7].

Surfaces in hospital rooms of infected individuals or in toilets used by COVID-19
patients were shown to be contaminated by SARS-CoV-2 virus [8]. In crowded shopping
malls, public restrooms, escalator handrails, food court trays, food court table surfaces,
and food tray handles were previously shown to be contaminated by different bacteria [9].
They can therefore be a source of infection by SARS-CoV-2 as well [10]. International
and national travel through airports is another potential source of fomite transmission.
Indeed, surface contamination with respiratory viruses (e.g., influenza A and B viruses,
respiratory syncytial virus, adenovirus, rhinovirus, and coronaviruses (229E, HKU1, NL63,
and OC43)) at multiple sites associated with high touch, high traffic, and high density areas
in Helsinki-Vantaa airport was shown recently [11], suggesting a potential risk of infection
in the identified airport sites.

Consequently, fomite disinfection in closed settings and best practice cleaning mea-
sures are recommended to prevent the spread of microbial infections. Hydrogen peroxide
(H2O2), at low concentrations (e.g., 0.5%), is known as a fast biocidal agent, including for
severe acute respiratory syndrome (SARS) coronavirus, Middle East respiratory syndrome
(MERS) coronavirus or endemic human coronaviruses (HCoV) [12], and H1N1 influenza
virus [13].

Hence, there is an increasing interest in using photocatalytic systems as nanocoatings
to disinfect surfaces, air, and water [14]. Photoactive agents such as titanium dioxide (TiO2)
loaded with metallic co-catalysts have been tested in many applications, including the
removal of organic contaminants [15]. This technology relies on the production of reactive
oxidative species (ROS) such as hydroxyl radicals, superoxide radical ions, and hydrogen
peroxide (H2O2) in response to light excitation with energy greater than the band gap of
the photoactive catalyst (see Figure 1).
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Studies revealed that ROS oxidizes the proteins, lipids, and enzymatic systems of
viruses and bacteria, leading to the loss of their function to reproduce either due to a
damaged membrane or by damaging other key proteins such as the spike protein of
SARS-CoV-2 [16]. When a pathogen comes into contact with the photocatalytic surface,
the produced ROSs such as H2O2 would attack and oxidize key proteins leading to their
inactivation [17]. To ensure the large-scale deployment of such photoactive antimicrobial
nanocoatings, additional efforts are needed to explore the possibility of replacing rare
and expensive co-catalysts such as platinum (Pt), palladium (Pd), and gold (Au) with less
expensive metals such as silver (Ag), copper (Cu) and iron (Fe).

Furthermore, the adsorbed reactants on the surface induce the rearrangement of
charges at the interface between the molecule and photocatalyst surface. Accordingly,
the nanoparticles’ composition, such as Au-Ag/TiO2 nanoparticles, determines not only
ROS generation but also ROS degradation [18–22]. Therefore, because the overall reac-
tion rate determines the efficacy of the photocatalyst, we explore the efficiency of ROS
generation and degradation rates on the surface of the photocatalysts while targeting
antimicrobial applications.

In hospitals and medical facilities, antimicrobial surfaces, specifically those coated
with copper, were shown to reduce infection rates and contamination risk [23]. Some
solid antimicrobial nanocoatings are manufactured using copper and silver and show
quasi-instantaneous bacterial inactivation [24,25], while soft antimicrobial surfaces use
silver-based compounds, triclosan, and zinc pyrithione. However, the potential risk of
toxicity with high concentration silver and copper compounds constitutes the downside of
some antimicrobial coatings [26,27]. This disadvantage calls for an accelerated material
design for new, efficient, less toxic, and less expensive technologies.

During the lab-scale search for photocatalytic materials, finding the optimal com-
position is often limited to a few tens of experiments due to the limited time and cost
of chemicals and precursors. Even when an optimal chemical composition is found, ex-
haustive rounds of lab-scale experiments are required. Delivering the conclusions with
the predictions, this work demonstrates how machine learning (ML) schemes could help
speed up the optimization and design of antimicrobial surfaces by learning then predicting
photoactive pathogen inhibitors’ activity. We propose an experiment-to-machine-learning
scheme applied to a limited experimental dataset and discuss its potential and applications.

