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Abstract: Quantitative structure–property relationship (QSPR) modeling is performed to investigate
the role of cycloalkyl-fused rings on the catalytic performance of 46 aryliminopyridyl nickel precat-
alysts. The catalytic activities for nickel complexes in ethylene polymerization are well-predicted
by the obtained 2D-QSPR model, exploring the main contribution from the charge distribution of
negatively charged atoms. Comparatively, 3D-QSPR models show better predictive and validation
capabilities than that of 2D-QSPR for both catalytic activity (Act.) and the molecular weight of the
product (Mw). Three-dimensional contour maps illustrate the predominant effect of a steric field on
both catalytic properties; smaller sizes of cycloalkyl-fused rings are favorable to Act.y, whereas they
are unfavorable to Mw. This study may provide assistance in the design of a new nickel complex
with high catalytic performance.

Keywords: catalytic activity; cycloalkyl-fused derivatives; ethylene polymerization; nickel com-
plexes; quantitative structure–property relationship

1. Introduction

Since the pioneering report of α-diimino-nickel precatalysts toward ethylene oligo-
/polymerization in the middle of 1990s [1], numerous developments have been witnessed
in the design and synthesis of nickel complex catalysts, showing their impact on a wide
range of catalytic properties, such as catalyst activity, molecular weight, and the distribution
of the produced oligomer/polymer [2,3]. In recent years, our group and others reported
aryliminopyridyl nickel precatalysts with the incorporation of cycloalkyl-fused rings as
compatible N,N-ligand frames. The fused rings rang from small sizes, like cyclopentyl
and cyclohexyl, to bigger sizes, such as cycloheptyl and cyclooctyl, as in Scheme 1. All of
these derivatives exhibit good activities in ethylene oligo-/polymerization and produce
polyethylenes of generally low molecular weight [4,5]. Their specific properties show
dependence on the fused ring size and the electronic and steric effects of the substituents.
Even though the empirical information on variation trends can be obtained and provide
useful guidance for experiments, it is more meaningful to explain the principle underlying
the improved catalytic performance through a modeling method at the molecular level.
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Scheme 1. Structures of the initial data set for 46 nickel complex precatalysts along with their catalytic activities and mo-
lecular weight of produced polyethylene under the optimum conditions. a, 106 g·mol−1·h−1, b, g·mol−1. 

Quantitative structure–activity/property relationship (QSA/PR) modeling is an ap-
proach to build the quantitative relationship between the structure of a catalyst and its 
activity and/or property, through the key structural descriptors within the catalyst. This 
method has been mainly proposed for the field of drug design and has already proven a 
powerful tool. However, its application in the polyolefin catalyst is relatively limited. Re-
garding the field of polyolefin catalysts, QSPR has been performed to predict the catalytic 
activities and molecular weight of polyethylene by the metallocene complexes [6,7], 
bis(imino)pyridine iron complex systems [8], and aryliminopyridyl metal complexes 
[9,10]. Furthermore, by using the chemically meaningful descriptors, such as buried vol-
ume, the free energy of reactions are predicted for ansa-metallocenes catalysts towards 
propene polymerization and ethene/1-hexene copolymerization [11–14]. Recently, QSPR 
modeling was applied to investigate the role of cycloalkyl-fused rings within 
bis(imino)pyridine (Fe, Co, Cr) complexes on their catalytic performance [15]. The ob-
tained results indicate the dominant role played by the conjugated degree in complexes 
on the catalytic activities.  

However, this finding is not applicable for nickel complexes. As shown in Scheme 1, 
the introduction of a benzene ring in the aryliminopyridyl framework (category D) does 
not enhance the catalytic activities; on the contrary, their activities are lower by about ten 
times than that the analogues without a benzene ring (category C). It means that, although 
the ligands of the complexes are similar, the effects of a cycloalkyl-fused ring on the cata-
lytic performance are varied, affected by the change of different central metal atoms and 
the framework of ligands. Therefore, it is necessary to further investigate the nickel system 
to detect the role of the cycloalkyl-fused ring on the corresponding catalytic performance. 

Scheme 1. Structures of the initial data set for 46 nickel complex precatalysts along with their catalytic activities and
molecular weight of produced polyethylene under the optimum conditions. a, 106 g·mol−1·h−1, b, g·mol−1.

