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Abstract: Nanoparticles have the advantage of a superior surface area to volume ratio, and thus
such materials are useful for enzyme immobilization. A silver nanoparticle coated cotton fabric
(AgNp-CF) is used to immobilize camel liver catalase in the present work. The effect of loading
levels of AgNp inside cotton fabrics on the immobilization of catalase was investigated. The results
revealed that a 6 mL loading level of AgNp precursor (silver nitrate, 2 mM) at pH 8 showed the
maximum immobilization efficiency (76%). The morphological properties of the cotton fabric (CF),
AgNp-CF and AgNp-CF-catalase were characterized by SEM. The reusability of the immobilized
enzyme was tested over ten reuses to show a 67% retained function of its initial activity. Compared
with the soluble enzyme’s working pH (6.5), a rather broader working pH (6.5–7.0) was observed
for the immobilized catalase. Additionally, the optimum working temperature increased from 30
for the soluble enzyme to 40 ◦C for the immobilized one, indicating thermal stability. The free
and immobilized catalase enzyme’s Km values were 22.5 and 25 mM H2O2, respectively, reflecting
the enzyme’s effective properties. The inhibitory effect of metal ions on the enzyme activity was
higher toward soluble catalase than the immobilized catalase. This work has developed a method for
immobilizing catalase to be useful for several applications.

Keywords: catalase; nanosilver; cotton; immobilization

1. Introduction

Catalase is an enzyme that catalyzes the decomposition of H2O2 [1–3]. Catalase is
widely produced by various microbes, plants, and animals, and as such, it protects the living
cells from the toxicity of H2O2 [4]. Catalase has found different applications in food science,
food production and medical fields [5–7]. It is also used to decompose residual H2O2 after
the bleaching process of textile fabrics [8,9]. The large scale and/or industrial application
of enzymes necessitate their immobilization onto a solid support. The immobilized en-
zyme has several advantages over the free one, such as easier recovery and purification,
enhanced stability, protection and reduced contamination [10]. Enzymes as fragile proteins
have been immobilized by several techniques including, adsorption [11,12], covalent bind-
ing [13], entrapment [14], encapsulation [15,16], and electrochemical polymerization [17,18].
Many supports have been used such as chitosan [19,20], nanodiamond [21], polyethylene
terephthalate [22], polyketone [23], wool [24], PPyAgNp/Fe3O4-nanocomposite [25] and
starch [26]. Specifically, catalase immobilization onto different solid supports such as
chitosan, collagen, fibers, inorganic oxides [27–29] and others, have been pursued [30–32].

A recent report on catalase immobilization on silk fibroins has been published [33].
The solid support for enzyme immobilization should fulfil some essential characteristics
such as water insolubility with a sufficient surface area and less negative impact on the
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enzyme activity [34]. These characteristics are nicely met with AgNp-CF as solid support.It
was hypothesized that the in situ formed AgNp inside cotton fabrics would furnish a
suitable solid support for the successful immobilization of catalase enzyme via Ag-catalase
bindings. Therefore, camel liver catalase was immobilized on AgNp-CF in this study.

2. Results and Discussion

It was envisioned that silver-nano-coated cotton fabric made by in situ reduction of
silver nitrate [35,36] would furnish a good solid support amenable for enzyme immobiliza-
tion by virtue of its content of AgNp. Accordingly, different loading levels of AgNp were in
situ formed using different volumes (mL) of the precursor (silver nitrate, 2.5 mM). Different
pHs (5, 7, 8) were also studied for the immobilization of catalase. The results (Table 1)
revealed that a 6 mL loading level of AgNp at pH 8 showed the maximum immobilization
efficiency (76%). The lowest efficiency of immobilization of catalase was observed at 1 and
9 mL loading levels of AgNp and at pH 5. Such a result of low immobilization efficiency at
a high loading level of AgNp could be refer to the increased binding sites of the enzyme
with AgNp-CF, which led to a change in the enzyme stereochemical configuration. At a
low concentration of AgNp, the rate of immobilization of catalase is attributed to the low
content of AgNp, which binds to the enzyme. On the other hand, the concentration effect
of enzyme on its rate of immobilization was studied at the optimum conditions (pH 8.0
with 6 mL AgNp precursor) of the immobilization process. Figure 1 shows that the enzyme
activity increased with increasing its concentration till 20 units/g AgNp-CF (60% relative
activity), which remained stable up to 25 units/g AgNp-CF. The low residual activity
percentage at a lower enzyme concentration could be due to the concentration effect.

Table 1. Effect of different AgNp loading level (volume from silver nitrate precursor, 2.5 mM) per
0.3 g cotton fabric and different pH’s on the immobilization efficiency of catalase.