2. From-Experiment-to-Machine-Learning Scheme
2.1. Handling Small Dataset with Machine Learning

Applying high-throughput experiments is gaining popularity to accelerate the opti-
mization and discovery of the materials [28]. However, it is still limited in scope and to
disciplines such as the pharma industry and catalysis. It often comes at the cost of installing
fully automated synthesis setups, which are not within reach of the broad experimental
community. The datasets generated during human-driven experiments vary between
5 and 20 data points resulting from a limited set of experimental conditions decided by
the researcher or based on trials and errors. As a general rule, small datasets must be
treated using low complexity models to avoid overfitting and are often well handled
using polynomial fitting techniques [29]. Still, experimentally-generated small datasets
might carry a high correlation and complexity level, requiring analysis using ML methods.
The developed model, if successful, might serve as a predictive guide to explore other
experimental conditions. In this respect, generalized additive models (GAM) are among
the recommended techniques to deal with sparse and small sample/data sizes. Its use
provides the flexibility to allow non-parametric fits with relaxed assumptions on the actual
relationship between target and input variables and provides the potential for better fits to
data than purely parametric models [30].

In this work, we train GAM models by using a small dataset reported in Ref. [31] of
H2O2 production rates via TiO2 photocatalyst loaded with different amounts of metallic
AuxAg(1-x) nanoparticle co-catalysts, where 0 ≤ x ≤ 1. Because the dataset consists of a
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small number (∼15) of entries, we build our model using three input variables, which are
the most physically and chemically relevant in this application. GAM is a generalization
of the generalized linear model (GLM) in which the relationship between some input(s)
x1, x2,· · · and xp and target Y is not linear and for which an ordinary least squares (OLS)
estimator does not capture the relationship very well. In this situation, one needs to relate
nonlinear inputs to the expected value µ = E(Y |x ) = g(x), with a non-predefined link
function g that might be appropriate. In other words, we can write the GAM structure as:

g(E(Y|x )) = β0 + s1(x1) + s2(x2) + · · ·+ sp
(

xp
)

(1)

where x1, x2, · · · , and xp are the input variables, Y is the dependent variable, E(Y) denotes
the expected value, and g(Y) is the link function summing the smooth functions (s1, s2, · · · ,
and sp), of which shapes are fully determined by the data rather than predefined parametric
functions, such as Gaussian, Poisson, or logistic. In addition, this method preserves the
interpretability showing how the different input variables contribute to the expected
value. We carried out also the GLM training, a conventional linear regression model,
to showcase the enhanced performance that could be obtained from using generalized
additive models GAM.

2.2. Dataset Preparation and ML Training

We considered the energy difference between the work function of Au-Ag nanoparti-
cles and the redox potential of O2/H2O2 [20,31–37]. (see “Mechanism of photocatalytic hy-
drogen peroxide production” in the Supplementary Information (SI)) While the reaction is
expressed as O2 + 2H+ + 2e− → H2O2 , it is understood that the reduction occurs through
either a sequential two-step single-electron indirect reduction (O2 → O•− → H2O2 ) or a
one-step two-electron direct reduction (O2 → H2O2 ) route [38,39]. Moreover, the reaction
is related to a decrease of H+ as well, and the redox potential level of O2/H2O2 is more
negative than the level of H+/H2 by 0.69 V [34]. The trapped charges in the nanoparticles
should transfer favorably to a reactant forming H2O2, while we keep the H+ oxidation reac-
tion, preventing it from the backward reaction of 2H+ + 2e− → H2 . Thus, it is challenging
to determine with confidence the key factors governing the overall reaction mechanism.
Moreover, one might need to take into consideration the adsorption of reactants on the
surface of Au-Ag nanoparticles [18–20] since adsorbed reactants on the surface induce the
rearrangement of charges at the interface between the molecule and Au-Ag nanoparticles,
hence affecting the overall reaction rate.

In this work, we use the physical properties of the photocatalytic system such as Schot-
tky barrier and work function to build a training set from a representative experimentally
reported dataset. The work function difference between ΦAuxAg(1−x)

and ΦTiO2 are the
input variables expressed as

ϕ
AuAg
B = ∆ETiO2−M = ΦTiO2 −ΦAuxAg(1−x)

(2)

and
∆EM−H2O2 = ΦH2O2 −ΦAuxAg(1−x)

(3)

where ΦH2O2 is the redox potentials of H2O2, respectively, with respect to the vacuum
level, and ΦAuxAg(1−x)

is the work function of the Au-Ag co-catalyst. The work function of
Au-Ag alloy was obtained from the geometric mean between pure metals; in the case of
AuxAg(1−x), the work function is given by:

ΦAuxAg(1−x)
= (ΦAu)

x ·
(
ΦAg

)(1−x) (4)