Quantitative structure–activity/property relationship (QSA/PR) modeling is an ap-
proach to build the quantitative relationship between the structure of a catalyst and its
activity and/or property, through the key structural descriptors within the catalyst. This
method has been mainly proposed for the field of drug design and has already proven
a powerful tool. However, its application in the polyolefin catalyst is relatively limited.
Regarding the field of polyolefin catalysts, QSPR has been performed to predict the cat-
alytic activities and molecular weight of polyethylene by the metallocene complexes [6,7],
bis(imino)pyridine iron complex systems [8], and aryliminopyridyl metal complexes [9,10].
Furthermore, by using the chemically meaningful descriptors, such as buried volume, the
free energy of reactions are predicted for ansa-metallocenes catalysts towards propene
polymerization and ethene/1-hexene copolymerization [11–14]. Recently, QSPR modeling
was applied to investigate the role of cycloalkyl-fused rings within bis(imino)pyridine (Fe,
Co, Cr) complexes on their catalytic performance [15]. The obtained results indicate the
dominant role played by the conjugated degree in complexes on the catalytic activities.

However, this finding is not applicable for nickel complexes. As shown in Scheme 1,
the introduction of a benzene ring in the aryliminopyridyl framework (category D) does
not enhance the catalytic activities; on the contrary, their activities are lower by about
ten times than that the analogues without a benzene ring (category C). It means that,
although the ligands of the complexes are similar, the effects of a cycloalkyl-fused ring
on the catalytic performance are varied, affected by the change of different central metal
atoms and the framework of ligands. Therefore, it is necessary to further investigate the
nickel system to detect the role of the cycloalkyl-fused ring on the corresponding catalytic
performance. In this work, we subsequently apply both 2D- and 3D-QSPR methods to the
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nickel analogue complexes to explore the variation mechanism caused by the different sizes
of cycloalkyl-fused rings. 2D-QSPR modeling obtains the predictive model for catalytic
activities. Through the analysis of selected descriptors, it was found that the charge
distribution of net charged atom plays the dominant role, which is different from the
results of cycloalkyl-fused aryliminopyridyl Fe/Co analogues, where the dominant role is
played by the number of aromatic bonds. Meanwhile, the 3D-QSPR modeling reveals the
important effect of steric fields in the models of both catalytic activity and molecular weight,
which is in agreement with previous works [10,15]. An exception to this agreement is that
the favorable areas are different. It indicates that, depending on the analogue complexes
with different central metal atoms, the cycloalkyl-fused ring play different roles in the
catalytic performance.

2. Results and Discussions
2.1. 2D-QSPR Modeling

In order to build the quantitative relationship between the structure of a complex and
its catalytic performance, the descriptors are first calculated and selected for the model.
Then, four parameters including correlation coefficient (R2), the root mean square error of
the fitted data (RMSEF), the cross-validation coefficient (Q2), and the root mean squared
error of cross-validation (RMSEV) are calculated and listed Table 1 to validate the stability
and predictive power of the model. Additionally, the value of A means the number of
components. As shown in Table 1, based on the VIP-PLS analysis, the number of descriptors
gradually decreased from 63 to 22 and 12 to 5. An acceptable 2D-QSPR model should
have higher R2 and Q2 values, as well as lower values of RMSEV/RMSEF under a smaller
number of descriptors. Therefore, a set of 12 descriptors is selected as the optimum number
of independent variables.

Table 1. The values of the R2, Q2, RMSEF, and RMSEV for the 2D-QSAR model for catalytic activity
at different numbers of descriptors.

No. A R2 Q2 (k = 5) RMSEF RMSEV

63 6 0.9211 0.5810 0.6390 0.2772
22 5 0.8770 0.6892 0.5503 0.3461
12 5 0.8755 0.7328 0.5103 0.3483
5 2 0.7363 0.6731 0.5644 0.5069

The triangle matrix is plotted to show the correlation between each pair of descriptors,
indicating their independent nature as in Figure 1. The specific values of each descriptor
are summarized in Table S1 for each Ni complex.