AgNp Loading Level (mL)
Immobilization Efficiency%

pH 5.0 pH 7.0 pH 8.0

0 4 ± 0.12 4.6 ± 0.13 5.1 ± 0.11
1 8.6 ± 0.23 9.1 ± 0.3 10.5 ± 0.33
3 14.3 ± 0.32 15.5 ± 0.34 20 ± 0.48
6 53 ± 1.60 62 ± 1.80 76 ± 2.20
9 27 ± 0.42 28.7 ± 0.65 31 ± 0.81
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Figure 1. The influence of enzyme concentration on the rate of immobilized catalase. 

The morphology of the CF, AgNp-CF and AgNP-CF-catalase samples are shown in 
Figure 2. As evidence of the loading success of AgNp onto cotton fabric and its enzyme 
immobilized form, the morphological changes were assessed using SEM. Figure 2 shows 
the morphological changes for samples A (blank), B (6 mL sample AgNp coated fabric), 
and C (catalase immobilized onto 6 mL sample AgNp coated fabric). It is clearly observed 
that sample A appeared as a smooth surface and became dotted with AgNp after being 
coated with a 6 mL loading level. Upon enzyme immobilization, the dots became covered 
with the enzyme that appeared as small aggregates. 

The advantage of enzyme immobilization in terms of its reusability was assessed. 
The support was thoroughly washed with water after each reuse. In Figure 3, over ten 
reuses and the results indicated a 67% retention of its initial activity. Similar results of 
reusability of immobilized catalases were determine [37,38]. The reduction of the activity 
after each reuse is due to the assay conditions [39,40]. 
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The morphology of the CF, AgNp-CF and AgNP-CF-catalase samples are shown in
Figure 2. As evidence of the loading success of AgNp onto cotton fabric and its enzyme
immobilized form, the morphological changes were assessed using SEM. Figure 2 shows
the morphological changes for samples A (blank), B (6 mL sample AgNp coated fabric),
and C (catalase immobilized onto 6 mL sample AgNp coated fabric). It is clearly observed
that sample A appeared as a smooth surface and became dotted with AgNp after being
coated with a 6 mL loading level. Upon enzyme immobilization, the dots became covered
with the enzyme that appeared as small aggregates.
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The advantage of enzyme immobilization in terms of its reusability was assessed. The
support was thoroughly washed with water after each reuse. In Figure 3, over ten reuses
and the results indicated a 67% retention of its initial activity. Similar results of reusability
of immobilized catalases were determine [37,38]. The reduction of the activity after each
reuse is due to the assay conditions [39,40].
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The solid supports for enzyme immobilization could have a large multi-crosslink-
ings, which maintained the structure of enzyme from any change of pH and temperature 
[41,42]. This immobilization effect can also be manifested by studying the influne of pH 
on its activity compared with its free form. Thus, the assessment was made pH’s 4.0–8.5 
(Figure 4). The pH was changed from 6.5 for free form to broad pH at 6.5–7.0 for immobi-
lized form. The free catalase and immobilized on bentonite-cysteine (Bent-Cys) microcom-
posite had optimum pH at 7.0 [43] and increased to pH 7.5 using chi-
tosan/ZnO/Fe2O3nanocomposite [27]. 

4 5 6 7 8 9
30

40

50

60

70

80

90

100

110  Soluble
 Immobilized 

R
el

at
iv

e a
ct

iv
ity

 %

pH  
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The influence of temperature on catalase activity is appeared in Figure 5. The opti-
mum working temperature increased from 30 for free enzyme to 40 °C for the immobi-
lized one. The immobilized catalase on terpolymer (acrylonitrile, acrylic acid, and vinyl 
porphyrin) was 35 °C, and 25 °C for free catalase [43,44]. The thermal stability study was 
shown in Figure 6. The soluble form and the immobilized form were steady up to 30 and 

Figure 3. Reuse of immobilized catalase in assay.