Turning to input variables such ∆EM−H2O2 , the values of this metric are the lowest for
pure Au nanoparticles (∆EM−H2O2 = 0.09), since the work function level is the closest to the
O2/H2O2 redox level. In contrast, for the pure Ag nanoparticles, ∆EM−H2O2 = 0.99. At the
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same time, this metric reflects the high coverage of Ag on the nanoparticle active site as the
values are significant. Thus, it represents the relative positions of work functions as well as
the proportionate coverage of adsorbed nanoparticles. We employed an additional input
variable NP for the metallic nanoparticle loading. In addition to nanoparticles loading, we
considered exp(ϕB) and exp

(
∆EM−H2O2

)
as the input variable during the GLM and GAM

model training.
In summary, the dataset uses three input variables, the amount of nanoparticle loading

NP, exp
(
ϕ

AuAg
B

)
, and exp

(
∆EM−H2O2

)
, and as target variables, the H2O2 formation rate

(kf) and decomposition rate (kd).

3. Results and Discussion

Our training dataset consists of experimentally reported data of Tsukamoto et al. [31]
for AuxAg(1−x)/TiO2 photocatalysts having as target values the formation of H2O2 and de-
composition rates (kf and kd) as well as the overall produced concentration ([H2O2]) at a few
discreet co-catalyst compositions and loadings. We used the root mean square error (RMSE)
and R2 as metrics to evaluate the accuracy of each trained model. Rather than building one
regression model for [H2O2], two separate models were built for kf and kd separately. Subse-
quently, [H2O2] is computed according to the formula [H2O2] = (kf/kd){1− exp(1− kdt)}
as in Ref. [31]. Our decision is well grounded by examining the Pearson correlation coef-
ficients, as shown in Figure S3 in the Supplementary Materials. We found a significantly
strong correlation between the input variables (NP, ∆EM−H2O2 and ∆ETiO2−M) and target
variables (kf and kd). While attempting to build a model to predict [H2O2] directly from
the experimental data, we found a negligible correlation with ∆EM−H2O2 and ∆ETiO2−M,
confirming that our adopted approach for performing two separate regressions for kf and
kd is well justified.

When comparing the accuracy of the predictive value with the GAM results, the GLM
model demonstrated a limited predictive power for the rates of H2O2, in particular for
kf prediction (see Figure S4 in the Supplementary Materials for the GLM model). The
computed R2 values of kf and kd are 0.62 and 0.75, while the errors for kf and kd values are
±0.1 mM h−1 and±0.05 h−1, respectively. Because these GLM models behave poorly when
the nonlinear correlation is dominant, the accuracy is worse when we assess the [H2O2]
production via two-step (kf/kd) computation or by simply building a GLM predictive
model for [H2O2]. GLM model gives large residual errors because it fails to capture the
non-linear relationship between the input and target. Subsequently, we moved to the
GAM method, which, as shown in the next section, demonstrates significantly improved
predictive power.

The GAM models give a higher predictive accuracy for both kf and kd, enabling
us to reproduce the experimental data within an acceptable residual error, as shown in
Figure 2a,b. The estimated RMSEs are 0.02 mM h−1 and 0.02 h−1 for kf and kd, respectively.
In other words, we reduce the RMSEs by 80% and 60% using the GAM models compared to
GLM. Interestingly, these RMSEs are of the same order of magnitude as the error estimated
during the experimental data acquisition for kf and kd, which account for ±0.03 mM h−1

and±0.02 h−1, respectively [31]. The steady state H2O2 production rate can be expressed as
[H2O2] = (kf/kd), (when t = ∞ in [H2O2] = (kf/kd){1− exp(1− kdt)}. We thus combine
the output of the GAM models we trained for kf and kd to generate a predictive model
for [H2O2].

The power of the GAM model resides in its smooth functions that represent the
attribution as a function of the corresponding input variables regardless of linear and
nonlinear relations between input and dependent variables. As such, this method is flexible.
In addition, the GAM framework controls the smooth functions to prevent overfitting by
the regularization (also called degree of freedom). Moreover, it offers the possibility to
interpret each contribution of a few input variables to the target values by plotting and
analzing the smooth functions.
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(a) production rate kf and (b) decomposition rate kd as function of the AuxAg(1–x) co-catalyst nanopar-
ticle composition and nanoparticle loading (mol %) within TiO2. Heatmap of predicted reaction rate
by GAM for (c) kf and (d) kd.

Turning to the second performance metric of the GAM model, R2 values of kf and kd
are 0.98 and 0.95 respectively, approaching unity and indicating an excellent prediction
performance. The improved GAM performance originates from the fact that its smooth
functions could express well the targets when using non-parametric means, empowering
us to capture the nonlinear impact of the nanoparticle loading and band alignments input
values on the overall H2O2 production.