To build and validate the QSPR model, the training and test sets are selected from the
whole data by the Kennard-Stone method [16]. As given in Table S2, the combination of
29 complexes as a training set and 10 complexes as a test set is regarded as optimum. The
correlation coefficients (R2) for the training set and test set are 0.892 and 0.814, respectively.
The cross-validation coefficient (Q2) is 0.697, indicating the acceptable prediction and
validation capabilities of the model. Comparatively, the R2 values are not as high as in
previous reports [9,10,15]. The reason might be the selection of model complexes, which
not only vary in the sizes of the cycloalkyl-fused rings, but also vary in the presence of alkyl
substituents on the fused ring, such as categories D and E in Scheme 1. The comparisons of
experimental and predicted catalytic activities are plotted in Figure 2. The specific values
of predicted catalytic activities for each complex are given in Table S3.
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In order to interpret the obtained model, detailed information on the selected
12 descriptors is listed in Table 2. Besides the R2 values of each descriptor in the fit-
ting model, the contribution values to catalytic activities are also calculated and listed
together. The descriptors were ranked from higher to lower according to their contribution
values to catalytic activity. The explanations focus on the descriptors exhibiting higher
contributions. It is clear that among all the selected descriptors, the minimum partial
charges on a C atom (No.2), present the biggest contribution to the catalytic activities, with
the value of 29.17%. This electrostatic descriptor describes the characteristics of the charge
distribution of C atoms, showing that the minimum charge values on carbon atoms present
largely positive correlations with catalytic activity.
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Table 2. Regression coefficients and the contribution of each molecular descriptor in the final model.

No. Molecular Descriptor Coeff. Contr.(%)

2 Min partial charge for a C atom [Zefirov’s PC] 0.7854 29.17
3 WNSA-3 Weighted PNSA (PNSA3*TMSA/1000) [Zefirov’s PC] 0.6168 17.38
9 HA dependent HDCA-2/TMSA [Quantum-Chemical PC] −0.3804 12.74

12 Min valency of a H atom −0.2534 9.21
11 Avg valency of a N atom 0.4056 9.15
10 Max SIGMA-SIGMA bond order 0.1834 5.47
8 WNSA-3 Weighted PNSA (PNSA3*TMSA/1000)[Quantum-Chemical PC] 0.1593 5.32
1 Average Information content (order 2) 0.1381 3.85
6 Max 1-electron react. index for a C atom 0.1501 3.59
5 Max electroph. react. index for a C atom 0.0899 3.29
7 FNSA-2 Fractional PNSA(PNSA-2/TMSA)[Quantum-Chemical PC] −0.0123 0.44
4 HOMO–LUMO energy gap −0.0141 0.40

Following the highest contribution to activity, the second and third highest contrib-
utors are descriptors No.3 and No.9, with the values of 17.38% and 12.74%, respectively.
These two descriptors are classified as the charged partial surface areas (CPSA) descrip-
tors [17,18], in which the No.3 descriptor is calculated by Equation (1):

WNSA3 =
PNSA3
TMSA

=
(

∑a− q−a × SA−a
)

/TMSA (1)

where q−a is the partial charge for the ath negatively charged atom, SA−a is the surface
area contribution of this ath atom, and TMSA is the total molecular solvent-accessible
surface area. For the model complexes, the negatively charged atoms usually refer to
halogen, nitrogen, and part of the carbon atoms. Therefore, this descriptor roughly reflects
the charge distribution of these negatively charged atoms. Similar to descriptor No.2,
descriptor No.3 presents a positive contribution to catalytic activities as well, due to the
fact that the minimum partial charge on the C atom is usually negative.

The No.9 descriptor is a parameter to describe the area-weighted surface charge of
H-bonding donor H atoms, which is defined by Equation (2):

DCA2 = ( ∑
D

qD
√

SD√
Stot

), D ∈ HH−donor (2)

where SD is the solvent-accessible surface area of H-bonding donor H atoms, qD is the
partial charge on H-bonding donor H atoms, and Stot is the total solvent-accessible molec-
ular surface area. This descriptor shows the charge distribution on the H atoms and the
interaction of hydrogen bonding. Different from the No.2 and No.3 descriptors, the No.9
descriptor has a negative correlation with catalytic activities, due to the generally positive
charge of the H atoms.