The solid supports for enzyme immobilization could have a large multi-crosslinkings,
which maintained the structure of enzyme from any change of pH and temperature [41,42].
This immobilization effect can also be manifested by studying the influne of pH on its activ-
ity compared with its free form. Thus, the assessment was made pH’s 4.0–8.5 (Figure 4). The
pH was changed from 6.5 for free form to broad pH at 6.5–7.0 for immobilized form. The
free catalase and immobilized on bentonite-cysteine (Bent-Cys) microcomposite had opti-
mum pH at 7.0 [43] and increased to pH 7.5 using chitosan/ZnO/Fe2O3nanocomposite [27].
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The influence of temperature on catalase activity is appeared in Figure 5. The optimum
working temperature increased from 30 for free enzyme to 40 ◦C for the immobilized one.
The immobilized catalase on terpolymer (acrylonitrile, acrylic acid, and vinyl porphyrin)
was 35 ◦C, and 25 ◦C for free catalase [43,44]. The thermal stability study was shown in
Figure 6. The soluble form and the immobilized form were steady up to 30 and 40 ◦C,
respectively. In contrast, the same thermal stability of the free catalase or reduced graphene
oxide–Fe3O4/catalase was detected [45]. The high thermal stability of the immobilized
enzyme referred to multipoints of enzyme on the bear [46]. The thermal steady of the
enzymes is required for industrial applications [47].
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The free and immobilized catalase enzymes’ Km values (Figure 7) were 22.5 and
25 mM H2O2, respectively, reflecting the enzymes’ effective properties. The values of Vmax
of soluble catalase and immobilized catalase were 1.4 and 0.69 units/mL, respectively.
Furthermore, the ratio Vmax/Km of the soluble catalase and the immobilized one were
0.062 and 0.027, respectively, where free catalase had more affinity toward substrate. This
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affinity difference is a kind of regulation for the immobilized enzyme activity due to the
uneasy accessibility of its active sites by the substrate. In other words, immobilization of
the enzyme could impose some structural orientation, which lowers its affinity toward the
substrate. A similar study was reported by Alptekin et al. [48]. On the other hand, the
Km of the catalase was significantly smaller upon immobilization on magnetic polymeric
nanospheres [49].
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The inhibitory effect of metal cations on the enzyme activity is shown in Table 2.
Generally, the inhibitory effect was higher toward soluble catalase than the immobilized
one. For example, Cu2+ enhanced the activity of the immobilized catalase without affecting
the soluble one. Co2+, however, decreased the activity of soluble catalase without affecting
the immobilized one. The other metal ions tested (Cd2+, Ni2+, Zn2+ and Hg2+) had a more
inhibitory effect toward the soluble catalase compared to the immobilized catalase. In the
contrast, Cu caused an inhibitory effect on the catalase immobilized onto chitosan [37].

Table 2. The effect of 5 mM metal cations on the soluble and the immobilized catalase.

Metal
Ion

Relative Activity%

Soluble Catalase Immobilized Catalase

Control 100 100
Cu2+ 95 130
Co2+ 79 95
Cd2+ 65 85
Ni2+ 45 62
Zn2+ 27 46
Hg2+ 15 32

3. Materials and Methods
3.1. Camel Liver Catalase

Camel liver catalase was previously purified and characterized [50].

3.2. Catalase Assay

The activity of catalase was detected based on procedure of Bergmeyer [51]. The one
ml assay includes 25 mM H2O2 and suitable amount enzyme, which adjusted at pH 7 by
used 75 mM sodium phosphate buffer. The decrease in absorbance 0.1 at 240 nm during
1 min is considered one unit.
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3.3. Preparation of Silver Nanoparticles-Cotton Fabric

Mill-scoured and bleached cotton fabric (130 g/m2) was obtained from Misr El-Mehala
Co. (El-Mehala, Egypt). The in situ formed AgNp were made following our previously
reported method [35,36]. Typically, four loading levels of silver nanoparticles on the
cotton fabric were made using four volumes (1, 3, 6, 9 mL) of silver nitrate 2.5 mM
per 0.3 g fabric. Four equal pieces of wetted cotton fabric (0.3 g) were introduced in a
loading bath containing a certain amount of silver nitrate, as mentioned above. Then
cetyltrimethylammonium bromide (CTAB) (1 mL, 0.5 mM) and glucose (5 mL, 2.5 mM)
were added, and the mixture was shaken, then sodium hydroxide (5 mL, 25 mM) and a
certain amount of water were added to complete 20 mL of the batch, and the mixture was
shaken for a further 20 min at 50 ◦C. The loading bath was drained, and the coated samples
were thoroughly rinsed with water and air-dried.

3.4. Procedure of Immobilization

The immobilization procedure was done by immersion of camel liver catalase with
AgNp-CF at different pH’s for 12 h. The liquid solution was decanted and the support
was dried at room temperature. The immobilization efficiency % was detected from
this formula:

Immobilization efficiency% = units of immobilized enzyme/units of initial
enzyme × 100

(1)

3.5. Morphology Characterization

The SEM of AgNp-CF-catalase was investigated by electron microscope (Quanta FEG
450, FEI, Amsterdam, The Netherland).

3.6. The Reuse of AgNp-CF-Catalase

The reusability of AgNp-CF-catalase was evaulated by reuse the assay several times.
The first detection of catalase was considered as 100%. The activity of each reuse was
considered as remaining catalase.

3.7. Enzyme Characterization

The Kinetic studies of enzyme including Km and Vmax were detected using Lineweaver-
Burk plot. The effect of temperature (30–80 ◦C) and pH (4–9) on enzyme activity was
determined.

3.8. Effect of Metal Ions

The effect of metal cations on enzyme activity was determined by incubation of
enzyme with metal cations for 15 min before adding H2O2. The assay without metal
cations was considered 100% activity.

4. Conclusions

In this study the presence of AgNp inside cotton fabrics would facilitate the immo-
bilization of a catalase enzyme via Ag-catalase bindings. The results showed that the
immobilized catalase by AgNp-cotton fabric improved its resistance toward pH, heat and
metal ions. Therefore, the immobilized catalase could be used for several applications.
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