The smooth functions (see Figure 3) depict the relationship between the kf (and kd)
and the input variables. The degrees of freedom for the smooth functions with respect to
nanoparticle loading are higher compared to those for exp

(
ϕ

AuAg
B

)
and exp

(
∆EM−H2O2

)
.

This fact confirms our initially assumed non-linear impact of nanoparticle loading on the
H2O2 production rates and explains why GLM performed poorly as shown earlier. Thus,
GAM models reproduce well both rates and capture their non-linear dependence on the
input variables.

Interestingly, the smooth function of kf with respect to nanoparticle loading shows
that the H2O2 production reaches its maximum when the amount of nanoparticle loading
is at NP = 0.55 (0.41 mol %). On the other hand, the H2O2 degradation rate kd reaches
its minimum when NP = 0.20 (0.09 mol %) and its maximum when no co-catalysts are
loaded, namely, when NP = 0.0. Interestingly, this implies that one could target the desired
H2O2 production for a given application guided by the results of our models by exploring
the predicted H2O2 production over the entire range of nanoparticle loading and Au-Ag
compositions. Such heatmaps of kf and kd are presented in Figure 2c,d.

Figure 4a displays the scattered and small dataset reported experimentally for pro-
duced [H2O2] at discrete Au-Ag nanoparticle loading, while Figure 4b illustrates the
calculated [H2O2] production map produced in this work. Despite a handful of data points
of experimentally reported data our calculated [H2O2] production is consistent with the
reported results: the maximum predicted [H2O2] production of 3.4 mM is recorded for
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Au0.16Ag0.84 alloy. Interestingly, we found that very high [H2O2] values could be achieved
using nanoparticle loading as small as NP = 0.1 mol %. The model predicts a high produc-
tion rate at this concentration and loading while the decomposition rate is at its minimum,
leading to an overall maximum efficiency in the [H2O2] production. Using this model, we
constructed a full landscape of the photocatalytic production of [H2O2] by varying the
nanoparticle loading and Au-Ag composition.
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Figure 4. (a) Heatmap of reported [H2O2]. (b) Heatmap of the calculated [H2O2] in this work. (c) Pair-wise comparison of the
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Figure 4c reports the RMSE and R2 of the predicted vs. real data of the H2O2 pro-
duction that achieves high accuracies in individual predictions between the observed and
produced H2O2 concentrations as indicated by R2 = 0.95, while the RMSE is as low as
0.22 mM. Therefore, the GAM models we built can capture the main trends governing
[H2O2] as a function of the properties of the metallic co-catalyst concentration in the
AuxAgy/TiO2 system.

While we probe the optimal nanoparticle incorporation, the calculated map suggests
that nanoparticles with lower loading of Au-Ag can produce H2O2 as efficiently as the
TiO2 catalyst with Au0.2Ag0.8 NP = 0.5 mol %. The H2O2 production may be sustained
by incorporating a smaller amount of Au and Ag since kd is suppressed by reducing
the loading while kf is less affected by the loading reduction. Interestingly, Yang et al.
recently reported the synthesis of the colloidal Au-Ag/TiO2, which shows an excellent
photocatalytic efficiency for the degradation of methylene blue [40]. The Au-Ag loading
ranged from 0.4 to 1.0 mol % and the maximal photoactivity was achieved by using
Au0.21Ag0.79 with NP = 0.82 mol % TiO2 catalyst. Such a high nanoparticle loading also
supports the prediction made by our model, which was kept blind to this information,
pointing out the strongest photocatalytic activity properly.

At this point, it is worth discussing whether these AuxAgy/TiO2 photocatalysts can
be used effectively as an antimicrobial surface. Disinfection of influenza virus on a steel
surface achieved a 3 log10 pathogen reduction within 15 min using 10 ppm (0.6 mM)
of H2O2 in vapor. Increasing the concentration of H2O2 to 90 ppm (5.2 mM) boosted
the pathogen reduction to 4.5 log10 [13]. On the other hand, Fenton photocatalysts used
for water treatment systems led to the degradation of dyes and pollutants in periods of
time in the range of 30–200 min when used in solution containing a H2O2 concentration
ranging from 4 mM to 90 mM depending on the used Fenton catalyst and illumination
conditions [32].