These three electrostatic descriptors, reflecting the charge distribution on negatively
charged atoms and H-bonding donor H atoms, provide around 60% of the contribution
to catalytic activities, showing the dominant role of the net charge of negatively charged
atoms on catalytic activities.

For the remaining descriptors, their explanations are briefly provided in the Support-
ing Materials.

2.2. 3D-QSPR Modeling

Different from the 2D-QSPR method, 3D-type builds the quantitative relationship
based on the steric fields and electrostatic fields of ligands at the three-dimensional lattice.
After modeling, the calculated values of the catalytic activity and molecular weight of the
product are obtained and compared with the experimental data, as shown in Figure 3. The
training and test sets are the same as those used in the 2D type. The detailed predicted
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values of the catalytic activity and molecular weight of the product for each complex are
given in Tables S4 and S5, respectively.

Catalysts 2021, 11, 920 6 of 12 
 

 

action of hydrogen bonding. Different from the No.2 and No.3 descriptors, the No.9 de-
scriptor has a negative correlation with catalytic activities, due to the generally positive 
charge of the H atoms.  

These three electrostatic descriptors, reflecting the charge distribution on negatively 
charged atoms and H-bonding donor H atoms, provide around 60% of the contribution 
to catalytic activities, showing the dominant role of the net charge of negatively charged 
atoms on catalytic activities.  

For the remaining descriptors, their explanations are briefly provided in the Support-
ing Materials.  

2.2. 3D-QSPR Modeling  
Different from the 2D-QSPR method, 3D-type builds the quantitative relationship 

based on the steric fields and electrostatic fields of ligands at the three-dimensional lattice. 
After modeling, the calculated values of the catalytic activity and molecular weight of the 
product are obtained and compared with the experimental data, as shown in Figure 3. The 
training and test sets are the same as those used in the 2D type. The detailed predicted 
values of the catalytic activity and molecular weight of the product for each complex are 
given in Tables S4 and S5, respectively. 

 
Figure 3. Experimental catalytic activities (a) and molecular weight (b) versus the predicted values by 3D-QSPR model for 
the training set and test set. 

Regarding the model of catalytic activity, the correlation coefficient values for the 
training set (r2) and test set (rt2) are 0.830 and 0.889, respectively, as shown in Figure 3a. 
Meanwhile, the cross-validation coefficient (q2) value is 0.692, indicating the good predic-
tive and validated capabilities of the model. The contributions for steric and electrostatic 
fields are calculated with values of 87.3% and 12.7%, respectively, indicating the predom-
inant role of steric fields on catalytic activity. As to the model of molecular weight, quan-
titative results are obtained as in Figure 3b. The correlation coefficients (r2, rt2) for the train-
ing and test sets are 0.950 and 0.893, respectively, and the q2 value is 0.787. Comparatively, 
the predictive and validated powers are higher than that of the model for catalytic activity. 
The decisive effect on molecular weight comes from the steric field, with an overwhelming 
contribution of 89.1%.  

Since the dominant role is played by the steric effect in the models of both catalytic 
activity and the molecular weight of the product, only the 3D contour maps of steric fields 
are shown in Figure 4. The iso-surface values are the result of the multiplication of the 
standard deviation (StDev) of energy by the PLS coefficient (Coeff), providing an approx-
imate location to explain the selective areas about its structure-performance relationship. 
Regarding the 3D contour map of the steric field for catalytic activity, as shown in Figure 

Figure 3. Experimental catalytic activities (a) and molecular weight (b) versus the predicted values by 3D-QSPR model for
the training set and test set.

Regarding the model of catalytic activity, the correlation coefficient values for the
training set (r2) and test set (rt

2) are 0.830 and 0.889, respectively, as shown in Figure 3a.
Meanwhile, the cross-validation coefficient (q2) value is 0.692, indicating the good predictive
and validated capabilities of the model. The contributions for steric and electrostatic fields
are calculated with values of 87.3% and 12.7%, respectively, indicating the predominant
role of steric fields on catalytic activity. As to the model of molecular weight, quantitative
results are obtained as in Figure 3b. The correlation coefficients (r2, rt

2) for the training
and test sets are 0.950 and 0.893, respectively, and the q2 value is 0.787. Comparatively, the
predictive and validated powers are higher than that of the model for catalytic activity.
The decisive effect on molecular weight comes from the steric field, with an overwhelming
contribution of 89.1%.

Since the dominant role is played by the steric effect in the models of both catalytic
activity and the molecular weight of the product, only the 3D contour maps of steric
fields are shown in Figure 4. The iso-surface values are the result of the multiplication
of the standard deviation (StDev) of energy by the PLS coefficient (Coeff), providing
an approximate location to explain the selective areas about its structure-performance
relationship. Regarding the 3D contour map of the steric field for catalytic activity, as shown
in Figure 4a, the green areas represent the positive effect of the bulky group, meaning the
introduction of a bulky group in this region enhances the catalytic activity. Yellow areas,
on the contrary, represent the negative effect of the bulky group. Clearly, we can see that
the green areas are mainly located around the halogen atoms, and the yellow areas are
surrounded on the upper side of the cycloalkyl-fused ring. This indicates that bigger, bulky
steric substituents surrounding halogen atoms are favorable for catalytic activity, whereas
a larger size of cycloalkyl-fused ring and/or bigger hindrance groups on the fused ring
are unfavorable factors. As in Scheme 1, complexes in category D have propyl groups as
substituents on the cyclohexane-fused ring and aryl-fused rings as substituents on pyridine;
as a result, the catalytic activities for this category are lower than that of category C. This
can be explained as: bigger steric groups on the frame work decrease the freedom degree
of a complex and make its molecule rigid. As a result, the insertion reaction between the
ethylene monomer and the central metal is hindered during coordinated polymerization,
leading to the decrease in catalytic activity.
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The opposite of the results for the catalytic activities, the 3D contour map of steric
fields for molecular weight show a completely different trend. It is clear in Figure 4b
that green areas are located at the upper side of the cycloalkyl-fused ring, indicating that
larger cycloalkyl-fused members and/or bulky substituents on the fused ring are favorable
factors. This is because the highly crowded aniline group reduces the space and the rotation
freedom surrounding the active site so that the monomer insertion can only occur from
one side. Then, the β-H elimination is inhibited, resulting in highly linear polymers with a
high molecular weight.

Comparing the 2D- and the 3D-QSPR, it is clear that the 3D type provides better
predictive and validation capabilities for each catalytic property, due to the more exact and
detailed information of spatial descriptors provided by the 3D type. Additionally, for the
models of both catalytic activity and molecular weight, 3D results show that the steric field
plays a dominant role. The favorable areas with respect to catalytic activity usually turn
out to be the unfavorable areas for the molecular weight of the product.

3. Computational Methods
3.1. Data Set

A data set of 46 cycloalkyl-fused aryliminopyridyl nickel complexes is initially selected
from previous experimental works [19–25]. As in Scheme 1, the structures of complexes
include five categories with different membered fused rings within the framework. The
10-aryliminocycloocta[b]pyridylnickel bromides (category A) are synthesized from the re-
actions of Cycloocta[b]pyridin-10-one imino derivatives with (DME)NiBr2 [19]. Regarding
category B, the 9-(2-Cycloalkylphenylimino)-5,6,7,8-tetrahydrocycloheptapyridylnickel com-
plexes are found from the condensation reactions of 5,6,7,8-tetrahydrocycloheptapyridine-9-
one with various anilines [20,25]. As to category C, N-(2-substituted-5,6,7-trihydroquinolin-
8-ylidene)-arylaminonickel(II) dichlorides (complex 17–26, Scheme 1) are synthesized by
the one-pot stoichiometric reaction of nickel dichloride, 2-chloro- or 2-phenylsubstituted
5,6,7-trihydroquinolin-8-one, and the corresponding anilines [21]. Subsequently,
the 8-(2-cycloalkylphenylimino)-5,6,7-trihydroquinoline derivatives react with
(DME)NiBr2 or NiCl2 to form the corresponding cycloalkyl-substituted 8-arylimino-5,6,7-
trihydroquinolylnickel halides (complexes 27–32, Scheme 1) [22]. Propyl substituted 4-
arylimino-1,2,3-trihydroacridylnickel dihalide complexes (category D) are prepared by the
metal-induced template reaction with NiCl2.6H2O or (DME)NiBr2 [23]. As with category B,
the category E complexes are synthesized from the condensation of 2-chloro-6,6-dimethyl-
cyclopenta[b]pyridin-7-one with the corresponding aniline [24]. The observed catalytic
activities and the molecular weight of the products are also listed in Scheme 1, which
are taken under optimum conditions [15]. This is because the ethylene polymerization
reaction actually takes place after the precatalyst is activated into the active species, and
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optimum conditions guarantee that all the precatalysts can be activated. The detailed
optimum conditions are listed in Table S6 for each complex. By Hoteling’s T2 method [26]
in principle component analysis (PCA) [27], seven complexes (6, 7, 9, 10, 13, 18, and 19)
are identified as outliers and removed. Further analyses are conducted on the rest of the
39 complexes.