Recently, a gas-liquid-solid (G-L-S) TiO2 triphase system has been tested against the
inactivation of Klebsiella pneumoniae Gram-negative bacteria (KPN) [41,42]. The system
offered an H2O2 generation rate of 1003 ± 52 µM h−1 (∼1 mM h−1), which is 18 times
higher than its corresponding diphase system. The G-L-S TiO2 disactivated the KPN colony
concentration with the following efficiency: at 10 min, the survival ratio was quickly re-
duced to 35% and within 30 min irradiation with ultraviolet light (UV), it achieved over
99% light-triggered removal efficiency. Hence, it is possible to increase the level of H2O2
production by at least one order of magnitude by using an G-L-S triphase photocatalytic
system where the AuxAgy/TiO2 photocatalysts are immobilized on porous superhydropho-
bic substrate to ensure a maximal flow of O2 system and overcome the slow kinetics of
O2 in solution. The triphase system allows reactant O2 to reach the reaction interface
directly from the ambient atmosphere, greatly increasing the interface O2 concentration,
which in turn simultaneously enhanced the kinetics of H2O2 formation and suppresses the
unwanted electron-hole recombination and the kinetics of H2O2 decomposition reaction.

The prospects of silver-rich AuxAgy bi-metallic nanoparticles photocatalysists to
combat the spread of infection via the deployment of antibacterial coatings requires a
careful analysis of the involved reaction kinetics [43]. For instance, accordingly, we estimate
that for the efficient inactivation of enveloped viruses such as SARS-CoV-2, within 30 min,
we need a material capable of producing at least 1 mM h−1 mg−1 using O2 and H2O from
the air and releasing not more than 30 µM of H2O2. Still, it is also important to account
for various competing phenomena: (i) the affinity of the microorganism to water and to a
particular surface [44]; (ii) the competition between the microorganism, water layer on the
surfaces, and organic pollutant present in the air; and (iii) the spontaneous decomposition
rate of H2O2 → H2O + 1

2 O2 on the surface as a function of temperature and humidity.
Despite their relatively modest H2O2 production rate, AuxAgy/TiO2 photocatalysts

could be used as a sustainable and continuous source of hydrogen peroxide in hetero-
geneous Fenton catalytic systems, ensuring a controlled production of H2O2 upon illu-
mination [32]. It might find application for water and air decontamination as well as
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self-cleaning coating with the controlled release and degradation of H2O2 upon illumina-
tion, ensuring that the level of H2O2 never exceeds the internationally agreed health safety
levels (1 ppm) [45]. The plasmonic effects due to the response of Au and Ag nanoparticles to
visible light excitation are expected to increase the photocatalytic activity for AuxAgy/TiO2
photocatalysts [46]. If combining with Fenton catalysts, one might expect to broaden the
visible light absorption of the hybrid material under visible light illumination and hence
its disinfection efficiency for indoor settings.

These identified open areas of investigation are needed to deploy antimicrobial sur-
faces for the disinfection of air and fomites. While it is urgent to explore the continuous
range of chemical composition, the proposed ML-assisted approach would accelerate the
deployment of antimicrobial coatings for high-touch surfaces as a promising route to miti-
gate the viral and bacterial transmission via fomites and possibly via aerosol by coating air
conditioning and air cleaning filters.

4. Conclusions

Combining concepts from materials science, electrochemistry, and device physics
with machine learning, we built a scheme to accelerate the estimation of reactive oxidative
species (ROS) production and decomposition rates induced by photocatalytic materials
upon illumination. The model built in this work can predict ROS production rates while
scanning the entire range of all possible compositions and properties of the photocatalytic
system, a task impossible to achieve experimentally. It also offers the possibility to estimate
the self-degradation of H2O2 to enable its level to be kept within safe ranges. If tailored
adequately, we estimate that the photocatalytic system proposed in this work could be
efficient for the continuous inactivation of bacteria and possibly viruses. In addition,
the proposed composition would give a balanced production of reactive oxygen species
(ROS) upon controlled illumination, offering an opportunity for continuous disinfection of
water, surfaces, and air, facilitating its integration in indoor environments such as offices,
buildings, offices, malls, and airports.

The strategy we present in this work is adaptable to different concentrations and
compositions of photoactive materials, which are relevant under experimental conditions
but unreachable using conventional calculations. Our experiment-to-machine-learning
scheme can be challenged in lab conditions with more data on the baseline materials as
well as the novel materials, taking into consideration the cost and abundance of materials
associated with a large-scale deployment of this solution.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11081001/s1, Figure S1. Schematic illustration of band-energy alignments of semiconductor/
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between the experimental and GLM-predicted values for the models.
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