3.2. QSPR Modeling

Based on the methodology discussed in previous reports [9,10,15], a brief introduction
of 2D- and 3D-QSPR is described as follows. Regarding the 2D type, firstly, the geometry is
optimized for each complex by density functional theory (DFT) calculations through the
Dmol3 program [25]. GGA-type BP exchange-correlation functional [28–30] and double-
numerical basis sets with polarization functions (DNP) basis sets [31,32] are chosen to
calculate the geometry and energy combined with effective core potentials [33,34]. The
comparisons of the optimized structures with the experimental crystal data are listed in
Table S7, showing the reasonable optimized structures with lower standardized deviation
values for the bond lengths and the bond angles. In order to use the CODESSA Software [35]
to calculate the descriptors for each complex, the input file needs to be converted into a
Gaussian type (*.log). Therefore, the single-point energy (SPE) calculation is carried out
using the Gaussian 09 program package [36] under BLYP/6-31G* level based on a previous
study [9]. The natural bond orbital (NBO) is used for electron distribution analysis [37,38].

The descriptors are then calculated by the CODESSA software, generating around
350 descriptors for each complex. As in previous studies [39–42], there are seven self-
defined descriptors which show good correlations with catalytic activity. Therefore, these
descriptors are also calculated for each complex as shown in Table S8. Adding these
seven self-defined descriptors into the pool of descriptors, the total number of descriptors
is around 357. This huge number of descriptors is first pre-screened by the heuristic
method [43], leaving 99 descriptors for each complex. At this point, the values of the
correlation coefficients (R2) are calculated and show lower values below 0.6 for the model
of the molecular weight of the product. Therefore, the modeling is proceeded only for
the properties of catalytic activity. The obtained descriptors are cross-validated for the
optimum values of the cross-validation coefficient (Q2) and the root mean squared error
of cross-validation (RMSEV) using the k-fold method [44]. Descriptors are then further
reduced with a k-fold value of 5, by the variable importance of projection (VIP) [45,46]
method incorporated in the partial least-squares (PLS) toolbox [47,48]. The average of
the squared VIP scores equals 1, thus the “greater than one rule” is commonly used as
a criterion for variable selection, meaning that only the descriptors with an importance
value over 1 are selected. This pruning is repeated cyclically to gradually eliminate the
descriptors.

To decide on the optimal number of descriptors, four parameters expressing the
stability and predictive power of the model are employed. The correlation coefficient
(R2) is the square correlation coefficient between the experimental and predicted values
of the activity, and the root mean square error of the fitted data (RMSEF) illustrates
the difference between the predicted and experimental activities, which are defined as
Equations (3) and (4), respectively.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (3)

RMSEF =

√
∑n

i=1 (yi − ŷi)
2

n
(4)

where ŷi and yi are the predicted and experimental activity, respectively, y is the averaged
value of the experimental activity, and n is the number of complexes. The five-fold cross-
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validation result is defined as the cross-validation coefficient (Q2) in Equation (5), and the
root mean squared error of cross-validation (RMSEV) is calculated by Equation (6):

Q2 =

∑4
j=1

(
1− ∑n

i=1 (yv−ŷv)i
2

∑n
i=1 (yv−yv)i

2

)
j

4
(5)

RMSEV =

√
∑n

i=1 (yv − ŷv)i
2

n
(6)

where ŷv and yv are the predicted and experimental activity in the validation set, re-
spectively, yv is the averaged value of experimental activity for the complexes across all
validation sets, and n is the number of complexes. A 2D-QSPR model is considered to be pre-
dictive, provided it has R2 and Q2 values close to 1.0, as well as values of RMSEF/RMSEV
close to 0. Later on, the data set is divided into a training set and a test set to build and
validate the model, respectively.

3D-QSPR relates the catalytic properties of the complexes to their 3D descriptors,
including steric and electrostatic types, which are calculated by comparative molecular
field analysis (CoMFA) [49,50]. First, a database of all optimized structures is built, and
according to the alignment rule, a common substructure is selected as the alignment
structure, as shown in Scheme 2. After the alignment, structures are organized with the
associated data into molecular spread sheets. A cube of dimension 20 Å × 20 Å × 20 Å
is selected, in which molecular descriptors are calculated in a 3D grid at a step size of
2 Å [49].
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In the CoMFA method, the steric and electrostatic interactions between a probe atom,
usually a carbon atom of sp3 type corresponding to atom C.3 in the Tripos force field,
and complex structures are calculated at each 3D grid point. As to the electrostatic field,
coulomb interactions are calculated with the charge values assigned by the MMFF94 force
field. Lennard-Jones potentials are used to assess steric fields by the interaction of van der
Waals. The calculated 3D descriptors are not independent variables, thus PLS analysis has
been performed to extract the value of the principle components. In order to investigate
the predictive power of the models and to obtain the optimal number of principal com-
ponents, leave-one-out (LOO) cross-validation is carried out to provide the result of the
cross-validation coefficient (q2). Afterwards, non-cross-validated analysis (without any
validation) is performed to get the value of predictive correlation coefficient (r2). Herein,
q2 and r2 are described in Equations (7) and (8), respectively.

q2 = 1− PRESS
SD

= 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (7)

r2 =
SD− PRESS

SD
=

[{
∑n

i=1(yi − y)2
}
−
{

∑n
i=1(yi − ŷi)

2
}
]

∑n
i=1(yi − y)2 (8)

where ŷi, yi, y, and n are same as in Equation (4). A good 3D-QSPR model should have
values of q2 over 0.5 and r2 over 0.6.
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4. Conclusions

In the present work, QSPR modeling is performed to investigate the catalytic perfor-
mance of cycloalkyl-fused aryliminopyridyl nickel precatalysts toward ethylene polymer-
ization, including the catalytic activity and molecular weight of the product. The 2D-QSPR
model shows acceptable predictive and validation capabilities for catalytic activity, indicat-
ing that the net charge of negatively charged atoms within complexes has a large positive
contribution to catalytic activity. Meanwhile, 3D-QSPR analysis obtains good models not
only for the catalytic activity, but also for the molecular weight of the product. A 3D
contour map indicates the dominant role of steric fields for the both two performances.
Larger steric environments around cycloalkyl-fused rings have an unfavorable effect on
catalytic activity. On the contrary, these negative effect areas become positive effect areas
in the model of the molecular weight of the product. This study explores the structural
factors determining the catalytic performance of nickel precatalysts, providing potential
assistance for the design of new nickel complexes with desirable properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/catal11080920/s1, Table S1: The calculated values of the final 12 descriptors for each complex;
Table S2: The modeling results of the different combinations of training and test sets including the
R2, Q2, Rt

2, RMSEF, and RMSEV values for 39 complexes; Table S3: The values of the experimental
and predicted catalytic activities for the training set of 29 complexes and the test set of 10 complexes
from the 2D-QSAR analysis; Table S4: The values of the experimental and predicted catalytic activity
for the training and test sets from the 3D-QSPR analysis; Table S5: The values of the experimental
and predicted molecular weight for the training and test sets from the 3D-QSPR analysis; Table
S6: Experimental values of catalytic activities, molecular weights, and melting temperatures of
products under the optimum reaction conditions; Table S7: The calculated bond lengths and bond
angles by DFT compared with experimental crystal structures for complex 8 along with the values
of the standard deviation (δ); and Table S8: The values of different self-defined descriptors for each
Ni complex.
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